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Most genomic data studies are based on sequence comparisons and searches, and comparison models based
on alignment algorithms are most commonly used. This method is very accurate, but it is useful when the
query is short in kilobytes, because it requires the quadratic time and space complexity, O(n2) where n
is the length of target and query sequences. With the development of Next Generation Sequencing tech-
niques, researches on whole genome sequence data of megabyte size are being actively studied, and new
comparison and search methods for large-scale sequence data are needed. We propose a new alignment-
free sequence comparison and search method to overcome the limitations of the alignment-based model. In
this graphical model, the sequence searching problem in DNA strings can be reduced to find some parts of
geometric object within a relatively small-scale geometric space. When comparing similarity by modifying
sequences of similar length, we can confirm that the comparison model is appropriate by accurately reflect-
ing the degree of similarity. When searching the query sequence comparison model based on 200MB sized
whole genome sequence, using the compressed coordinate information, it was able to search the 10MB
sequences in 22s, which is a very reduced time compared to alignment. Although it is not possible to
find the exact position of the base pair unit as in the alignment result, it is a model that can be used as a
preprocessing process to quickly search a whole genome sequence of several hundred megabytes-size.

Povzetek: Na podlagi 3D vizualizacije celotnega zaporedja genoma so avtorji pokazali, da je na dolžini
poizvedbe možno prilagodljivo hitro iskanje.

1 Introduction

Genomic data studies are done through sequence compar-
isons, mostly using a model based on an alignment algo-
rithm. For example, Basic Local Alignment Search Tool
(BLAST)[1] is the most common method to search for se-
quences in a database. It divides the query sequence into
three characters, finds the matching region, and gradually
widens the region to select candidates for alignment. Al-
though it is very useful when searching for a short query in
the whole database, since it is based on alignment, it is dif-
ficult to obtain an immediate processing result in the case
of a large sequence such as a megabyte-scale chromosome
owing to a large increase in computational cost. When uti-
lizing the actual BLAST service, it is recommended to re-
duce the database search scope when the query size is of
the order of megabytes, and it is often time consuming to
search and provide results by mail, rather than providing it
immediately.

In addition, since gene recombination is different from
sequence alignment based on conservation of contigu-
ity between homologous segments, in order to overcome
this problem, alignment-free comparison method such like
word-frequency statistics, a method of calculating distance
in space defined by frequency vectors, is also actively

underway[2]. Such research is also widely used as a pre-
filter for processing queries of alignment-based models.

In this paper, we propose a geometric-based heuristic
technique that enables the rapid comparison and search of
sequences in personal computers. In this regard, AMSS[3]
is a model that provides shape-based similarity compari-
son, assuming that the time series data is a vector sequence.
Instead of focusing on individual points of time series data,
the model focuses on vectors and compares similarities be-
tween data using cosine similarity. This method is advan-
tageous in that it is effective for amplitude and time shift-
ing. In this study, we also aimed to reduce the time and
space complexity by converting the genetic sequence into
a geometric object such as a random plot and performing
comparison and search, taking into account that the genetic
sequence data is ordered sequence data. Instead of con-
sidering a single separate base, as in the alignment algo-
rithm, the method compares the vector generated based on
the sequence of the predetermined unit only once, and it is
possible to significantly reduce the time required for com-
parison operation by visualizing a sequence search result
and presenting the information more intuitively. In addi-
tion, the high-speed heuristic search technique can be ap-
plied to large amounts of data, and it is possible to specify
the necessary precise alignment analysis.
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Compared to [14], we present an improved similarity
computation algorithm that considers input sequences with
different lengths. We show the effectiveness of the pro-
posed method with experiments on searching for short
query sequences on a long sequence.

2 Related work

2.1 Genome Sequence Visualization
Most genetic data have a huge volume, and it is difficult to
find meaningful patterns in such data owing to the irregular
configuration of the four bases. The visualization of se-
quence information and sequence analysis information can
help in forming an intuitive understanding of the genomic
data and enable the efficient representation of the results.
Genome visualization research focuses on two aspects. The
first is the visualize of a large amount of genetic informa-
tion in a short time and a limited space, and the second is
the representation of complex information as intuitively as
possible.

Figure 1: The compact graphical representation [4] of the
first exon of human β-globin gene(a) and gorilla β-globin
gene. The visualization of search result for query sequence
of 10M size in human chromosome 1.

Figure 2: The vector design of ‘H-L curve’[5] (a)
and graphical representation for the DNA sequence
s =‘ATGGCATGCA’ (b).

The ‘Worm Curve’[4, 6] represents genome information
in a limited space, and it assigns a binary code to each base.
It is plotted on a Cartesian coordinate system, and its most
significant biggest advantage is that the curve can represent
all the information in a relatively small space, despite how
little the point intersects with each other. Studies have been

actively conducted using a variety of curves to intuitively
represent complex information. For example, the ‘Dual-
Base Curve’ (DB-Curve)[7] has been designed to visual-
ize the features of a genome sequence at a glance. In this
curve, the two different bases are configured as a combina-
tion, and a two-dimensional vector is assigned, where the y
component is assigned as a constant (+1) and the x compo-
nents are assigned separately. In this visualized, since the
curve is continuous in the positive direction of the y axis,
there is no point at which it crosses with itself. Obtaining a
ratio of the x-coordinates of the end points can confirm the
relative existing ratio of the two bases to obtain the statisti-
cal information of the sequence in an intuitive manner.

In contrast, the ‘H-L curve’[5] is a method of assign-
ing a two-dimensional vector for the four bases with a con-
stant x component, and this curve avoids intersection with
itself because different y-components are assigned. Since
the progress of a DNA sequence matches one-to-one with
the ‘H-L Curve,’ it has the advantage that the main differ-
ence of each sequence with other sequences can be checked
quickly.

In addition to visualizing curves, there is a ‘Four-Color
Map’[8], which assigns colors to each base and fills ar-
eas proportional to the frequency of occurrence with the
corresponding color, and ‘Circos’[9, 10], which visualizes
the whole genome in a circular track form. ‘Circos’ rep-
resents a chromosome as a piece of a circular track, and
connects the interactive chromosome tracks with a curve,
thereby effectively expressing the internal relation of the
whole genome. Although most relational connection vi-
sualization methods express only one-to-one associations,
‘Circos’ can express many-to-many associations as well by
using circular tracks.

2.2 Visualization Tool for Genome Sequence

Figure 3: 3D graphical representation of DNA sequence
using Z-axis as time axis[11]. The graphical representation
for the sequence ‘ATGGTGCACC’.

To compensate for the drawbacks of the sequence align-
ment method in terms of processing speed, a heuristic
method based on visualization is utilized. By converting
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a large amount of text information composed of only four
kinds of bases, the meaning of which is difficult to intu-
itively grasp, to geometry information, heuristic methods
are able to identify the type of data through visual exam-
ination to easily find patterns that cannot be revealed us-
ing computational methods[12]. Furthermore, geometric
rules found in the visible results often have a meaningful
relationship with genomic analysis in the field. Heuristic
methods are especially useful when utilized for quickly cal-
culating similarity or dissimilarity.

For example, large-scale genomic sequence information
is converted into information on a polygon domain, and
the problem of finding similarity is solved by replacing the
comparison of similarity of sequences with the compari-
son of image similarity[13]. By setting a direction for each
base, the sequence is converted to a random plot in which
the polygon area is simplified with the k-convex hull, and
the homology of two random plots is compared. Studies
[14, 15] have considered the extended space up to three
dimensions in the vector assignment for each base. Conse-
quently, a random plot can be visualized on three dimen-
sions, and the similarity can be compared by simplifying it
to be close to the actual random plot.

Since direct comparison is difficult for a walk-plot ob-
ject in three dimensions, a random plot is populated in a
certain space around the polygon area, and the orthogonal
projection of this space on each plane (X-Y, Y-Z, and X-Z)
is used to compare the degree of similarity using the over-
lap area ratio. However, the comparison method based on
the overlapping area has a drawback in that it does not take
into account the random plot present in the local area. To
overcome this drawback without simplifying the random
plot, the shape of the line is maintained while the shortest
distance between any points of two random plots is calcu-
lated for comparing the degree of similarity between two
sequences[16].

Previously, an alignment method called ‘Four Line’
involving graphical-domain sequence alignment, rather
than string alignment, was proposed[17]. By assigning the
four bases to different points on the Y-axis and connecting
the matched points in the sequence to be subjected to
alignment in the X-axis to make a visualization of the
zigzag curve, the visualization result of the two sequences
are compared to conduct alignment.

In order to overcome the disadvantages such as loss
of information and self-intersection of existing two-
dimensional visualization methods, there is a study in
which a DNA sequence is three-dimensionally utilized as
a time axis[11]. Regardless of the information of the base
to the z-axis will always increases, and by assigning vec-
tors x, y axis is increased or decreased for each base. Not
only it limited to visualization, to derive the geometrical
center of the curve, this time the center of this curve is im-
portant information indicating the distribution of each base.
In this study, a similarity comparison model was devised by
assigning vectors to each other in different ways and using

the Euclidean distance and angle correlation of the distance
to the start and end points of the vector through eight trans-
form. As a result, they could construct the similarity ma-
trix, it shown that the similar species such as human and
gorilla have high similarity.

In this manner, visualization results can be used not only
for the intuitive delivery of sequence information but also
as an analysis target to improve the processing speed and
to obtain meaningful results. In this study, by focusing on
this point, we convert a whole genome sequence to a walk-
plot object in three-dimensional space, extract a vector, and
compare and search for the sequence with improved speed.
Furthermore, by visualizing a search query sequence to-
gether with the random plot of the whole genome sequence,
the position and distribution of the obtained similar se-
quence can be transferred in an intuitive form.

Table 1: Functional Performance of Previous Research

Plotting Supports Global Local
Research space large-scale similarity similarity

dimension sequence compute compute

BLAST [1] N/A 4 O O
Compact 2D [4] 2D O O X
H-L Curve [5] 2D 4 X X
Bo Liao [11] 3D 4 O X

3D Random [15] 3D O O X
Proposed 3D O O O

3 New method using 3D random
plot

3.1 Sequence Searching method with 3D
Random Plot Structure

An overview of our algorithm framework is shown in Fig-
ure 4. Generally, all types of biological sequence compar-
ison exploit the sequence alignment based on a dynamic
programming approach. One popular alignment algorithm
is the Needlemann–Wunsch algorithm, which is widely
used in molecular biology. There are many variations in
sequence alignment, such as global alignment, local align-
ment, and semi-global alignment. Though the alignment
approach has many advantages, it has a critical drawback
in that it involves high complexity in terms of execution-
time complexity and space complexity. The complexity of
the basic alignment algorithm is O(m · n) if the lengths of
two input sequences are n and m. If Θ(n) = Θ(m), the
complexity is quadratic: O(n2). When the size of the in-
put sequence is greater than 100 megabytes, this alignment
is impractical, because it requires a main memory greater
than the order of gigabytes. To overcome these problems,
researchers developed heuristic alignment techniques such
as BLAST-like tools. Another problem in the alignment
algorithm is that it is not easy to define the score/penalty
matrix to meet the many different constraints in biological
sequence comparison.

The basic idea of our approach is that we compute the
similarity of two sequences in ‘geometric random plot’
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Figure 4: Space transform from sequence to 3D geometric
shape.

space, rather than ‘string sequence’ space. As shown in
Figure 4, we first transform the input sequences into ran-
dom plot in 3D space. Then, we compare or search for a
target sequence in 3D geometric object.

This transformed random plot can be visualized on an
appropriately sized grid, and a sequence of megabytes in
size can be represented by a list of pixels much smaller
than the actual number of bp.

Thus, we can say that our geometric transformation is a
type of approximation with visualization. The advantage of
our transformation is that the global structure can be shown
by hiding the biological noise embedded in the sequence.
The main merit of our approach is that it is useful and ef-
ficient in comparing very long sequences. Assume that we
are asked to find the location of a sequence that is a few
megabytes in length in a whole genome longer than 100
megabytes.

3.2 Vector Allocation for random Plot

Sequence data are string information composed of
{a,g,t,c}; therefore, they must be converted into graphical
information for visualization. Previous 2-D visualization
methods have visualized genome sequences by assigning
a separate base in the positive and negative directions of
each axis (x and y). This method has a disadvantage in that
a large amount of information is lost when a base having a
vector in opposite directions is continuously repeated. Fur-
thermore, if the same pattern is continuously repeated, it is
impossible to visualize a large volume of data in a limited
space. To overcome this disadvantage, [15] used a 3D vec-
tor. A vector is assigned to each base, but a combination of
two bases constitutes a random plot. When the two bases
are coupled together with the vector in the opposite direc-
tion, the representation is made three-dimensional with a
z-axis to minimize the lost information. In this study, by
using a 3D vector allocation model[15], we calculate the
vector character of the sequence data and obtain sequence
search positions to visualize the results.

Table 2: Vector allocation method for each 2-mer base in a
genome sequence in three-dimensional geometric space

2-mer Vector 2-mer Vector

AA ( 2, 0, 0) AG(GA) ( 1, 1, 0)

AC(CA) ( 1, -1, 0) AT(TA) ( 0, 0, -2)

CC ( 0, -2, 0) CG(GC) ( 0, 0, +2)

CT(TC) ( -1, -1, 0) GG ( 0, 2, 0)

GT(TG) ( -1, 1, 0) TT ( -2, 0, 0)

Table 2 summarizes the vector allocation method for
each 2-mer. In Table 2, the base pairs AT and GC are rep-
resented on the z axis. The other base pairs are represented
as the sum of two unit vectors for each base, as given by
the WS-curve method.

After the vector transition for DNA genome data infor-
mation, those vectors are visualized in three-dimensional
space. The method of visualization is the same as that
of two-dimensional visualization, where the sum of vector
values is computed according to the order of sequences and
the results are connected with a line to provide the final vi-
sualization result. For the random plot R, the starting point
is R(0) = (X0, Y0, Z0) (X0 = Y0 = Z0 = 0). Unit3d(i)
is the converted value of the ith 2-mer of the unit vector.
The ith point R(i) = (Xi, Yi, Zi) of the random plot is
computed as follows:

R(i) = R(i− 1) + Unit
3d

(i) =

i∑
k=1

Unit
3d

(k) (1)

Figure 5 shows the direction of the random plot for each

2-mer read. Since the first 2-mer read ‘AA’ is on the x-axis
(+2), it can be confirmed from figure (a) that the positive
x-axis moves from the origin O. Since the next 2-mer read
is ‘AT’, a movement in the z-axis by (-2) can be confirmed.

This vector transformation rule are determined empir-
ically in order to discriminate different sequences effec-
tively. As Figure 6, similar sequences are likely to produce
similar walk plots.

In this way, the transformed random plot is visualized
in an appropriate sized three-dimensional grid. The default
grid size 500 × 500 × 500 is what we empirically figured
out at which this trade off between speed and correctness
of comparison is well balanced for the sequences used in
the experiments.

In case of the short genome sequence, it can be repre-
sented in a 500×500×500 grid easily. But the large size se-
quence needs space normalization to visualize the random
plot in limited space. When the vectors of the random plot
are calculated, the points that are farthest from the origin
O(0, 0, 0) to the X, Y, and Z axes are maxx,maxy,maxz ,
and the view size of visualization is V , the normalized ith
point R(i) = (Xi, Yi, Zi) can be expressed as:
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Figure 5: Movement of the random plot for each 2-mer
read. (a), (b), (c) and (d) show plots in the form of walks in
the X-Y, X-Z, and Y-Z planes in three-dimensional space.
From O(0, 0, 0), the random plot proceeds in accordance
with the base assigned to 2-mer. The red random plot rep-
resents movement on the X-Y plane, and the blue random
plot represents movement on the Z axis.

Regular(R(i)) = (Xi ·
V

maxx
, Yi ·

V

maxy
, Zi ·

V

maxz
)

(2)

This visualization model is so useful to compare the
huge whole genome. Figure 6 shows advantage of this
works[15]. We have constructed the 3D random plots from
two whole genomes such as Human Chromosome 1 and
Chimpanzee Chromosome 1. In Figure 6, red random plot
represents the Human and green one represents the Chim-
panzee. Red random plots are up in the positive direction
of the X and Y-axis than the green one. This visualization
method directly make us to confirm that two genomes are
quite similar and the Human chromosome has more ‘G’
and ‘A’ base compared to Chimpanzee.

3.3 Vector Extraction from Random Plot
For G, a genome sequence consisting of 4 DNA bases {
a, g, t, c }, ranwalk(G) represents a three-dimensional
geometric object constructed by our proposed algorithm.
Therefore, ranwalk(Gi) consists of a list of linked pixels
as follows:

Definition 1.

ranwalk(G) =< P1, P2, . . . , Pl >

The position of a ranwalk pixel is denoted Pi =
(xi, yi, zi) satisfying |xi − xi+1| ≤ 1, |yi − yi+1| ≤ 1
and |zi − zi+1| ≤ 1, which means two pixels Pi and Pi+1

Figure 6: Visualization result of Human and Chimpanzee
chromosome 1. Red plot is constructed from Human chro-
mosome 1 and the green random plot is constructed from
the whole genome of Chimpanzee (Pan troglodytes) chro-
mosome 1.

are adjacent to each other, sharing a common face. We say
Pi and Pi+1 are ‘adjacent’ if they are within a distance of
1.

O

P1:0

P0:5

P0:25

P0:75

Figure 7: A geometric random plot (blue dotted line) and
corresponding vectors.

Now, we explain how to compute the distance between
two ranplot pixels obtained from two genomesGa andGb
to be compared. Assume that we constructed two geomet-
ric objects, Ra = ranplot(Ga) and Rb = ranplot(Gb).
The proposed distance measure, random plot distance
(Rdist), is a vector with two components ∆Span and
∆Degree. The proposed Rdist() measure has another pa-
rameter, depth k. The distance between two random plot
Ra and Rb at depth k is defined recursively as follows.
In this definition, Ra1 is the first half of Ra, and Ra2 is
the last half of Ra. Rb1 and Rb2 are defined in a similar
manner. Thus, Ra = Ra1 � Ra2 , where � denotes the
geometric concatenation operation.
Definition 2.
Rdist(Ra, Rb, k) = Rdist(Ra1, Rb1, k+ 1) +Rdist(Ra2, Rb2, k+ 1)

Now, we explain how to compute Rdist(Ra, Rb, k = 1)
at the basic depth = 1 level. In Figure 7, the thick blue
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Rdist(RA; RB) = < θA;B; LA;B >

LA;B =
jPA;Bj

max(jPAj;jPBj)
Figure 8: Two comparison parameters {θAB , LAB }.

dotted curve represents the random plot for a genome se-
quence. Symbols P0(O) and P1 denote the first and last
pixel of a random plot, respectively. Pt denotes the first t-
percentile pixel. Thus, P0.5 denotes the exact middle pixel
in the list of pixels generated by our transformation algo-
rithm.

For an interval in a random walk, we obtain a parameter,
the length of the direction vector (P0, P1). If two random
walks to be compared start with the origin (0, 0, 0), then we
can obtain the lengths of two direction vectors fromRa and
Rb and compute the angle difference between two vectors
Pa1 and Pb1.

Assume the start and end points of Ra are Pa0, Pa1, and
those of Rb are Pb0, Pb1. If k = 1 is, the comparison tar-
get is

−−−−→
Pa0Pa1 and

−−−−→
Pb0Pb1. If k = 2, further down one

step,divided into two vectors are compared both front and
rear vector. Therefore, the comparison target are

−−−−−→
Pa0Pa0.5

and
−−−−−→
Pb0Pb0.5,

−−−−−−→
Pa0.5Pa1.0 and

−−−−−−→
Pb0.5Pb1.0. If k = 3, by ap-

plying the same method, it performs a comparison of eight
times (2k).

If the length of divided vector drops below the appro-
priate length D, the recursion is aborted. In this paper, the
threshold D value is set to 100 times the unit size, where
unit size is the number of bp per pixel when visualized. The
D value was determined experimentally because at least the
length of the vector was more than 100px, meaningful com-
parison was possible.

3.4 Computing Similarity and Search on
Random Plot

Rdist refers to the similarity distance between the two vec-
tors. Figure 8 shows that two parameters of θA,B , LA,B for
Rdist. θA,B refers to the angle between the two vectors,
and LA,B refers to the ratio between the length of two vec-
tors differ and from those of the longer vector. If the two
vectors have the same orientation, θA,B = 0, two vectors,
if the length is equal to LA,B = is 0(0 ≤ θA,B ≤ 180, 0 ≤

Algorithm 2 Comparison Algorithm
initialize beg ← 0
initialize end← len(Ra)
initialize O ← {0, 0, 0}
initialize D ← threshold lenth of vector
procedure SIM(beg, end : index of vector list, Ra, Rb :
random plot of Ga, Gb, threshold θs, Ls)

mid← (end− beg)/2 + beg
cnt← 0
if end− beg > D then

cnt+ = Sim(beg,mid,Ra, Rb)
cnt+ = Sim(mid+ 1, end,Ra, Rb)

else
Va ← Ra[end]−Ra[beg]
Vb ← Rb[end]−Rb[beg]
Lena ← euclideanDist(O, Va)
Lenb ← euclideanDist(O, Vb)

θa,b ← acos(dotProduct(Va,Vb
Lena×Lenb )× 180

a,b ← abs(Lena−Lenb)
max(Lena,Lenb)

if θa,b ≤ θs and a,b ≤ Ls then
return 1

else
return 0

end if
end if
return cnt

end procedure

LA,B ≤ 1).

To compare and visualize the random plot in a limited
space, compression is necessary, as described earlier for-
mula 2. However, in the case of the reference sequence, to
calculate the overall similarity of the two vectors, it main-
tains the two normalized values set. One is a normalized
value that is used to process the query sequence, and the
other is a normalized value of the calculated original ref-
erence sequence. When comparing the sequence to search
when the use of normalized values of the query, and visual-
ization uses the original normalized value. This is because
it can not be an accurate comparison due to the size differ-
ence between the reference and the query, the normalized
values differ.

After the normalization of the reference sequence and
query sequence the normalized according to the normal-
ization value of the query sequence, extend the depth to
a predetermined level k to proceed comparison by divid-
ing a random plot as unit size. Compare all the pieces of
the vector unit size extracted from the two random plot
by Rdist(). When processing the results meet the pre-
determined reference range, the higher the degree of simi-
larity (θA,B ≤ θs and LA,B ≤ Ls). The ratio between the
number of the unit vectors that meet the conditions and the
total number of vector is similarity between two sequences.



Alignment-free Sequence Searching over Whole Genomes. . . Informatica 42 (2018) 357–368 363

3.5 Reference Sequence Slot
If the length of the query is long enough, the sequence in-
formation is compressed at an appropriate rate during vi-
sualization in a limited space. Therefore, it is possible to
perform in the on-memory state by applying the same com-
pression ratio when searching in the reference sequence.
However, sequences with short lengths, such as the LTR
sequence, are only kilo-bytes in size and remain uncom-
pressed in the visualization process. In this case, vector
information becomes large, and query search becomes im-
possible in on-memory state. In order to compensate for
this, when the length of the reference sequence differs by
more than 200 times, the reference sequence is divided into
an appropriate number of slots to perform the search. A slot
is like a window. By reducing the search range by multiple
of the query length at a certain point in time, the method de-
scribed above can be applied even in a case where a search
is required at a low compression ratio in a large size se-
quence.

|Slot(Q,R)| = |ranwalk(R)| − c0 · |ranwalk(Q)|
|ranwalk(Q)| · (c0 − 1)

(3)

Equation 3 is the number of slots created when a query
and reference sequence are given. Q and R are Query and
Reference sequence respectively, and len(ranwalk(X))
represents the length of the whole vector information when
X sequence is expressed as a random plot. c0 is a control
constant, which is the size of the space in which a vec-
tor should be searched when a certain size query vector is
given. In this paper, c0 is set to around 200.0. Since the
query may exist at the point where the slot is divided, the
boundaries of each slot are overlapped by the length of the
query vector. Figure 9 shows that the vector of the refer-
ence sequence is divided into slots.

Figure 9: Slot division in reference sequence vector based
on the vector length of the query sequence.

4 Experiments

4.1 Dataset Preparation
Actual biological sequence data were used for the search-
ing experiment, and artificial data were used to validate the
similarity comparison model. The biological sequences are
Human chromosome 1 (246MB size) and the sequence of

a 1M-10M size extracted from chromosome 1. Artificial
sequence data are obtained by extracting a sequence of 1-
10 MB length from the Human chromosome 1 sequence at
a random location and inserting noise in a predetermined
ratio. A number of bases with different sizes are deleted,
inserted, and replaced by a ratio of 1% to 50%. The arti-
ficial data information such as ratio and the b.p. size and
number of pixels and compression ratio is shown in Tables
3 and 4. ‘A1-0’ means that the artificial data of 1M size
and 0% modified, namely it is just extracted from Human
sequence, not modified. But ‘A10-25’ means that the arti-
ficial data of 10M size and 25% modified.

This modification rate is expressed as ’M’ (M.Rate) in
Table 3 and 4. ‘M’ (M.Rate) refers to the modified ratio
of the number of B.P. on origin sequence. For verification
of the similarity comparison model, this rate was set higher
gradually as the experiment was repeated.

‘Ratio’ refers to the compression ratio of the number of
B.P. and pixels of the actual sequence to be converted to a
random plot. For example, in the Table 3, since A1-1 se-
quence has 1000.02K bases, and random plot size consists
of 36K pixel, the compression ratio is 3.58%. ‘Sim’ means
that the similarity result of origin sequence and modified
sequence and ‘Comp.t’ represents the comparison time.

Table 3: Specification of artificial data of 1M, 2M size ex-
tracted from Human chromosome 1 and comparison result

Sq M Length Plot Ratio Sim. Cmp.t
N. (%) (K bp) (K px) (%) (%) (s)

A1-0 0 1000.02 36.00 3.58 100.00 0
A1-1 1 999.93 35.79 3.58 99.59 0
A1-2 2 1000.01 36.17 3.62 99.45 0
A1-5 5 999.89 36.67 3.67 98.23 0
A1-8 8 999.97 37.74 3.77 96.06 0

A1-10 10 1000.49 38.05 3.80 91.73 0
A1-15 15 999.78 40.74 4.07 93.58 0.016
A1-20 20 1000.29 42.49 4.25 91.76 0
A1-25 25 999.92 44.2 4.42 86.14 0
A1-30 30 999.79 47.18 4.72 84.23 0.015
A1-40 40 1001.12 50.86 5.08 69.86 0.015
A1-50 50 999.47 58.36 5.84 63.53 0.016
A2-0 0 2000.04 67.09 3.35 100.00 0
A2-1 1 1999.96 66.89 3.34 98.03 0
A2-2 2 2000.15 67.27 3.36 95.85 0
A2-5 5 2000.26 68.99 3.45 94.65 0
A2-8 8 2000.2 70.4 3.52 90.5 0

A2-10 10 2000.14 69.64 3.48 91.2 0.016
A2-15 15 1999.94 70.84 3.54 85.71 0
A2-20 20 2000.18 77.56 3.88 83.62 0
A2-25 25 2000.66 79.97 4.00 72 0
A2-30 30 1999.85 89.15 4.46 73.37 0
A2-40 40 2001.5 88.54 4.42 63.34 0.016
A2-50 50 2000.62 104.11 5.20 54.91 0.016

Tables 5 and 6 are data for searching for LTR sequences
that are frequently handled in real bioinformatics analysis.
In the table 5, R-F-1 is the reference sequence and means
chromosome 1 sequence of the Flatfish. In the correspond-
ing table 6, Q-F-1 is the query sequence of R-F-1 and is
the LTR sequence extracted from R-F-1. The biggest dif-
ference from the artificially generated data is that the LTR
sequence is too short and thus has a low compression rate
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Table 4: Specification of artificial data of 4M, 10M size
Sq M Length Plot Ratio Sim. Cmp.t
N. (%) (K bp) (K px) (%) (%) (s)

A4-0 0 4000.09 42.62 1.07 100.00 0
A4-1 1 4000.18 42.69 1.07 99.3 0
A4-2 2 3999.71 42.15 1.05 98.93 0
A4-5 5 3999.51 44.13 1.10 98.18 0
A4-8 8 3999.36 44.08 1.10 96.03 0
A4-10 10 4000.1 45.95 1.15 96.27 0
A4-15 15 3999.75 45.69 1.14 94.63 0
A4-20 20 4000.23 49.33 1.23 91.33 0
A4-25 25 3999.7 49.78 1.24 90.93 0
A4-30 30 4001.21 53.79 1.34 84.36 0.016
A4-40 40 3999.59 57.16 1.43 76.82 0.015
A4-50 50 4000.14 64.1 1.60 66.87 0
A10-0 0 10000.05 65.26 0.65 100.00 0
A10-1 1 10000.03 65 0.65 98.08 0
A10-2 2 10000.13 64.81 0.65 97.29 0
A10-5 5 9999.47 66.32 0.66 96.76 0.015
A10-8 8 9999.74 68.75 0.69 95.12 0

A10-10 10 10000.71 67.93 0.68 94.9 0.015
A10-15 15 9999.97 75.13 0.75 91.18 0
A10-20 20 9998.82 74.38 0.74 90.24 0
A10-25 25 9999.4 78.34 0.78 87.68 0.016
A10-30 30 9999.24 82.29 0.82 82.49 0
A10-40 40 9999.82 87.51 0.88 78.48 0
A10-50 50 10001.48 94.45 0.94 66.47 0

in the visualized space. This is because visualization is
possible in a limited space without compression. Since the
reference sequences are based on the compression ratio of
the query sequence, we can see that the random plot size of
the reference sequence is very large relatively.

Table 5: Specification of biological data for reference
Sq Chr. Species Length Plot Ratio
N. (M bp) (M px) (%)

R-F-1 1 Flatfish 19.80 19.02 95.06
R-F-2 2 Flatfish 20.14 19.34 96.02
R-F-3 3 Flatfish 22.24 21.36 96.04
R-F-5 5 Flatfish 23.64 22.69 95.98
R-H-1 1 Human 246.89 236.44 95.77

Table 6: Specification of biological data for query
Sq Chr. Species Length Plot Ratio
N. (K bp) (K px) (%)

Q-F-1 1 LTR 0.41 0.41 100.00
Q-F-2 2 5’LTR 1.56 1.54 98.72
Q-F-3 3 Gypsy 4.84 4.78 98.76
Q-F-5 5 LTR 8.55 6.44 75.32
Q-H-1 1 HERV-K 9.26 8.06 87.04

4.2 Experiment:Comparison Between
Modification ratio and Similarity based
proposed Model

Table 3 and Figure 12 show the result of similarity analysis
of origin extracted sequence and modified sequences. In
Table 3, ‘Sim’ means that the similarity result of origin se-
quence and modified sequence and ‘Comp.t’ represents the

comparison time. As the modification ratio increases, the
degree of similarity decreases. Thus, it can be confirmed
that the similarity comparison model proposed in this study
accurately reflects the similarity of the sequences. In addi-
tion, except for sequence generation, the time required for
comparison is 0.02 seconds, which means that it can be
processed at a very high speed.

Figure 10: Red random plot represents one part of Human
chromosome 1, the length of which is 4 MB, in terms of
nucleotide bases. Green random plot represents the 10%
distorted sequence of the red one, Human chromosome 1.

Figure 11: Red random plot represents one part of Human
chromosome 1, the length of which is 4 MB, in terms of
nucleotide bases. Green random plot represents the 30%
distorted sequence of the red one, Human chromosome 1.

4.3 Experiment:Artificial Sequence Search
over whole genome sequence

Table 7 is the result of sequence searching process for ex-
tracted original sequence from Human chromosome 1 and
the modified sequences. ‘Unit B. P. ’ is the size of B.P. as



Alignment-free Sequence Searching over Whole Genomes. . . Informatica 42 (2018) 357–368 365

Figure 12: Similarity between origin sequence and modi-
fied sequences in each size 1-10MB.

a unit of search,‘ Unit Vector’ refers to the size of the vec-
tor to consider when comparing a time. ‘Error Dist.’ is the
distance between the actual sequence position and the re-
sult of search position. ‘Find.t’ shows the amount of time
spent on search. The original sequence (0% modified se-
quence) search, as well as about the modified sequence of
up to 20% are also searched in a short time. The differ-
ence between the actual position and the search result is
relatively accurate, as the query size is less than 200 B.P.
when the query size is 1M, and only about 2000 B.P. when
the query is 10M. Figure 13 and 14 are the visualization

Table 7: The result of sequence search for origin sequence
and modified sequence in Human chromosome 1

Q Unit sz. Vec.sz error Sim. Find.t
sq. (bp) (px) Dist. (%) (s)

A1-0 28 11200 0 99.29 17.269
A1-5 27 10800 150 97.27 21.341
A1-10 26 10400 840 91.34 23.213
A1-20 23 9200 120 88.75 22.514
A4-0 92 36800 1160 92.81 6.537
A4-5 90 36000 160 98.41 6.896
A4-10 88 35200 1040 92.68 7.678
A4-20 80 32000 1040 86.3 9.132
A10-0 154 61600 1120 93.88 13.665
A10-5 150 60000 560 97.21 16.065

A10-10 148 59200 280 95.09 14.245
A10-20 134 53600 2020 81.95 22.241

result of search for the query sequence of 1MB, 10MB in
the chromosome 1 of the Human. Red random plot is a vi-
sualization of Human chromosome 1, and blue point is the
location where the query was searched. Through the visu-
alization results, we can see that a query of 1MB size was
found at a relatively early stage of the reference sequence,
and a query of 10MB size was at the end of the sequence.
This is consistent with the position in the actual sequence,
and represents a search result in a more intuitive.

Figure 13: Searching result of query sequence (A1-0) in
reference sequence (Human chromosome 1). Red plot rep-
resents reference sequence and blue cross point represents
the position of searched query sequence.

4.4 Experiment:Biological Sequence Search
over whole genome sequence

Table 8 shows the results of searching a biological query
sequence in a whole genome sequence. The search for the
LTR sequence (Q-F-1) extracted from the flatfish chromo-
some 1 resulted in a similarity of 85.7% within 90 B.P.
of the actual query position within about 0.4 seconds of
search time. On the other hand, the HER-V sequence (Q-
H-1) extracted from Human chromosome 1 took relatively
longer time, longer than 40 seconds because the length of
the query sequence was short and the length of the refer-
ence sequence was long. The difference between the actual
position and the search result is about 2000 B.P., which is
relatively accurate considering that the length of the refer-
ence sequence is more than 200M.

Figures 15,16,17 and 18 visualize the flatfish chromo-
some 1,2,3,5 sequences, respectively. The red one is a vi-
sualization of the whole genome of a flatfish, and the area
marked in blue is where each query was searched. Fig-
ures 17 and 18 show that the marked positions are almost
identical to the origin, reflecting that the Q-F-3 and Q-F-
5 queries are actually located within 0.5 % of the flatfish
whole genome sequence. On the other hand, Figures 15
and 16 reflect that the marked positions are relatively far
away from the origin, that the positions of the Q-F-1 and
Q-F-2 queries are actually located within 7% and 10% of
the flatfish whole genome sequence. Figure 19 visualizes
the Human chromosome 1 sequence and marks the result
of searching the Q-H-1 query. It is well reflected that the
Q-H-1 query is actually located in the early 63 % (about
155 MB.P.) of the Human sequence. Figure 20 is the re-
sult of original query sequence (Q-H-1) and enlarged sub-
sequence of the reference sequence (R-H-1) at searched po-
sition. The similarity of the searched sequence in the ref-
erence (green plot) was 78%, and it can be confirmed that
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Figure 14: Searching result of query sequence (A10-0) in
reference sequence (Human chromosome 1). Red plot rep-
resents reference sequence and blue cross point represents
the position of searched query sequence.

the query is very similar to the query when matched with
the query sequence.

Table 8: The result of sequence search for biological query
sequence in flatfish and Human chromosome 1.

Q Unit sz. Vec.sz error Sim. Find.t
sq. (bp) (px) Dist. (%) (s)

Q-F-1 1 413 90 85.70 0.400
Q-F-2 1 1540 180 72.40 1.030
Q-F-3 1 4780 960 69.10 0.452
Q-F-5 1 6443 1230 75.20 2.038
Q-H-1 1 8063 2130 78.40 41.011

5 Conclusion
Most genome sequence analyses proceed through compar-
ative analysis by finding similar sequence data. Therefore,
there is a need for a technique to quickly compare and
search for large amounts of sequence data. The alignment
technique is a very accurate method to compare sequences,
but its high time and space complexity is inadequate to han-
dle large sequences. To overcome these disadvantage, we
suggest a new method for comparison and finding for Mega
size sequence. Converts the genome sequence as a ran-
dom plot on the three-dimensional, followed by replacing
the sequence comparison problem with geometric object
comparison problem. As a result of experiments, similar-
ity precessed by our comparison model accurately reflects
the modified ratio between the modified sequence and the
original sequence. Most analytical studies based on visu-
alization derive only a single result because they derive a
numerical value based on the final result of the visualiza-
tion. The search and comparison method based on the se-
quence visualization proposed in this study has high value
of utilization of information because all compressed partial

Figure 15: Searching result of query sequence (Q-F-1) in
reference sequence (R-F-1). Red plot represents reference
sequence and blue cross point represents the position of
searched query sequence.

visualization information is used for searching sequence. It
is useful in that the partial similarity of the sequence can be
measured. In addition, a query sequence of size 1-10M was
searched in a whole genome sequence of 200M or more,
and a relatively precise position was found for the original
sequence as well as the modified sequence up to 20%. Also
the search time 25 seconds or less, was confirmed handled
in a very improved speed compared to the alignment algo-
rithm.

On the other hand, when a sequence with a shorter kilo-
byte unit length is used as a query, such as an LTR se-
quence, the compression rate is lowered at the time of vi-
sualization, resulting in a lower compression rate of the
reference sequence, which leads to a longer search time.
However, considering the length of the reference, we can
confirm that the position searched is relatively accurate.

The proposed alignment-free searching method is very
fast and effective to find a long query sequence over the
whole genomes whose size is more than multi-hundreds
mega-bytes. It was able to compare and search the se-
quence at a much improved rate than the alignment-
based model by modifying the sequence data into a three-
dimensional random plot object and comparing the similar-
ity with the compressed information. Searching algorithm
based on alignment method is popular and works good bi-
ological sequence comparison but if the size of query and
target reference is very large (more than 100 mega bases)
the alignment base algorithm requires huge memory space
and takes a long computation time. Though our algorithm
can’t locates the position of query sequence exactly by the
DNA base unit, but we can use this procedure as one pre-
processing step to find query sequence.
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Figure 16: Searching result of query sequence (Q-F-2) in
reference sequence (R-F-2). Red plot represents reference
sequence and blue cross point represents the position of
searched query sequence.
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Dejan Plavšić. A novel unexpected use of a graphi-
cal representation of dna: Graphical alignment of dna
sequences. Chemical Physics Letters, 431(4):375–
379, 2006. https://doi.org/10.1016/j.
cplett.2006.09.044.

Figure 19: Searching result of query sequence (Q-H-1) in
reference sequence (R-H-1). Red plot represents reference
sequence and blue cross point represents the position of
searched query sequence.

Figure 20: Matching result between the query sequence (Q-
H-1) and the extended subsequence of reference sequence
(R-H-1), which was depicted as a blue cross in Figure 19.


