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Evolutionary facial composites are created using interactive genetic algorithms based on user 

selections. This approach is grounded in perceptive studies, and is superior to feature-based systems. A 

method is presented for creating facial composites in which faces are encoded with shape information, 

the coordinates of a predefined landmark points, and the image gradient, which represents face 

information more precisely than image luminance. The new method is accompanied by a Poisson 

integration process that presents the user with candidate faces. Two user tests, one using composite 

creators and the other external evaluators, show that the new method produces higher rated composites 

that are better recognised. 

Povzetek: Opisana je metoda generiranja slik za prepoznavo na osnovi interaktivnega genetskega 

algoritma. 

 

1 Introduction 
The goal of facial compositing systems is to create a face 

image of a target identity from a person's memory so it 

can be recognised by other people. There are two 

categories of computerised facial composite systems: in 

feature-based systems, such as E-FIT [1] and PRO-fit 

[2], the operator selects features as the eyes, nose and 

mouth and arranges them on a template to create a face 

from its parts, while in holistic or evolutionary facial 

compositing, the operator evolves a whole face by 

'breeding' selections from an array of face images, via a 

process of selection by recognition [3]. Systems in the 

latter category include EFIT-V [4], ID [4], INIH [6] and 

EvoFIT [7]. Many of these systems lack a formal user 

test that can verify their real utility, and identification of 

individuals from facial composites remains generally 

poor, meaning that searches for new approaches are 

justified. 

EvoFIT is the system that has been most extensively 

studied. It produces composites that are identified 

correctly 30% of the time by people who are familiar 

with the target identities [8]. This can rise to 45% using 

more recent strategies for composition [9]. Humberside 

police used EvoFIT in 35 criminal investigations, and it 

led to arrests in 60% of cases [10]. 

 Facial compositing research has also produced or 

confirmed several results that are relevant to face 

perception: the importance of the internal features of 

faces over external features [11], [12], [13], [14], the 

relevance of using configural information [15] and 

holistic dimensions to describe faces, such as masculinity 

[16], [17], and the unimportance of colour for face 

recognition and compositing [18], [19], [20]. 

Evolutionary face compositing uses interactive 

genetic algorithms in which the operator selects a 

number of candidates in an iterative process. These 

algorithms use an evolutionary mechanism where face 

representations evolve through crossing (i.e. a mixing of 

genetic code from selected representations or parents) 

and random mutation occurring with a predefined low 

probability [3]. The human operator selects candidates 

from a gallery, and this selection acts as a fitness 

function to drive the system to converge to a final 

composite image resembling the remembered face. 

The genetic code or representation of faces is a 

vector of principal component analysis (PCA) 

coefficients. PCA represents each face as a coefficient 

vector corresponding to the weights of a linear 

combination of elementary faces, called eigenfaces, 

which are obtained from a sample of images. Each 

eigenface possesses an associated eigenvalue indicating 

the amount of variance of the sample that is explained by 

it. Eigenfaces are usually ordered according to their 

eigenvalues in such a way that the first eigenfaces 

contribute more to explaining the observed variance in a 

sample of images than the remaining eigenfaces. 

Eigenfaces may be obtained by applying PCA [20] or 

singular value decomposition (SVD) to the normalised 

covariance matrix of a sample of images.  

However, it is first necessary to align the face 

images. Although Procrustes analysis can achieve this 

optimally based on a set of facial landmark points, and 

can yield the necessary translation, rotation and scaling 

of shapes to get the best possible alignment, perfect 

alignment between faces is not usually possible because 
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each face has a unique shape. This problem is solved 

with a shape normalisation technique in which images 

are warped to a reference shape template so they become 

shape-free, and PCA is performed on the shape-free 

images [21]. The shape information of individual faces, 

represented as the x-y coordinates of the landmark 

points, is used to perform a second PCA to build a 

eigenshape representation. Each face is thus represented 

by a pair of texture and shape vectors of PCA 

coefficients. 

Since the introduction of evolutionary facial 

compositing two decades ago [3], no new representations 

have been suggested in the literature, with the exception 

of a combined shape-texture PCA [4], and a user test that 

would measure the benefit from this approach is missing. 

Research into new kinds of face representations seems 

justified, as this may help with the important problem of 

the limited expressive power of eigenfaces to produce 

new faces that are not included in the sample as a linear 

combination of eigenfaces [22]. Face shape and texture 

are also independent cues for facial recognition [23], 

[24], [25] and it is therefore hypothesised that the 

specific method used to render texture in facial 

composites may have a significant impact on recognition. 

Image gradient is introduced here as an alternative 

representation to facial texture. Image gradient is a 

differential transformation that represents the direction 

and magnitude of the maximum intensity change at each 

pixel by calculating the differences between adjacent 

pixels in the x and y directions [26]. It can be conceived 

as a representation of the derivative of a 2D function (i.e. 

the image) that produces peak responses in places where 

there is a sudden change of intensity (i.e. the edges). It 

was proposed as a basic mechanism in early visual 

processing, and edge detection algorithms have been 

developed based on this approach [27]. 

Image gradient represents the underlying structure of 

the elements in the image better than intensity, and so 

constitutes a more precise representation that is less 

affected by illumination patterns. This is illustrated in 

Figure 1, where the eigenvalues (or amount of associated 

variance) of the gradient of the facial images used here 

are shown versus the eigenvalues of components 

computed based on intensity. The gradient eigenvalues 

are more uniformly distributed than the intensity ones, 

which show an initial peak and then a sharp decrease. 

This peak corresponds to coarse luminance variations in 

the images [22] and is attenuated in the gradient 

representation, since the gradient only encodes the 

differences between adjacent pixels and not their 

absolute values. 

The use of a gradient representation of the facial 

texture means that a gradient integration technique is 

necessary to present the corresponding intensity values to 

the participants. This integration problem is known as 

Poisson's equation, and is usually solved by setting 

conditions on the values taken at the area boundary and 

using an iterative solving method [28]. A major 

application of Poisson editing is to paste elements into 

images in a seamless way.  

In the present implementation of the system, a 

constant value at the external edges of the face area is 

used as a boundary condition. Although this may seem a 

simplistic condition, it is sufficient to produce realistic 

images from its gradient. Figure 2 shows that a constant 

boundary condition is able to recover a individual face 

from its gradient, since most of the important information 

seems to be stored in the gradient rather than in the 

individual pixel values. Even small-range random values 

at the boundary are sufficient to recover the individual 

faces. 

The goal of this work is to describe an evolutionary 

system using the image gradient as a representation of 

texture and to compare the recognisability and likeness 

of the resulting composites with those produced using the 

standard intensity representation of face texture. An 

initial version of the system with some preliminary 

results was presented in [29]. Formal mathematical and 

implementation details are introduced in the appendix. 

2 Method 
The method is illustrated in Figure 3. Sixty-two pictures 

from the Glasgow unfamiliar face database [30] and 24 

pictures from the Utrecht ECVP face database 

(http://pics.stir.ac.uk/2D_face_sets.htm) were used as 

reference faces. This gave a total of 86 pictures of 

Caucasian males, who were mostly in their twenties in 

the Glasgow sample and in their thirties in the Utrecht 

sample. Each image shows a frontal view of a face under 

approximately frontal illumination. Sixty-eight facial 

landmarks were automatically located on each picture 

 
Figure 1: Variance of gradient and intensity PCA 

components. 

 
Figure 2: Intensity reconstruction from gradient using 

constant and random boundary values. 

http://pics.stir.ac.uk/2D_face_sets.htm
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using a robust state-of-the-art method based on machine 

learning [31]. Images were converted to grey-scale and 

warped to a reference shape using the thin plate spline 

technique. The shape, intensity and gradient PCAs were 

computed and the resulting components were used in the 

following genetic algorithm. 

Algorithm 

An interactive genetic algorithm is used with the aim of 

generating a facial image; in this approach, the human 

operator selects two candidates or parents from a gallery 

of six images in a 2x3 array. Each face is represented as 

two vectors, one containing shape coefficients (size 40) 

and the other texture coefficients (size 80). 

i. Random initialisation: Randomly select values 

from a uniform distribution of one standard 

deviation around each PCA component 

ii. Repeat for a number of generations: 

a. Operator selects two parents 

b. Breed a new generation by crossing 

parent vectors and adding random 

mutations for both shape and texture 

c. Render candidate gallery for next 

generation 

iii. Keep selected final image in last generation as 

the final composite 

3 Construction test 
Participants 

Twenty students (15 women, five men) acted as 

constructor participants to build the face composites 

(Mage = 19.9, SD = 1.48 years). They took part in the 

experiment as an educational exercise in groups of five. 

Design and procedure 

Participants received instructions to construct the face of 

six well-known male celebrities. These were: David 

Beckham (DB), George Clooney (GC), Nicolas Cage 

(NC), Robert De Niro (RN), Tom Cruise (TC) and Tom 

Hanks (TH). A photo-array of the celebrities was 

presented briefly to refresh their memory and confirm 

that all participants were familiar with the targets and 

their names. They received verbal instruction and hands-

on training on how to select the two images most similar 

to the target identity in order of preference, by clicking 

the mouse. Participants could erase their selection at any 

time in order to change it, before proceeding to the next 

generation by pressing a "Continue" button. 

For each generation, six images were shown in a 3x2 

array in the centre of the screen. Each participant 

constructed a total of 12 composites, one for each of the 

six targets using two levels of representation (gradient 

and intensity). The order of construction of the 12 

composites was varied randomly for each participant. 

After constructing the composites, participants were 

asked to rate the likeness of their own composites to the 

target identity on a scale of 1-10, where 1 means 

"absolutely dissimilar" and 10 "totally similar". In this 

case, composites were presented individually on the 

screen, with the target’s name at the top, and the 

response was given by clicking a number with the 

mouse. Participants were also asked to rate each target 

identity in terms of distinctiveness on a scale of 1-10, 

where 1 means "not distinctive at all" and 10 "maximally 

distinctive". This time, only the name of each target was 

shown, so that participants based their response on their 

own internal representation. Distinctiveness was defined 

to them as "the degree to which a face would stand out 

from the rest of the faces in a crowd". The whole 

procedure took between 50 and 70 minutes for all 

participants. A one minute rest was allowed after 

finishing the creation of each composite. 

Results 

Figure 4 shows examples of the final composites from a 

participant using gradient and intensity representations.  

A within-subject two-way ANOVA was performed 

for likeness ratings made by constructor participants 

between Representation (Gradient, Intensity) and Target 

(DB, GC, NC, RN, TC, TH). A significant effect was 

obtained for Representation [F (1.19) = 51.33, p < .05, η2 

= .281] in the comparison between gradient (M = 5.51, 

SE = 0.32) and intensity (M = 4.6, SE = 0.23), following 

the Greenhouse-Geisser correction. A similarly 

significant effect for target was obtained [F (5.95) = 

3.23, p < .05, η2 = .148] in the comparison between target 

identities (MDB = 6.17, SEDB = 0.34; MGC = 4.87, SEGC = 

0.4; MNC = 4.45, SENC = 0.36; MRN = 4.42, SERN = 0.46; 

MTC = 5.47, SETC = 0.45; MTH = 5.92, SETH = 0.4) with 

assumed sphericity following the Mauchly test. Multiple 

comparison tests revealed that differences existed 

between targets DB and NC [p < .001] and DB and RN 

[p < .05]. 41.7% of the gradient images received a rating 

equal to or greater than seven, while only 18.3% of the 

intensity images received similar ratings. No significant 

interaction was evident for the interaction of 

representation x target. 

Additionally, a within-subject one-way ANOVA was 

performed to study the possible differences in target 

identity distinctiveness, which showed no significant 

difference. Separate correlation analyses were performed 

for the gradient and intensity representations for the 

individual distinctiveness ratings given by constructor 

participants and their corresponding likeness ratings. A 

non-significant correlation existed for the gradient 

representation [ρ = .13, p = .163] but a significant 

correlation existed for the intensity representation [ρ = 

.2, p = .030]. A linear regression analysis was then 

performed for the distinctiveness and likeness ratings for 

intensity representations, which proved to be significant 

[F (1,118) = 4.83, p < 0.05]. The corresponding scatter 

plot for distinctiveness and likeness and the linear model 

are shown in Figure 5. 

 
Figure 3: Evolutionary facial compositing overview. 
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Discussion 

The composite constructors perceived a higher likeness 

between their own gradient-based composites and the 

target identity. Some identity composites tended to 

generate a higher likeness rating, and it is hypothesised 

that this was due to the facial distinctiveness of the 

target. Although we could not prove a significant 

difference by identity from the collected distinctiveness 

ratings, two separate correlation analyses of likeness and 

distinctiveness for the gradient and intensity-based 

composites showed a significant correlation only for 

intensity-based composites. This suggests that intensity-

based composites are less able to capture the 

distinctiveness of some faces. This problem is somewhat 

minimised in gradient-based composites. 

4 External evaluator test 
Stimuli and material 

The 240 composite images built by the 20 constructor 

participants were used. 

Participants 

Forty psychology students (33 women, seven men) took 

part in the experiment as an educational exercise (Mage = 

18.9, SD = 1.11 years). They worked in small groups of 

five. 

Design and procedure 

Each participant performed two tasks (naming and 

likeness rating) using the composite images from four 

constructors. After briefly showing the participants the 

photo-array of celebrities, to confirm that they were all 

familiar with them and their names, a name-sorting task 

was used to measure composite recognition. The 

composites of the 20 constructors were partitioned into 

five blocks containing the resulting images of four 

constructors, corresponding to eight trials of each task 

(four at the gradient level of representation, and four at 

the intensity level). 

In the naming task, each participant was asked to 

establish a correspondence between each of the six 

images presented, which were created by a constructor at 

a given representation level (gradient, intensity), and a 

target name. Images were presented in a 2x3 array with a 

clickable list of target names in alphabetical order 

underneath each image. The image order was varied 

randomly by trial, and representation-level blocks were 

varied randomly by participant. In the likeness rating 

task, the same composites were presented to each 

participant in random order. The presentation and 

response procedures were similar to those used by the 

constructor participants. The overall procedure took 

between 15 and 20 minutes for all participants. 

Results 

Two mixed ANOVA analyses with two between-subject 

factors (constructor and block) and one within-subject 

factor (representation) were performed on the percentage 

of correct naming and likeness ratings. The constructor 

and block were included as factors to account for any 

possible effect of the constructors' ability and specific 

block selection, meaning that their control acts as a 

measure of the quality of any difference found.  

A significant difference was found between the 

likeness ratings for gradient (M = 3.88, SE = 0.12) and 

intensity (M = 3.68, SE = 0.1), following the 

Greenhouse-Geisser correction, although the effect size 

was small [F(1,140) = 4.08, p < .05, η2 = .028]. A 

significant difference was also found between correct 

namings for gradient (M = 21.04, SE = 1.4) and intensity 

(M = 16.56, SE = 1.35), with a somewhat greater effect 

size [F(1,140) = 6.09, p < .015, η2 = .042], following the 

Greenhouse-Geisser correction. No effects from the 

constructor, block or interaction between factors was 

detected for either likeness or naming.  

 

 
Figure 4: Final composites created with gradient and 

intensity representations. 

 
Figure 5: Scatter plot and linear model for likeness 

and distinctiveness ratings given by constructors for 

intensity-based composites. 
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Discussion 

A medium/small advantage in correct naming by external 

peers for gradient-based composites was found for the 

sample. We observed a trend of better recognition of the 

composites constructed using the gradient representation 

rather than the traditional intensity representation. It is 

therefore possible to hypothesise that since image 

gradient is a more invariant characteristic of the elements 

in an image, it should also represent facial features better 

than intensity.  

We also observed a gradient advantage for likeness 

ratings given by external peers, although the effect size 

was smaller than for the constructor participants. As a 

proxy for naming, the likeness ratings do not always 

follow the same pattern of effect. There are two possible 

explanations for this discrepancy: either differences in 

rating criteria between participants, or differences in the 

exposure time and familiarity with similar composites 

between the constructors and external peers. 

5 General discussion 
Image gradient, an alternative method of representation 

to image intensity for evolutionary face compositing, was 

introduced, and its impact on the recognition and likeness 

ratings of composites was studied. The results indicate a 

benefit in terms of recognition for the gradient-based 

composites in our sample. Gradient-based composites are 

at least as good as those using the standard texture 

representation. It is conjectured that a benefit may arise 

from a better representation of facial features by gradient 

than by intensity. Facial PCA is a powerful tool for 

analysing facial data [3], but its ability to express new 

faces as a linear combination of components may be 

somewhat restricted. Eigenfaces were created for 

automatic face recognition (a discriminative task), and 

their ability to express new faces not present in the initial 

face database (a generative task) may be limited. In this 

work, a strategy has been followed that consisted of 

studying a different facial representation on which to 

perform evolution, in order to increase the 

representativeness of facial features and thus the 

accuracy and recognisability of facial composites. The 

variance associated with gradient components is 

distributed more uniformly than that associated with 

intensity components. This implies that during the 

random mutation stage of composite evolution, the range 

from which a value is selected is more homogeneous 

between components and the weight of components is 

more similar for gradient-based composites. 

In previous research [13], a benefit was identified in 

terms of recognition using a sketch representation, which 

was presumably caused by a simplification of the facial 

texture that presented participants with a less demanding 

situation. A sketch representation may be beneficial since 

less shading is involved, which results in less inaccurate 

information overall. This sketch model was computed for 

the EvoFIT face set in a preprocessing step, before 

applying PCA. A similar beneficial effect seems to be 

arising here from the use of facial image gradient. 

As an additional test, automatic evolution of the 

system was performed for the same target identities as in 

the user test. The fitness function used was a correlation 

with an image of the target identity. The results were 

compared for the three kinds of texture representation, 

i.e. the intensity, the gradient-preprocessed intensity, in 

which the sample images were reconstructed from their 

gradient before PCA, and the gradient. The results shown 

in Figure 6 offer a visual comparison of their quality. 

The evolutionary parameters used here (the numbers 

of shape and texture components, samples per 

generation, elitism, mutation and combination rates) 

were selected based on previous research on intensity 

representation. Further studies should be carried out to 

establish their optimal values for gradient representation. 

Given the huge amount of research on evolutionary facial 

composites, it should be noted that an ultimate 

conclusion on the superiority of a new face 

representation cannot be established from a single work, 

and extensive research comparing different situations 

should be conducted. 

An improvement was made to our system after the 

formal experiments were carried out. The number of 

images presented to participants at each generation was 

initially six, since the time taken to perform gradient 

integration in the first implementation of the system 

(about three seconds per image) persuaded us not to use a 

greater number of images. This issue was solved in a new 

version of the system, where a 70% reduction in the time 

required for gradient integration now allows for the use 

of greater numbers of images and generations. New 

features have also been added to the system, such as 

another set of boundary conditions and the ability to add 

external features and depth to the resulting composites 

using optical flow methods. A previous study has at least 

explored the use of image gradient for facial compositing 

[32], although this was done from a featural point of 

view and used gradient integration to stitch fragments 

from different faces together. Another interesting venue 

is the exploratory use of deep learning generative 

adversarial networks for image generation [33] which 

could theoretically increase the generative power of 

compositing systems. 

It is our conclusion that research on new approaches 

to face representation could improve the results of 

evolutionary facial compositing. The present system is 

available on request to face researchers as a Windows 

application, with no installation required. 
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Appendix. Gradient integration by 

solving Poisson’s equation 
The integration of the gradient of an image in order to get 

its corresponding intensity values reduces to the classic 

Poisson equation:  

∆𝜑 = 𝑓 (1) 

where ∆ (read as "Del") stands for the Laplace 

operator or Laplacian. This expression means that the 

Laplacian of a certain unknown function equals f . The 

Laplacian is defined as the divergence of the gradient or 

as the sum of all unmixed second partial derivatives (the 

trace of the Hessian): 

∆𝑓 = 𝛻2𝑓 = 𝑡𝑟(𝐻) (2) 

Here, ∇ stands for the gradient operator: 

𝛻𝑓 = (
𝜕𝑓

𝜕𝑥1

,
𝜕𝑓

𝜕𝑥2

, ⋯ ,
𝜕𝑓

𝜕𝑥𝑛

) (3) 

For a discrete 2D function I, the gradient may be 

approximated as a pair of forward finite differences in 

the x and y directions: 

𝛻𝐼 = (𝐼𝑥 , 𝐼𝑦) 

𝐼𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦) 

𝐼𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦) 

(4) 

and the Laplacian can be calculated as the sum of the 

second-order unmixed gradients: 

∆𝐼 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦  

𝐼𝑥𝑥 = 𝐼𝑥+1 − 𝐼𝑥 

𝐼𝑦𝑦 = 𝐼𝑦+1 − 𝐼𝑦  

(5) 

That is, the Laplacian of an image may be obtained 

from the sum of the horizontal gradient of the horizontal 

gradient plus the vertical gradient of the vertical gradient. 

By simple element arrangement, we arrive at the 

following finite difference scheme for the Laplacian: 

∆𝐼 = 𝐼(𝑥 − 1, 𝑦) +  𝐼(𝑥 + 1, 𝑦) + 𝐼(𝑥, 𝑦 − 1)
+ 𝐼(𝑥, 𝑦 + 1) −  4𝐼(𝑥, 𝑦) 

(6) 

Now, we can set up a system of linear equations 

relating the known Laplacian of the image to the 

previous Laplacian scheme applied to the unknown pixel 

values. For each pixel in the image, an equation will be 

used of the form: 

[⋯ ,1, ⋯ ,1, −4 , 1, ⋯ , 1, ⋯ ][𝑥1, 𝑥2,, ⋯ , 𝑥𝑛,]
𝑇

= [𝑓1, 𝑓2,, ⋯ , 𝑓𝑛,]
𝑇
 

(7) 

Here the left vector corresponds to a weight vector 

implementing the Laplacian scheme, the next vector on 
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the left side of the equation includes the unknown pixel 

values in the image, and the vector to the right of the 

equation includes the known Laplacian values calculated 

from the horizontal and vertical gradients. It should be 

noted that the 2D image has been flattened to a 1D 

vector. 

The system of equations needs a boundary condition 

in order to obtain a solution (up to an additive factor), so 

we specify the values along the boundary of the domain 

(image area). This is known as a Dirichlet boundary 

condition. More specifically, a constant value is used for 

the boundary pixels. For each of these pixels, the weight 

values will all be zero, except for the one corresponding 

to the pixel position, which equals one. 

[0, 0, ⋯ ,0, 1, 0, ⋯ , 0][𝑥1, 𝑥2,, ⋯ , 𝑥𝑛,]
𝑇

= 𝑘 (8) 

By stacking all the individual equations together, a 

linear system of equations is formed: 

𝑨𝑿 = 𝑩 (8) 

Here, A is the weight matrix, X is the unknown and 

B is the known Laplacian and constant values matrix. 

This kind of system is sparse, because most of the 

elements in A are zero, and therefore cannot be solved by 

ordinary means as the pseudo-inverse method. Instead, 

iterative solving methods such as Gauss-Seidel or Jacobi 

are used. In order to improve the solving speed, coarse-

to-fine (also known as multigrid) methods may be used. 


