
Informatica 33 (2009) 189–197 189

Improving Design Pattern Adoption with an Ontology-Based
Repository

Luka Pavlič, Marjan Heričko, Vili Podgorelec and Ivan Rozman
Institute of Informatics, University of Maribor, FERI
Smetanova ulica 17, SI-2000 Maribor
Slovenia
E-mail: luka.pavlic@uni-mb.si

Keywords: design patterns, semantic web, ontologies, design pattern repository

Received: February 7, 2008

In software engineering, an efficient approach towards reuse has become a crucial success factor.
Conceptual simple high level approaches to reuse are the most appropriate for performing it in a useful
manner. Design patterns are reliable and an effective high level approach that enables developers to
produce high quality software in less time. Unfortunately, the rapidly growing number of design
patterns has not yet been adequately supported by efficient search and management tools, making the
patterns uninviting for a large part of the software development community. In this way, the issue of
managing and selecting design patters in a straight-forward way has become the main challenge.
In this paper, we propose a possible solution for the improvement of design pattern adoption and
present a platform that should give design patterns some new and long-overdue momentum. Using our
proposed technique for formal design pattern specifications, we have developed an experimental
prototype of a new design pattern repository based on semantic web technologies. A new Ontology-
Based Design Pattern Repository (OBDPR) has been developed that can also be used as a platform for
introducing advanced services. Some fundamental services – searching, design pattern proposing,
verification and training services – have already been developed and many others are proposed. Based
on the conducted experiments, it is our strong belief that the proposed approach together with the
platform’s potential -- can significantly contribute to the improvement of design pattern adoption.

Povzetek: Za ponovno uporabo programske opreme je razvita nova metoda z uporabo ontologije in
repozitorija.

1 Introduction
Software patterns offer the possibility of achieving reuse
in the area of software engineering. In software
engineering, several levels of reuse are established. The
reuse of concrete software elements such as functions,
classes and components have already been well
established and practiced on a daily basis. However, if
we observe reuse at higher levels of abstraction, i.e.
software patterns, reuse is still not practiced on a daily
basis.

A pattern is a form of knowledge that is used to
capture a recurring successful practice [10]. Basically, a
pattern is an idea that has been used in a practical context
and probably will be useful in others [24]. As such,
software patterns delineate the best practices for solving
recurring software design problems and are a proven way
of building high quality software [5]. They capture
knowledge that experienced developers understand
implicitly and facilitate training and knowledge transfer
to new developers [17]. One survey [13] has indicated a
low adoption of design patterns among practitioners –
respondents estimated that no more than half of the
developers and architects in their organization knew of,
or used, design patterns. Therefore, bridging the gap
between the pattern expert communities and the typical

pattern user is critical for achieving the full benefits of
design patterns [4].

The goal of this paper is to improve design-pattern
adoption within the context of a typical pattern use case:
a user has to select an appropriate design pattern,
understand it and its consequences in detail, and also use
it efficiently. To achieve this lofty goal, we will firstly
explain how to introduce an appropriate design pattern
presentation technique. In order to do this, we will
consider several formal design pattern presentation
techniques, as presented in this paper. Before we dig
deeper, let us clarify the boundaries of our research.
While speaking of software patterns we are addressing a
whole family of patterns. There are a lot of software
pattern types that have been recognized so far. Some
authors have proposed a general software-pattern
taxonomy [24]:

 Patterns in software analysis, which are the most
abstract software patterns;

 Architectural patterns;
 Design patterns;
 Interaction patterns and
 Patterns in software implementation (also

known as idioms).

190 Informatica 33 (2009) 189–197 L. Pavlič et al.

We can, however, split software pattern categories
further (e. g. database design patterns, ontology design
patterns, communication design patterns etc). It is almost
impossible to provide a formal specification for software
patterns in general, since every software pattern family
addresses a different set of aspects. Software pattern
formal specification is, as will be discussed later,
necessary in order to provide advanced automatic
services. We have limited our research to object-oriented
design patterns, since they are the most used and well-
known software patterns [27]. This limitation is based on
the observation that catalogues with only a few design
patterns have clearly been shown to be problematic [5].
However, it is our belief that the approach we propose
could eventually also be used with other software
patterns, especially when considering the requirement
that one could also formalize aspects specific to covering
expert knowledge.

In our work, we do not try to formalize all possible
aspects. Our goal is to provide a human and machine
understandable foundation, primarily to support the
design pattern selection process. We do not therefore
cope with formalizing the pattern implementation or
verification, for instance. Instead, we formalize object-
oriented concepts, relationships and expert knowledge on
design patterns.
Design patterns improve software design productivity
and quality for the following reasons [22]:

 They capture previous design experiences, and
make it available to other designers - designers
do not need to discover solutions for every
problem from scratch.

 They form a more flexible foundation for reuse,
as they can be reused in many ways.

 They can be used as a tool for communication
among software designers. In fact, this was the
original idea of introducing design patterns.

Although design patterns could help significantly in
producing high-quality software, developers are
continuing to experience more and more difficulties e. g.
when finding patterns to match their design problems. It
seems that managing and searching facilities are not
catching the growing number of design patterns. In this
paper, we will also address this challenge. Since we have
had many positive experiences in initiating developers to
use design patterns, we have also decided to develop an
integral web-based platform, primarily to help select
design patterns. The platform (Ontology-Based Design
Pattern Repository – OBDPR) presented in this paper is a
platform and, as such, provides the basis for automatic
and intelligent services to be built on top of formally
presented design pattern knowledge. We have developed
a set of services, also described in this paper, on top of
OBDPR:

 design pattern searching service,
 design pattern proposing service, which can also

be used as a design pattern suitability
verification service,

 training service.

Based on formal design pattern representation, we
have introduced capabilities known from the artificial
intelligence area into OBDPR and its services. In this
paper, we will present the initial experiment performed,
which should demonstrate the usefulness of our
approach. Moreover, we are planning to perform
additional rigorous experiments to indicate if and how
much our platform helps software engineers, especially
inexperienced ones. We assume that positive experiences
with students could also be achieved with full-time
developers.

The structure of this paper is as follows: In the
“Related work” chapter we present known techniques in
formalizing design patterns and their possible and
concrete applications. Based on this, we present our own
method for formal design pattern representation in
chapter three. In that chapter, we also discuss why and
how to use ontologies while addressing challenges
related to selecting, understanding and using design
patterns. Chapter four gives a detailed insight into the
conceptual and technical background of OBDPR. The
platform’s functionality and additional services are also
described. The results of introducing the platform are
presented in chapter five. The findings of the initial
experiment, where users were exposed to solving design
problems with and without our tools, are also presented.
Chapter six shows some future trends in our research
activities. The final chapter summarizes the most
important points of this paper and concludes it.

2 Related work
Since 1994, when design patterns were introduced, many
different approaches have been used for documentation
purposes. In general, there are three main categories for
descriptions:

 informal representations,
 semiformal representations based on graphical

notations such as UML and
 various formal representations, which also

include notations using semantic web
technologies.

Design patterns are traditionally represented by
informal, loosely structured documents. These
documents are in a canonical form, which consists of a
series of fields (name, intent, applicability, structure,
participants, consequences, implementation etc), defined
by informal descriptions. They help developers
understand patterns, but there are glaringly obvious
issues regarding advanced knowledge management
possibilities. We can also find several semiformal
representations, most of them are based on UML [6, 8, 3,
12]. These representations are efficient for a basic
understanding of patterns since they cover their structural
elements. They are strongly supported by tools, which
enable developers to include design patterns in their
solutions in a straightforward way. They are successful at
capturing structures (static image, usually shown with

IMPROVING DESIGN PATTERN ADOPTION WITH… Informatica 33 (2009) 189–197 191

class diagrams) and behavior (dynamic image, usually
shown with sequence or collaboration diagrams). They
do not provide information and knowledge on high level
aspects such as intent, usability and consequences, on the
other hand. For enabling sophisticated services on design
patterns, e.g. the ones listed in the prior chapter, we need
fully formal representations. The main goals of
formalizing design patterns that are recognized within the
community are [22]:

 Better understanding of patterns and their
composition. It helps to know when and how to
use patterns properly in order to take full
advantage of them.

 Resolving issues regarding relationships
between patterns. It is not only relevant which
design patterns are used to solve a problem, it is
also important in which order they are applied.

 Allow the development of tool support in
activities related to patterns.

In general, when talking about tool support, researchers
are currently trying to develop a formal representation of
design patterns, primarily for [22]:

 searching for patterns in existing solutions,
 automatic code generation,
 formal solution validation.

A typical use case for this would be the following:
 Developers include a design pattern in their solution.

The code is generated automatically. Tool support
mostly includes the design pattern in UML
diagrams. Other languages are also supported in
some tools (e. g. DPML, RSL, RBML, LePUS – see
[22]).

 After further development the solution is completed.
 Testers can use tools for formal testing based on

design patterns. Tools can find semantic errors in a
syntactically perfect solution. Improvements can
also be proposed. Since this functionality can really
demonstrate the tool’s ability to do some inference,
it is supported by almost all tools based on
languages that enable code X-ray and inference (see
Table 1). PEC (Pattern Enforcing Compiler) goes
even further – it includes design patterns in the
solution at compile time in order to avoid some
errors.

There have been several attempts at introducing
formal representations in the design patterns area. Some
of them are based on pure mathematics, such as first-
order logic, temporal logic, object-calculus, -calculus
and others [22]. On the other hand, some authors [7][8]
are trying to formalize design patterns and keep them
understandable for humans at the same time. It is the
idea, similar to the semantic web (to keep data
semantically understandable both to human and
machine). Their representation is mostly supported with
ontologies. It is used primarily to describe the structure
of source code, which is done according to particular
design pattern. One of those used in the “Web of

Patterns” (WoP) project [1] has addressed the area of
describing knowledge on design patterns.

As stated above, the authors [22] propose several
tools; some of them are available for production
environments. However, one could also imagine other
tools supporting activities regarding design patterns. For
instance: before we introduce a design pattern to our
solution, how to select an appropriate one? If we have an
idea of using a design pattern, one can imagine if the
selected pattern would do the desired job. One could also
speculate if there is any design pattern that is more
suitable than the one currently used. Those were just a
few ideas about how to use formal design pattern
knowledge in applications. We have not found complete
and proven solutions to these challenges, even if there
are a few tries, based on keywords rather on design
pattern knowledge (for instance [25]). To summarize, for
supporting those and other activities, the authors are
trying to formalize several aspects of design patterns.
They can be divided into the following areas [21]:

 pattern structure (classes, methods, relationships
etc),

 pattern behavior (e.g. method call sequence),
 pattern implementation,
 context prerequisites for using design patterns,
 verifying design and implementation based on

patterns,
 pattern compositions.

It depends on the formal representation goal for
which area of pattern will be formalized (see Table 1).
For details on several methods see [22]. In Table 1, we
summarize the most important techniques available
today. We believe it is important if a method has only
theoretical foundations or if it actually has direct tool
support. In Table 1, we also show the aspects being
formalized by a certain method (we limit the summary to
a static and dynamic aspect of a design pattern).

Table 1: The most important formal methods for
representing design patterns

Name
Tool
support?

Static or
dynamic
aspect Purpose

DPML both
MDA (Model-Driven
Architecture)

RSL both MDA, code verification

OCSID both

SPINE static Code verification

SPQR static Code X-ray
Object-
Calculus both

RBML both MDA

Slam-SL both Inference in general
ODOL
(OWL) static Pattern Repository

URN both Ease of use

PEC static Enforcing compiler

LePUS static Pattern Repository

TLA dynamic

192 Informatica 33 (2009) 189–197 L. Pavlič et al.

FOL static

Prolog static

BPSL both Inference in general

After reviewing related works and the benefits of
using ontologies, which will be explained later, we also
decided to employ them in our work. Although there are
some ontologies available (e.g. ODOL), we did not use
any existing one. Having a separate ontology is not a
problem, since there is a possibility of connecting
ontologies in a straightforward way. As will be seen in
subsequent chapters, we can benefit from combining our
solution with others – especially the WoP project [1].

3 The role of ontology in OBDPR

3.1 Using semantic web technologies in
OBDPR

The idea of the semantic web allows automatic,
intelligent inferring of knowledge, supported by
ontologies. The basic idea of the semantic web is a
different organization and storage of data and,
subsequently, new possibilities for using this data [19].
The barrier that prevents more advanced usage of
available data is believed to be the semantic poorness of
today’s solutions. The vast majority of data is presented
as a very simple, non-structured human readable and
human understandable material. The result is an inability
to make real use of the enormous amount of available
“knowledge”. In order to overcome these difficulties, the
concept of meta-data was introduced into the core of the
semantic web. Using meta-data, so called smart agents
can be used to search for information by content and to
infer on gathered concepts. As a foundation, there has
been a lot of work done with regard to common formats
for the interchange of data and the common
understanding of common concepts. This allows a person
to browse, understand and use data in a more
straightforward way, and a machine to perform some
intelligent tasks on data automatically. Furthermore,
semantic web ideas can be used in an internal enterprise
information system for knowledge management in a
different way to introduce new intelligent services. In the
semantic web, knowledge is represented as graphs, and
written down in an XML-based language called RDF
(Resource Description Framework) [16]. RDF deals with
URIs (another W3C standard for naming resources
globally unique). The advanced use of semantically
annotated data can only be accomplished using
ontologies in RDFS or OWL (Web Ontology Language)
[14] documents. There is also a language for efficiently
querying RDF-represented knowledge, SPARQL [18].
The whole stack of semantic web technologies is
available and described in [20] (see Figure 1).

Figure 1: The semantic web technologies stack [20]

3.2 A new ontology
The semantic web allows knowledge to be expressed in a
way that enables machine processing and its use in web
environments by both intelligent agents and human users
[23]. It is considered to provide an efficient way of
presenting data, information and knowledge on the
internet or in the scope of a global interconnected
database. Since many semantic web technologies have
reached high community consolidation and have become
W3C standards (including RDF and OWL) it can also be
considered a long-term platform for intelligent services
based on a common knowledge base [20].

One of the enabling approaches used in the semantic
web is metadata. It is supported by the concept of
ontologies and has its foundation in W3C standards.
Ontology describes the subject domain using the notions
of concepts, instances, attributes, relations and axioms.
Among others, concepts can also be organized into
taxonomies whereby inheritance mechanisms can be
used in ontology. Ontologies are built on description
languages, such as RDF(S) and OWL, and add semantics
to the model representation. Their formal, explicit and
shared nature makes them an ideal object repository for
catalogues.

With the presented facts, we also justify our decision
to use ontologies as well as other semantic web
technologies to provide a basis, not only for design
pattern descriptions, but also for future intelligent
services:

 Ontologies in the semantic web has its
foundation in W3C standards.

 Ontology-based design pattern descriptions are
computer readable and therefore suitable for
automated (computer) processing.

 Transforming OWL and RDF based design
pattern representations into other kinds of
representations (in textual or graphical form)
can be achieved easily with simple
transformations.

 Enabling technologies are well established,
recognized and extendable.

IMPROVING DESIGN PATTERN ADOPTION WITH… Informatica 33 (2009) 189–197 193

 They enable the exchangeability of design
pattern descriptions in a straightforward way.

 The semantic web introduces technology that
enables knowledge to be distributed.

 More and more OWL–enabled tools are
available which can use and manipulate an
ontology-enabled knowledge base.

OBDPR’s underlying ontology is implemented using
OWL. A core ontology fragment is shown in Figure 2.
We use a hierarchical organization of pattern containers.
Every pattern container may contain several pattern
containers and patterns. This enables us to capture
several divisions of design patterns, not only those found
in fundamental literature. Every pattern can be included
in several containers; the same is true for containers.
Patterns themselves are connected in a more logical way
by means of related, similar, composed patterns and
pattern hierarchies (also mentioned as a pattern language
by some authors). Not only patterns and pattern
containers themselves are included in the ontology, but
there are also real-world examples using patterns to give
more meaning to the OBDPR user (“TestCase” class).

Figure 2: Core of OBDPR ontology

There are many benefits to using such ontology.
Beware of transitive relations. Using a relation which has
transitive properties can help significantly when dealing
with design patterns and design-pattern containers. For
instance: a service, built on top of OBDPR, has direct
access to all members of a particular pattern container –
without performing advanced searching. A pattern
language (i. e. interrelated patterns) can also be presented
in straightforward way. The solution is also prepared for
connecting our own ontology and ODOL (ontology in
WoP project [1]). We can introduce the relation
theSameAs (a relation supported by OWL) between our
Pattern concept and Pattern in ODOL. So we have
automatic access to a formal representation not only to
expert knowledge, but also the structure and behavior of
a particular design pattern. Those were just a couple of
strong mechanisms supported by the presented ontology.

Furthermore, the expert knowledge aspect is also
supported by the presented ontology. Design pattern
experts can provide experiences in question-answer pairs,
which enables them to capture their implicit knowledge

on design patterns. Not only experts can give experiences
to tell which design pattern is used in a particular real-
life situation (“Question” class), but they can also specify
more possible solutions to a real-life situation
(“Answer”) with specified probability
(“AnswerRelevance”). This value ranges from 0% to
100% and tells the user how likely it is that their
particular candidate (“Pattern” or “PatternContainer”) is
used when the answer to a given question is confirmed as
positive. Answers and possible candidates can easily be
updated or added to questions at any time with the aid of
a rich user-friendly web interface. For instance:
Question: How do you want to create objects?
Possible answer: Separate construction of a complex
object from its representation so that the same
construction process can create different
representations. You should use the Builder pattern
(100%).
Possible answer: Ensure that the class has only one
instance. You should use the Singleton pattern
(100%).
Possible answer: Create objects without prior knowledge
about their concrete classes. You can use several
design patterns: Prototype (33%), Abstract Factory(33%)
or Factory Method(33%).

This knowledge can also be used by services, run on
top of OBDPR in order to achieve intelligent
functionalities, such as a guided question-answer
dialogue for selecting patterns or verifying design
decisions.

4 OBDPR – repository and platform
OBDPR is completely based on semantic web
technologies. As a data store, it uses RDF. Since we do
not want to rediscover all design pattern knowledge from
scratch, we have also integrated knowledge found in
other data sources (e. g. Wikipedia, Sun J2EE BluePrints,
GoF online patterns etc). These are transformed to RDF,
integrated and supported by the presented ontology (see
Figure 3). Furthermore, OBDPR is not just a design
pattern repository. It is a platform for building intelligent
services to improve design pattern adoption. As such, it
includes several functionalities:

 It holds design pattern descriptions, containers
and an expert knowledge repository.

 Allows design pattern experts to annotate
patterns with additional knowledge.

 Integrates knowledge on a particular design
pattern from the web (Wikipedia, Sun
Blueprints etc) and additional data sources.

 User-friendly transformations of raw RDF data.
 Indexes all the integrated data for supporting

full text-search capabilities.
 Full access to RDF data to services built on the

platform including questions and answers,
which will enable intelligent services to use
expert system-like proposing or validating
services.

194 Informatica 33 (2009) 189–197 L. Pavlič et al.

 A set of real world examples and appropriate
design patterns solutions in order to enable
services to be used to train users or to
demonstrate the appropriate use of design
patterns in real-world examples.

Figure 3: OBDPR architecture

To achieve all the above-mentioned functionalities
efficiently, we have also used other standard-based tools.
For example, to access data written in RDF we use the
Jena framework [9]. It is also exposed for services that
will run on top of a platform. Figure 4 shows the user
interface that uses an RDF presentation of design
patterns, accessed with SPARQL queries. The data is
then transformed to show a user-friendly view on design
pattern container structure and selected design pattern
details. This view is provided with minimum coding
effort and is truly one of the most successful experiences
within OBDPR.

Figure 4: Simple pattern view

The current OBDPR prototype implements all
functionalities mentioned at the start of this chapter. It
also offers services built on top of them:

 A full-text search service,
 A design pattern proposing service and
 A training service

All of them are primarily intended to help the design
pattern novice.

At the moment, the OBDPR prototype includes all
design patterns found in GoF [5] and J2EE [2] design
pattern catalogues. It is not limited to those since it is
possible to include additional patterns – even those
recognized in a particular enterprise. Additional expert
knowledge can also be provided. Implementing this
knowledge is supported for services as well as for
browsing with a user-friendly interface – using relatively
simple SPARQL queries and transformations (see Figure
5).

IMPROVING DESIGN PATTERN ADOPTION WITH… Informatica 33 (2009) 189–197 195

Figure 5: Expert knowledge view

The implementation technology for OBDPR is Java
EE with a Jena [9] framework for accessing and
performing core semantic operations on data and
ontology. A simple user interface framework with basic
functionalities like a raw and user-friendly view on the
repository is prepared as previously shown. A framework
is fully prepared to host additional services, which are
developed in the future. To address this requirement
efficiently, we have implemented an MVC design pattern
into our solution. As a case, we have implemented three
services on top of the platform. Since they are the core
ones, they can also be used by other services. They
enable us to use full text search capabilities in OBDPR
(Figure 6) as well as training (Figure 5) and proposing
services (figure 7). Not only is the data in OBDPR
indexed for a full text search, but also data from the web,
such as design-pattern-related content from Wikipedia
and other design pattern related pages. The underlying
ontology also improves the full text search capabilities.

Figure 6: Search module

Figure 7: Proposing module

5 Preliminary experiment
We preliminary tested our approach and a platform for
advising on design patterns by conducting an experiment
on a group of software developers who had different
levels of expertise in the field of design patterns. A series
of 19 design problems were presented to each of them.
Each participant tried to identify the most appropriate
design pattern to solve each of the design problems. The
experiment was done in four phases: in the first phase,
participants had to answer a few questions concerning
their development background and level of expertise. In
the second phase, they were given the opportunity to
solve their design problems without any assistance and/or
tools. In the third phase, the platform was provided to
help them solve the same set of design problems. In the
end, a post-experiment survey was conducted to gather
participants’ opinions regarding the usefulness of the
platform.

We invited 10 software developers to participate in
the experiment. According to their own assessment of
their design patterns expertise, five of them self-
described as “good”, two as “very good” and two as
“excellent”. Only one participant claimed poor
knowledge of GoF design patterns. The level of expertise
was assessed in terms of how many patterns of the GoF
catalogue a participant could identify. A comparison of
the results achieved in the second and third phase showed
that only one participant did not make any progress when
using the platform. For the rest of the participants, the
platform helped identify, at a minimum, an additional 50
percent in correct solutions. Using the statistical analysis
of the results (paired t-test) we determined that the
difference between the number of correct solutions found
both with and without the platform is statistically
significant (P = 0.000706). The results of the post-
experiment survey have shown that only one of the
participants found the use of the platform to be less
efficient than searching for an appropriate solution
without the platform. A decreased standard deviation in
the results showed that the efficiency of the less-
experienced developers (according to design patterns)
became more similar to experienced developers. At the
same time, the mean value of successfully solved
problems rose significantly. We can conclude that
developers with less experience in the area of design
patterns benefited the most from using the platform. By
comparing the frequency of the correct solutions
representing a particular design pattern and the

196 Informatica 33 (2009) 189–197 L. Pavlič et al.

frequency1 of use for the same pattern in practice, we
found that they did not directly correlate. This can be at
least partly explained by the fact that the design problems
presented to participants were not of equal complexity.
The second possible explanation is that a higher
frequency of use does not necessarily mean that the
design pattern is better known or indeed easier to
understand.

It should be noted that the results have to be taken
with some caution, since the number of participants was
quite small. Nevertheless, the experiment shows that our
platform for advising is helpful to those developers who
have a relatively poor knowledge of design patterns. For
developers who already have solid expertise, this
approach does not offer as many advantages, because the
questionnaire does not follow their thought processes
(mind maps). However, should a wider variety of design
patterns be covered by the platform, the differentiation
between experienced developers and those who lack
expertise would presumably decrease.

For detailed information about experiment please see
[26]. In that paper you can find detailed experiment
structure, proposing service is also discussed in depth.

6 Further work
We have developed an integral web-based platform,
primarily to help select design patterns. To strengthen
confidence in the results, some rigorous real life
experiments should be performed in addition to this
initial one. They might show if and how much OBDPR
helps with formally presented design patterns when
adopting design patterns. As previously shown, some
preliminary experiments have already been performed.
Since the results were promising (design pattern adoption
rose significantly) we are quite confident that we are on
the right track. More rigorous experiments are planned
for the future.

Besides experimenting with a repository, there is
also another idea to expose OBDPR to simple software
interfaces. It would not only enable further integration
but can also enable the development of plug-ins for the
most popular development tools, such as Eclipse,
NetBeans or Visual Studio. Having OBDPR always at
hand during development would certainly seem
beneficial.

Even existing services need some improvements
before going into production. For example, we are trying
to personalize the proposing service. The proposing
component could learn about the user from past
proposals and, for instance, ask personalized questions or
ask more questions to verify possibly contradictory
answers. The idea behind the proposing service includes
verifying if the developer knows what a certain question
mean. This could be achieved with question redundancy:
if the developer answers a question with an option that
prefers pattern A and another question with an option
that does not prefer pattern A, it is possible that the

1

Frequency of use was taken from
http://www.dofactory.com/Default.aspx

developer is confused. With this in mind, we can reduce
questions asked during the proposing service, if we
consider the developer’s past dialogues. OBDPR enables
the analysis of exhaustive logs of usage. We have data on
each proposing process if a selection is well done. If not,
we can review which question was shown to be
problematic and where the user starts to get confused (by
measuring several attributes for each question including
repetition number, time spent, premature finishing etc).
This can be used as guidance for experts to review and
improve questions and answers or to provide more
questions connecting particular candidates.

After performing research activities by means of
experimenting with the platform on industry developers,
we plan to develop a holistic methodology for design
pattern selection. It will include both a design pattern
expert and user activities. OBDPR will be given the role
of an enabling tool for the developed methodology. To
take full advantage of formalized design patterns aspects,
there is basically no limitation for creating additional
services on top of the platform.

7 Conclusions
The platform (Ontology-Based Design Pattern
Repository – OBDPR) presented in this paper is the basis
for automatic and intelligent services built on top of
formally presented design pattern knowledge. The main
aim of OBDPR is to introduce formal methods of design
pattern representation in order to drawn upon capabilities
known from the area of artificial intelligence. It also
simultaneously keeps patterns in human-friendly form.
Therefore, the semantic web approach and technology
were used. OBDPR addresses the challenges of selecting,
understanding and using design patterns in the rapidly
increasing number of design patterns.

In the paper, we have presented several important
components for our approach:

 The proposed formal design pattern presentation
technique can easily be used by automatic
intelligent services as well as by human users. It
can additionally be integrated with existing
presentations, especially ODOL [1].

 A new, fully functional OBDPR with the
capability to serve as a basis for more advanced
services (we have so far developed a searching,
proposing, training and validating service).

 The platform and services have initially been
exposed to real-world usage. The initial
experiment has encouraged us to carry on with
our work and perform additional, rigorous
experiments.

We are confident that our work can contribute to an
increase in using design patterns, especially by helping to
find a suitable design pattern for a given situation. This
issue constitutes a great challenge for the typical
developer. OBDPR was therefore developed primarily to
capture design patterns, explicit and implicit expert
knowledge, and to enable the further development of

IMPROVING DESIGN PATTERN ADOPTION WITH… Informatica 33 (2009) 189–197 197

intelligent services and to test our belief that we can
improve design pattern adoption.

Introducing semantic web concepts and technology
into the design pattern field has revealed itself to be the
correct solution so far. It creates new possibilities for
making design patterns more approachable for software
engineers.

8 References
[1] A. H. Eden et al, Precise Specification and

Automatic Application of Design Patterns,
International Conference on Automated Software
Engineering, IEEE Press, 1997.

[2] Core J2EE Patterns, http://java.sun.com/blueprints/
corej2eepatterns.

[3] D. K. Kim at al, A UML-based Metamodeling
Language to Specify Design Patterns, Proceedings
of the Workshop Software Model Eng. (WiSME)
with Unified Modeling Language Conf. 2003,
October 2003.

[4] D.Manolescu, W. Kozaczynski, A. Miller, J. Hogg,
“The Growing Divide in the Patterns World”, IEEE
Software, Vol. 24, No. 4., July/August 2007, pp.
61-67.

[5] E. Gamma et al, Design patterns: Elements of
reusable object orientated software, Addison
Wesley Longman, 1998.

[6] Gerson Sunyé et al, Design Pattern Application in
UML, ECOOP’00, http://www.ifs.uni-
linz.ac.at/~ecoop/cd/papers/1850/18500044.pdf.

[7] J. M. Rosengard, M. F. Ursu, Ontological
Representations of Software Patterns, KES’04,
Lecture Notes in Computer Science, Springer-
Verlag, 2004,
http://w2.syronex.com/jmr/pubs/2004/ontology-
pattern.pdf.

[8] J. M. Rosengard, M. F. Ursu, Ontological
Representations of Software Patterns, KES’04,
Lecture Notes in Computer Science, Springer-
Verlag, 2004,
http://w2.syronex.com/jmr/pubs/2004/ontology-
pattern.pdf.

[9] Jena Semantic Web Framework,
http://jena.sourceforge.net.

[10] L. Rising, “Understanding the Power of Abstraction
in Patterns”, IEEE Software, July/August 2007,
Vol. 24, No. 4., pp. 46-51.

[11] L. Rising, The Pattern Almanac 2000, Addison
Wesley, 2000.

[12] Marcus Fontoura and Carlos Lucena , Extending
UML to Improve the Representation of Design

Patterns, Computer Science Department, Pontifical
Catholic University of Rio de Janeiro.

[13] Microsoft, Microsoft Patterns & Practices,
http://msdn.microsoft.com/practices.

[14] OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features.

[15] R. Singh, Drive: An RDF Parser for .NET,
http://www.driverdf.org/.

[16] RDF/XML Syntax Specification,
http://www.w3.org/TR/rdf-syntax-grammar.

[17] Schmidt, D.C., "Using Design Patterns to Develop
Reusable Object-Oriented Communication
Software", Communications of the ACM, October
1995.

[18] SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query.

[19] T. Berners-Lee, “Business Model for the Semantic
Web”, http://www.w3.org/ DesignIssues/Overview
.html.

[20] W3C, “Semantic Web”, http://www.w3.org/2001/
sw/.

[21] J. Helin, P. Kellomäki, T. Mikkonen. Patterns of
Collective Behavior in Ocsid. p. 73-93. Design
Patterns Formalization Techniques. IGI Publishing.
March 2007.

[22] T. Taibi, Design Patterns Formalization
Techniques, United Arab Emirates University,
UAE, Preface, IGI Publishing. December 2006.

[23] T. Berners-Lee, J. Hendler, O. Lassila, The
Semantic Web, Scientific American, 284 (5) (2001)
28-37.

[24] P. Bonillo, N. Zambrano y Eleonora Acosta,
Methodologic Proposal for Business Process
Management sustained in the use of Patterns,
Journal of Object Technology, vol. 7, no. 7,
September - October, pp. 131-145,
http://www.jot.fm/issues/issue_2008_09/article5.

[25] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P.
Carreiro, J. Ferreira, C. Bento, Selection and Reuse
of Software Design Patterns Using CBR and
WordNet, 15th International Conference on
Software Engineering and Knowledge Engineering,
SEKE 2003, Proceedings, (SEKE'03), pp. 289-296.

[26] M. Heričko, I. Brejc, L. Pavlič, V. Podgorelec, A
Question-Based Design Pattern Advisement
Approach, Journal of Systems and Software,
Submitted to publication in November 2008.

[27] U. Zdun, Systematic Pattern Selection Using Pattern
Language Grammars and Design Space Analysis,
Software: Practice & Experience, vol. 37, no. 9, p
983-1016, Wiley, 2007.

198 Informatica 33 (2009) 197–205 L. Pavlič et al.

