Informatica 33 (2009) 107-113 107

Efficient Morphological Parsing with a Weighted Finite State Transducer

Damir Cavar
University of Zadar, Croatia

E-mail: dcavar@unizd.hr and http://personal.unizd.hr/"dcavar/

Ivo-Pavao Jazbec and SiniSa Runjaic¢
Institute of Croatian Language and Linguistics, Croatia
E-mail: {ipjazbec,srunjaic} @ihjj.hr and www.ihjj.hr

Keywords: weighted finite state transducer, morphological analysis, croatian

Received: October 31, 2008

This article describes a highly optimized algorithm and implementation of a deterministic weighted fi-
nite state transducer for morphological analysis. We show how various functionalities can be integrated
into one machine, without sacrificing performance or flexibility, and and still maintaining applicability to
various languages. The annotation schema used in this implementation maximizes interoperability and
compatibility by using a direct mapping of tags from the GOLD ontology of linguistic concepts and fea-
tures, providing possible extended processing scenarios.

Povzetek: Opisana je morfoloska analiza za hrvaski jezik.

1 Introduction

For the majority of natural languages, the s.c. low density
languages, appropriate linguistic data and language pro-
cessing tools do not exist, neither enough raw language
data (e.g. text or audio recordings). For some languages
with much higher language resource density the appropri-
ate language technology is missing that would help in cre-
ating necessary and valuable quantitative and qualitative
linguistic information, essential not just for research pur-
poses. Thus, even languages that do not face the low den-
sity problem, still lack crucial resources. For many lan-
guages information as for example contained in CELEX
[7] is not available. Thus, for the majority of languages the
distributional and quantitative models of phonetic, phone-
mic, morphological and syntactic properties do not exist.

In recent years the amount of available linguistic data
was growing. Recordings and transcriptions, dictionar-
ies and textual corpora build the basis for an impressive
amount of empirical linguistic research, as well as language
technology for various application domains. However, the
resources face crucial problems. On the one hand, we see
a growing number of specific purpose data, with limited
value for a wide range of research and development do-
mains, representing snapshots of a specific state of a lan-
guage at a specific time, often based on easily available
raw data like newspapers or books. Language change and
dynamic aspects of languages require permanent creation
and adaptation of existing resources. This task cannot be
accomplished without the technologies, e.g. adaptive tools
or appropriate machine learning algorithms.

Linguistic annotation of corpora is limited in another

way. The choice of part-of-speech (PoS) tags is theory
driven, and thus in general restricted to a specific view or
framework, with a likely limited value for other research
and development purposes.

Focusing on morphology as one of the levels of linguis-
tic representation and grammar, corpus annotations tend to
be lexeme and word-form oriented, PoS-tags for lexemes
in the corpus, rather than segmentation of word-forms into
morphemes and allomorphs with their particular feature an-
notation. Even the notion of morphological information is
used inconsistently in the literature, e.g. associated exclu-
sively with lexeme and PoS information. Thus existing re-
sources, e.g. the documented Croatian morphological lex-
icon [14], do not provide information about the morpho-
logical structure and specific feature annotations of single
morphemes, but rather word-forms and lexemes with PoS-
annotation. Specific research questions, on the other hand,
require detailed morphological analyses of lexical tokens
in a corpus. On the basis of the Croatian Language Corpus
[6], as one of our major data sources, needs to be annotated
for subsequent analysis.

1.1 Central goals

Our specific goal was the development of a system that
parses lexemes into morphological structure. The desired
output information, as far as morphology is concerned, re-
quires a morphological lexicon and morphological corpus
annotation to include parsed lexemes on the morphological
level, with annotations and explicit feature bundles associ-
ated with each single morpheme or allomorph, as shown in
table 1 for the word procitamo (Croatian, “to read(out)”).

108 Informatica 33 (2009) 107-113

Table 1: Example of a morphological parse

token | procitamo
pro cita mo
stem inflectional
parse prefix root suffix
aspect verb 1%t
perfective transitive plural
present

This type of a morphological parse is already simpli-
fied. Certain potentially required and theoretically moti-
vated information is excluded. For example a hierarchical
tree structure for morpheme relations is not displayed, al-
though it might be useful to reveal scope ambiguities of
semantic properties. The shown parse represents just linear
segmentations that include a quasi-hierarchical dependency
with for example the prefix and root being contained in the
stem, as shown in table 1. In general, we expect ambigu-
ities to occur, and in fact we are interested in all possible
parses that lead to a complete analysis of a morphological
complex word. For research purposes in the first stage we
do not intend to disambiguate the parses.

In addition to the morphological parse, the output should
ideally also contain information about the lexical lemma
(i.e. base-form) and the related root lemma. Once the mor-
phological segmentation is available, the generation of lem-
mata can be achieved by appending the canonical inflec-
tional suffix to the identified base, and potentially applying
the necessary allomorphic change to the root. Furthermore,
for establishing associations of word-forms to semantic
fields, i.e. identifying the semantic root of a complex word-
form, the lemma of the root provides a useful additional an-
notation information. For most Slavic and Germanic lan-
guages the rightmost root in a word-form is the semantic
head of a complex morpheme. Thus, the root-lemma is
generated by picking the rightmost root morpheme and ap-
pend to it the canonical inflectional suffix. We annotate
individual word forms for both lemma types, i.e. the root-
and the base-lemma. The latter is achieved by inclusion of
all prefixes in the lemma formation rule that are part of the
morphological base.

1.2 Scope and problems

The morphological parse and annotation is supposed to
cope with raw language data from various time periods and
dialects, i.e. synchronic and diachronic data, focusing for
the time being on Croatian. Such textual data is problem-
atic since e.g. different orthography standards have been
and are still used. The lexical environment was and is
not static, with lexical items emerging and disappearing,
their semantic properties changing etc. Lexical changes
occurred, some might have affected the morphological
makeup of individual word-forms (including changes in
paradigms), some might be related to different feature bun-
dles associated with them.

D. Cavar et al.

Given these conditions, it is obvious that various do-
mains of lexical and morphological properties and features
in our particular case are still subject to ongoing research,
the set of features is necessarily open and unspecified from
the outset. We expect in particular semantic properties,
new feature types that result from linguistic conceptual ne-
cessities, or marking of linguistic origin and cultural back-
ground to emerge during future studies, i.e. the annotations
of morphemes should be extensible.

2 Technical realization

In general, the technical realization of the described anno-
tator appears to be feasible, using a very simple, and nev-
ertheless efficient technical solution, i.e. finite state trans-
ducers [3, 4]. Specific attention is given to efficiency and
adaptability (to variants and dialects, as well as other lan-
guages). In the following we describe the algorithmic spec-
ification of a morphological parser for the Croatian stan-
dard, and synchronic and diachronic variants.

2.1 Previous approaches

Finite state methods for computational modeling of natu-
ral language morphology are wide-spread and well under-
stood. Various commercial and open-source FSA-based
development environments, libraries and tools exist for
modeling of natural language morphology. A detailed dis-
cussion of their properties and application for various lan-
guages would be beyond the scope of this article. Some
overview can be found in recent literature, e.g. [18, 2, 15],
further links to literature and implementations can be found
in the context of the OpenFst library [1].

For Croatian there are various descriptions of the for-
malization and computational modeling of morphology in
terms of finite state methods [19, 12]. However, an imple-
mented testable application is not available.

Some solutions that have been implemented for example
for German come close to the system requirements speci-
fied above. The SMOR [17] and Morphisto [21] systems
partially represent such a type of computational morphol-
ogy application. An almost complete overlap of features
and properties can be found in the implementation of the
German morphology as described in the TAGH [11] sys-
tem.

Common problems of some of the existing tools are the
lack of efficient handling of ambiguities in natural lan-
guages, and in particular different code-pages for charac-
ter sets. The common strategy is to replace input symbols
in the machine compilation process with a fixed mapping
to integer values. This implies that every input has to be
transcoded using this mapping before analysis, which rep-
resents a performance penalty. Ambiguity is usually dealt
with by using non-deterministic finite state models and re-
lying on backtracking, or alternative strategies, which again
comes with a performance penalty.

EFFICIENT MORPHOLOGICAL PARSING WITH. ..

3 FST-based segmentation

While we decided to stick to the approach and implemen-
tation strategy of TAGH, we apply our own experimen-
tal libraries and development environment.! Following
the TAGH-approach [11], we model Croatian morphology
by referring exclusively to morphotactic regularities, using
morpheme and allomorph sets and regular morphological
rules, such that a deterministic finite state transducer (FST)
can be generated.

For the compilation of a FST morpheme lists are re-
quired. In the initial modeling step morphemes are grouped
on the bases of specific criteria. The main criteria are a.
morphemes having the same feature specification, and b.
being subject to the same morphological rules, where mor-
phological rules are purely distributional and morphotactic,
not derivational in the sense of e.g. lexical phonology [16].

Each morpheme group in the Croatian morphological
parser represents one deterministic and acyclic finite state
transducer (DFST), comparable to the Mealy [13] or Moore
machine [5]. Every morpheme DFST emits on entry a tuple
of the byte-offset in the input string, and the feature bundle
that is associated with the DFSA path. In every final state
the DFST emits the same tuple with a specific end-bit set.
Thus morphemes are marked with a start and end index, as
well as the corresponding feature bundle, representing the
desired annotation. Morpheme analyses consist of a pair of
emission tuples on a stack. Redundancies are avoided by
limiting the placement on the stack to one occurrence only.
Only complete analyses that span the complete input string
are returned in the final output.

The following graph shows a simplified example of an
acyclic DFST for verbal roots and for example aspectual
prefixes:

s

To clarify the semantics of the emission arrows (dotted
line), one should keep in mind that the initial emission tuple
is placed on the stack only when the initial state is left,
while the final emission tuple is placed there when the final
state is reached.

All affixes are organized in the same way, e.g. the verbal
inflectional paradigm, as in the following graph:

'The automata and grammar definitions we use are compatible with
several existing systems and libraries.

Informatica 33 (2009) 107-113 109

v suf)-index pres 1st pl>

v suf)-index pres 1st sg
>
v suf)-index pres 2st sg .

v suf)-index pres 3rd sg .

e @ v suf)-index pres 2nd pI>

v suf)-index 2nd sg imper>

v suf)-index pres 3rd pl>

Since the model is based on purely morphotactic dis-
tributional regularities, potential phonological phenomena
are expressed using exclusively allomorphic variations, i.e.
alternative sets of allomorphs. Consider for example the
allomorphic variation in the case of banka(nominative sin-
gular of “the bank™) with the dative/locative singular form
banci. In this case the allomorph banc is grouped with all
such allomorphs that occur in the context of the instrumen-
tal singular suffix i, while the root bank is grouped with
all other nominal roots that have an allomorphic variant in
this particular case. This way specific paradigms for such
nouns can be defined, that lack the instrumental singular
suffix for all such root morphemes, and combine with all
the other case specific suffixes, and so on.

Once all morphemes are grouped into DFSTs, and the
appropriate emission symbols (the annotations) are as-
signed to each entry and final state of the DFST, each mor-
pheme group is assigned an arbitrary variable name, which
is used in the definition of rules. A rule that makes use of
the automata above could be defined as follows:

vAspectPrefx vAtiRoots vInflSuf

This rule describes the concatenation of the DFST for the
verbal aspectual prefixes, the verbal roots and the DFST for
the verbal inflectional paradigm, using common regular ex-
pression notation. In this case we use the regular expression
syntax as defined for the Ragel [20] state machine com-
piler. Additionally, the prefixes are defined as optional and
potentially recursive prefixes concatenated with the verbal
root DFST. This definition generates a cyclic? deterministic
transducer.

Such a DFST emits a tuple containing the byte-offset and
the corresponding annotation symbols at the initial state,
and at each morpheme boundary (former initial and final
states of the sub-DFSTSs).

Using this approach, all lexical classes are defined as
complex (potentially cyclic) DFSTs, and combined, to-
gether with the closed class items, as one monolithic DFST.

2Cyclicality in this particular case leads to more compact automata. In
principle, the depth of recursion of such prefixes could be limited (empir-
ically and formally), and formalized using the appropriate regular expres-
sion syntax. Independent of the theoretical question whether such type of
recursion indeed exists, or is conceptually necessary, for the analyzer it is
empirically irrelevant, and has no impact on its properties, except of size
optimization.

110 Informatica 33 (2009) 107-113

The advantage of such a representation is not only that
the resulting morphological representation is maximally
compressed, but also that it is processed in linear time, with
the identification of morpheme boundaries and correspond-
ing feature bundles being restricted by contextual rules.

In order to cope with morphological ambiguity, this ap-
proach is extended. In principle there are two major ap-
proaches to deal with ambiguity, either one has to allow for
non-deterministic automata (two different transitions with
the same symbol sequence as input emit a different output
tuple), or ambiguity is mapped on the emission of multiple
annotation tuples. For Croatian, the latter option is used in
the modeling. Every emission is a tuple of length O to n,
such that e.g. orthographically ambiguous nominal suffixes
like a (genitive singular or plural) are modeled as a single
transition in a DFST with the final state emitting two an-
notation tuples that contain the specific case and number
features.

3.1 Interoperability and annotation
standard

Annotated language data plays an important role in vari-
ous domains, be it language technology development, or
linguistic research. Many different annotations were devel-
oped, for various purposes, with different goals in mind.
Due to the diversity of encoding and annotation standards,
current language resources face a problem related to issues
of interoperability and annotation compatibility. The vari-
ous different tag-sets that are used for different and particu-
lar languages tend not to be straight-forward compatible. In
the same way, linguistic annotation tools do not necessarily
make use of some standardized tag-set, and such a tag-set
actually does not even exist. Annotation of language data,
however, is an expensive task, as well as the change and
adaptation of existing data to a new or specific annotation
standard.

Thus, the question of annotation standards is crucial for
the conceptualization and development of new language re-
sources and language processing tools. In principle, two
major options exist. Either a certain annotation standard is
promoted and agreed upon, or a specific standard is cho-
sen that maximizes interoperability and compatibility with
other existing standards.

For our purposes here we decided not to promote a spe-
cific annotation standard, but rather to offer maximal in-
teroperability in the resulting corpus annotation, as well as
in the annotation tool as such, by using a tag-set that ap-
pears to be maximally compatible with existing tag-sets, as
language specific as necessary, and at the same time maxi-
mally extensible. The General Ontology for Linguistic De-
scription (GOLD) [9, 10, 8] was originally envisioned as
a solution to the problem of resolving disparate markup
schemes for linguistic data. GOLD specifies basic linguis-
tic concepts and their interrelations, and can be used, to
a certain extent, as a description logic for linguistic an-
notation. The current specification of GOLD is not com-

D. Cavar et al.

plete, many concepts are missing, various might change,
and need further specification. Nevertheless, the defined
development process of GOLD handles current insufficien-
cies by providing language specific extensions, as well as
general extensions with features necessary for the descrip-
tion of a wider language group.

For the purposes here, i.e. morphological and mor-
phosyntactic annotation, the existing definition of GOLD
is extended with three additional concepts. All other
concepts are covered in GOLD 2008. We make use of
three core concept classes in GOLD, and the necessary
sub-concepts, i.e. MorphoSemanticProperty, Morphosyn-
tacticProperty, and LinguisticExpression. The concepts
defined therein relate to the notions that are expected to
be emitted, i.e. morphological properties of morphemes
(e.g. prefix, suffix, root), morpho-syntactic properties (e.g.
case, number), and morpho-semantic properties (e.g. as-
pect, mood, tense).

By using the labels for concepts as defined in GOLD,
we should be able to maintain maximal compatibility with
other existing tag-sets. We developed example mappings
to specific tag-sets, e.g. alignments to the MULTEXT-East
tag-set, with the loss of features that are not defined in
MULTEXT-East.

While the logic of GOLD would burden a morphologi-
cal parsing algorithm, the reference to the concepts doesn’t
seem problematic. Representing the concepts as pure emis-
sion strings associated to the emission states, as discussed
above, might decrease memory and performance benefits
of a DFST-based analyzer. To maximize the performance,
the GOLD-concepts and relations are mapped on a bit-
vector. Encoding of the relevant concepts can be achieved
with bit-vectors of less than 64 bit.

The mapping defines constants that correspond to bit-
masks that are pre-compiled into the DFST. The bit-mask
for example for Genitive might be defined as one that
corresponds to set first and second bits of the terminal-
class bit-field, and additionally the corresponding bits
that indicate that the sub-class CaseProperty is set,
as well as the bit for the corresponding top-node class
MorphosyntacticProperty, as shown in the follow-
ing graphic:

top-node concept
sub-class

terminal-classes

In a limited way, via definitions of constants and map-
ping of linguistic annotation in the morpheme dictionaries,

EFFICIENT MORPHOLOGICAL PARSING WITH. ..

one can maintain implicatures and inheritance relations, as
defined in the ontology, via bit-vector representations and
appropriate bit-masks.

For the morphological analyzer this does not imply any
additional processing load, i.e. the emission tuples consist
of bit-vectors in form of 4-byte numerical integer values.
All emitted tags are pre-compiled into the binary represen-
tation of the machine. Converting the emission tuples (i.e.
individual bit-vectors) into literal string representations is
achieved efficiently, once an input string is analyzed com-
pletely. This output mapping is optional such that post-
processing components can consume the bit-vector repre-
sentation for subsequent optimal analysis, e.g. in syntactic
parsing.

3.2 Implementation

The morphological analyzer consists of two sets of code-
bases. The first component converts a lexical base into a
formal automaton definition. The second compiles together
with the automaton definitions into a binary application.

The lexical base is kept either in database tables, spread-
sheets, or textual form. The different formats allow us
to maintain a minimally invasive lexical coding approach.
Linguists or lexicologists are not required to learn a formal
language for DFST definitions. Furthermore, they are free
to use their individual way of annotation, being guided by
GOLD concepts, but free to define their own, should these
not be part of GOLD. The current implementation provides
guidelines for the data-format, but also the possibility to
use individual scripts for data conversion and annotation
mappings.

The individual morpheme lists, annotations and rule def-
initions are compiled into Ragel [20] automata definitions,
as described above. Besides rules that are related to con-
crete morpheme lists and the corresponding DFSTs, there
are also guessing rules that define general properties of
nouns, verbs and adjectives. The features that are used are
mapped on bit-vectors, and C-header files with the constant
literal and bit-vector mask definitions are generated.

Ragel generates a monolithic DFST as C-code, using
highly efficient C-jump code (goto-statements), as well
as a DOT-file for visualization of the resulting automaton
(using e.g. Graphviz®). The generated code is wrapped in
a C++ class that handles input and output, and controls the
program logic.

In the current version the generation of the root- and the
base-lemma is encoded in the emission bit-vector. One
byte is reserved to mark the reverse offset for string con-
catenation, while two bytes are reserved to point to an el-
ement in a string array with the corresponding string that
needs to be appended. The form citamo would be associ-
ated with an offset of -2 and a corresponding suffix #i. This
solution doesn’t match the general declarative paradigm of
FSTs, and is just temporary. In the next release the output
characters of the corresponding lemma will be integrated in

3See http://www.graphviz.org/ for details.

Informatica 33 (2009) 107-113 111

the emission of the transducer, associated with each single
transition, as shown in the graph below. Thus every emis-
sion will be a tuple that contains tuples of output characters
and optional annotation bit-vectors.

The parser expects a token list as input. The code-page
of the lexical base for machine compilation has to match
the input tokens. Otherwise there is no restriction on a spe-
cific code-page or character encoding, since the automaton
processes strings by consuming bytes in the binary repre-
sentation.

Tokens are processed sequentially. For each token, all
emitted tuples are collected in a stack. Only matching start-
and end-tuples are returned, if there are compatible sub-
morpheme analyses that span over the complete input token
length. Thus, no hypotheses of sub-morphemes are gene-
rated, and the number of irrelevant hypotheses is radically
reduced.

The significant implementation features that differenti-
ate our implementation from other solutions, are that the
code-base is platform independent and open-source, based
on free and open tools like GCC and Ragel. Furthermore,
the fact that doesn’t transcode the lexical base or the in-
put words, it can be based on any encoding. The binary
processing strategy allows even for mixed encoding of the
lexical base and input tokens, without major consequences
for the size and efficiency of the resulting machine.

The extension of the morphological base is kept trivial,
along the lines of the requirements specified above, i.e. the
necessity to be able to add newly identified morphemes or
paradigms from diachronic and synchronic variants.

4 Evaluation

The evaluation version of the implementation for Croat-
ian contains approx. 120,000 morphemes in its morpheme-
base, using UTF-8 character encoding. The number of
strings it can recognize is infinite, due to cyclic sub-
automata. Unknown word-forms can be analyzed due to
incorporated guessing rules.

For the following evaluation results we used a 2.4 GHz
64-bit Dual-Core CPU. In the evaluation version only a sin-
gle core is used during runtime of the FST, while both CPU
cores are used during compilation.

Compilation of the morphology requires min. 4 GB of
RAM using GCC 4.2. This is expected due to the mono-
lithic architecture, and since the Ragel-generated C-code
of the transducer gets very large. The compilation process
takes less than 5 minutes, using both CPU cores. The re-
sulting binary footprint is less than 5 MB of size.

The final automaton consists of approx. 150,000 transi-
tions and 25,000 states.

112 Informatica 33 (2009) 107-113

We selected randomly 10,000 tokens with an average
morpheme length of 2.5 morphemes. The parser processes
in average approx. 50,000 tokens per second (real 10,000
tokens per 150 millisec.), including runtime instantiation
in RAM, mapping of the analysis bit-vectors to the cor-
responding string representations, generation of lemmata,
and output redirection to a log-file. An extension of the
morpheme base has no significant impact on memory in-
stantiation time, neither on the runtime behavior. The
memory instantiation can be marginalized for a large pro-
cessing sample.

The current implementation doesn’t include transitional
or emission-probabilities, due to missing quantitative in-
formation from training data. Once an annotated corpus
is available, these weights can trivially be implemented as
additional weights in the emission tuple. The described
machine is not disambiguating the generated output. For
disambiguation the transitional probabilities (and thus the
likelihood of a given parse for one lexeme) might be useful.
In general we are convinced that disambiguation necessar-
ily has to rely on contextual information, and thus must
include some sort of parser or contextual language model,
i.e. be part of a more complex analysis component.

A relevant evaluation result is the coefficient of the ra-
tio between all and relevant emissions, i.e. the percentage
of relevant (possible) morpheme analyses and all generated
ones. Due to certain limitations, we cannot perform such
an evaluation, neither a recall evaluation on a predefined
evaluation corpus. Future availability of reference corpora
should enable us to provide such extremely relevant evalu-
ation results.

For evaluation and potential application to other lan-
guages, the source code is made available on the
web site http://personal.unizd.hr/~dcavar/
CroMo/.

References

[1] Cyril Allauzen, Michael Riley, Johan Schalkwyk,
Wojciech Skut, and Mehryar Mohri. OpenFst: A gen-
eral and efficient weighted finite-state transducer li-
brary. In Proceedings of the Ninth International Con-
ference on Implementation and Application of Au-
tomata, (CIAA 2007), pages 11-23. Springer-Verlag,
2007.

[2] Kenneth R. Beesley and Lauri Karttunen. Finite State
Morphology. CSLI Publications, Stanford, April
2003.

[3] Jean Berstel. Transductions and Context-Free Lan-
guages. Teubner Studienbiicher, Stuttgart, 1979.

[4] Jean Berstel and Christophe Reutenauer. Rational
Series and Their Languages. EaTCS Monographs
on Theoretical Computer Science. Springer-Verlag,
Berlin, December 1988.

D. Cavar et al.

[5] Paul E. Black. Dictionary of algorithms and data
structures. Online publication: U.S. National Insti-
tute of Standards and Technology, Available online,
December 2004.

[6] Dunja Brozovi¢-Ronéevi¢ and Damir Cavar. Hrvatska
jezicna riznica kao podloga jezi¢nim i jezi¢nopovi-
jesnim istrazivanjima hrvatskoga jezika. In Vidjeti
Ohrid, Hrvatska sveucili$na naklada, pages 173-186,
Zagreb, 2008. Hrvatsko filolosko drustvo.

[7] Gavin Burnage. CELEX - A guide for users. Techni-
cal report, Centre for Lexical Information, University
of Nijmegen, Nijmegen, 1990.

[8] Scott O. Farrar. An Ontology for Linguistics on the Se-
mantic Web. PhD thesis, The University of Arizona,
Tucson, Arizona, 2003.

[9] Scott O. Farrar and D. Terence Langendoen. A lin-
guistic ontology for the semantic web. Glot Interna-
tional, 7(3):1-4, March 2003.

[10] Scott O. Farrar, William D. Lewis, and D. Terence
Langendoen. A common ontology for linguistic con-
cepts. In N. Ide and C. Welty, editors, Semantic Web
Meets Language Resources: Papers from the AAAI
Workshop, pages 11-16. AAAI Press, Menlo Park,
CA, 2002.

[11] Alexander Geyken and Thomas Hanneforth. TAGH:
A complete morphology for german based on
weighted finite state automata. In Anssi Yli-Jyrd,
Lauri Karttunen, and Juhani Karhumiki, editors,
FSMNLP, volume 4002 of Lecture Notes in Computer
Science, pages 55-66. Springer, September 2005.

[12] Vjera Lopina. Strojna obrada imeni¢ne morfologije
u pisanome hrvatskom jeziku. Ma thesis, Centar za
postdiplomske studije Dubrovnik, Dubrovnik, Octo-
ber 1999.

[13] George H. Mealy. A method for synthesizing se-
quential circuits. Bell System Technical Journal,
34(5):1045—1079, September 1955.

[14] Antoni Oliver and Marko Tadié. Enlarging the croa-
tian morphological lexicon by automatic lexical ac-
quisition from raw corpora. In Proceedings of LREC
2004, volume 1V, pages 1259-1262, Lisbon, May
2004. ELRA.

[15] Brian Roark and Richard Sproat. Computational Ap-
proaches to Syntax and Morphology. Oxford Univer-
sity Press, Oxford, 2007.

[16] Jerzy J. Rubach. Cyclic and Lexical Phonology. The
Structure of Polish. Foris Publications, Dordrecht,
1984.

EFFICIENT MORPHOLOGICAL PARSING WITH. ..

(17]

(18]

[19]

(20]

(21]

Helmut Schmid, Arne Fitschen, and Ulrich Heid.
SMOR: A german computational morphology cover-
ing derivation, composition, and inflection. In Pro-
ceedings of the IVth International Conference on Lan-
guage Resources and Evaluation (LREC 2004), pages
1263-1266, Lisbon, Portugal, 2004.

Richard Sproat. A Computational Theory of Writing
Systems. AT&T Bell Laboratories, New Jersey, July
2000.

Marko Tadic. Racunalna obradba morfologije
hrvatskoga knjiZevnog jezika. doctoral dissertation,
Filozofski fakultet SveuciliSta u Zagrebu, Zagreb,
Croatia, 1994.

Adrian D. Thurston. Parsing computer languages
with an automaton compiled from a single regular ex-
pression. In 71th International Conference on Imple-
mentation and Application of Automata (CIAA 2006),
volume 4094 of Lecture Notes in Computer Science,
pages 285-286, Taipei, Taiwan, August 2006.

Andrea Zielinski and Christian Simon. Morphisto
— an open-source morphological analyzer for ger-
man. In Proceedings of FSMNLP 2008, Ispra, Italy,
September 2008.

Informatica 33 (2009) 107-113

113

