
Informatica 33 (2009) 221-232 221

A Petri-Net Approach to Refining Object Behavioural Specifications

King-Sing Cheung
University of Hong Kong
Pokfulam, Hong Kong
E-mail : ks.cheung@hku.hk

Paul Kai-On Chow
City University of Hong Kong
Tat Chee Avenue, Hong Kong
E-mail : cspchow@cityu.edu.hk

Keywords: Petri net, object-oriented system, object-oriented design, behavioural specification

Received: April 12, 2008

In object-oriented system design, functional requirements are given and expressed as object interaction
scenarios whereas implementation is based on classes of objects. One need to derive, from the given
object interaction scenarios, object-based behavioural specifications which reflect exactly these object
interaction scenarios for implementation purposes. In this paper, a Petri-net-based method is proposed
for the refinement. It begins with specifying each object interaction scenario as a labelled Petri net with
an AMG-structure. These labelled Petri nets are synthesised into a single integrated net which
represents the integrated system. By making use of the special properties of the AMG-structure, the
system can be effectively analysed on its liveness, boundedness, reversibility and conservativeness.
Duplicate labels are then eliminated by fusing common subnets, so as to attain a uniquely labelled net
on which individual object-based behavioural specifications are obtained as projections.

Povzetek: Uporabljen je pristop Petrijevih mrež za objektne specifikacije.

1 Introduction
In the past two decades, object orientation has been an
influential discipline in software engineering1. According
to the principles of object orientation, an object is an
entity that encapsulates states and behaviours. A system
is considered as a collection of objects which are
interacting with others in order to accomplish the system
functionalities. It can be abstracted in two aspects
(structure and behaviour) and two levels (intra-object and
inter-object) as shown in Figure 1 [1, 2, 3, 4, 5, 6, 7, 8,
9]. Structurally, objects with the same attributes are
grouped into classes while classes having common
attributes are generalised to form an inheritance
hierarchy. Objects exhibit different behaviours on
interacting with others, thus demonstrating different
object interaction scenarios. This paper investigates the
behavioural aspect of objects.

In object-oriented system design, the functional
requirements of a system are given by the end-users as
use cases - the typical cases of how a system can be used
[10, 11]. These use cases are elaborated and expressed in
terms of object interaction scenarios and specified as
UML sequence diagrams and collaboration diagrams [11,
12, 13, 14, 15, 16]. We need to create, from the object
interaction scenarios, object-based specifications

1This paper is an extended version of the authors' paper
presented at the REFINE 2006 workshop.

delineating the behaviours of individual objects for
detailed system design and implementation.

structural aspect behavioural aspect

inter-
object
level

Object Relationship

inheritance hierarchy,
association, aggregation

(inheritance hierarchy
structure)

Object Interaction

object interaction
object collaboration

(sequence diagram,
collaboration diagram)

intra-
object
level

Object Classification

class of objects,
class attributes,

operations

(class diagram,
object diagram)

Object Lifecycle

states, transition of states,
state actions, activities

(statechart diagram,
activity diagram)

Figure 1: An object-oriented system by aspects and
abstraction levels.

In this refinement process, at least the following
problems have to be tackled.

Specification constructs for object interaction
scenarios being too primitive. Conventional specification
constructs for object interaction scenarios lacks the
formality for representing the pre-conditions and post-
conditions for each event occurrence. These are however
essentially required in deriving the object behavioural
specifications, where the conditions, events and their
causal relationships need to be explicitly specified.

222 Informatica 33 (2009) 221–232 K.-S. Cheung

Different abstractions between intra-object lifecycle
and inter-object interaction. It is difficult to derive
individual object behaviours (within a single object
lifecycle) from the object interaction scenarios (among
multiple objects) because of the difference in abstraction
(intra-object versus inter-object). In the literature of
object-oriented system design, there is a lack of
systematic approaches to solving this problem
satisfactorily.

Difficulty in verifying the correctness of the object
behavioural specifications. The object behavioural
specifications so derived should be correct in the sense
that they reflect exactly the given object interaction
scenarios [4, 17, 18, 19, 20]. Without a formal method,
one needs to go through all possible object interaction
scenarios to ensure correctness of the specifications. The
process is time-consuming.

Lack of rigorous methods for analysing the system
properties. One major objective in system design is to
obtain a live, bounded and reversible system - liveness
implies freeness of deadlocks, and boundedness implies
absence of capacity overflows, while reversibility refers
to recoverability. Without a rigorous analysis method, it
is difficult for one to analyse whether the outcome
system design is live, bounded and reversible.

In the literature, there are only a few approaches or
methods for deriving an object-based behavioural
specifications from a given set of use cases or object
interaction scenarios. Bordeleau proposed an approach
which takes a traceable progression from use cases to the
object-based state machines [21, 22]. Dano proposed an
approach where the use cases are synthesised into a
system design according to some mapping rules [23, 24].
However, these approaches solve only trivial issues. The
system design cannot be rigorously analysed on its
liveness, boundedness and reversibility. Moreover, they
are themselves incomplete and insufficient in the sense
that the derived object-based state machines may not
reflect exactly the given use cases or object interaction
scenarios.

On the other hand, there are approaches or methods
which derive a system from a given set of event traces or
sequences. Graubmann proposed a method for
constructing an elementary net system from a set of event
traces [25]. The method is based on the dependence
relation between events. A set of possible states and state
transitions, which are compatible to the dependence
relation, are deduced. Smith proposed a method for
constructing a condition-event system from a set of
occurrence nets based on the concept of quotient nets
[26]. Hiraishi proposed a method for constructing a Petri
net from a set of firing sequences [27]. In Hiraishi's
method, a language is first identified from the firing
sequences. Based on the dependency relation extracted
from the language, a safe Petri net is created. Lee also
proposed an approach for integration of use cases using
constraint-based modular Petri nets [28]. However,
without concepts of object-orientation, these approaches
and methods cannot be applied to object-oriented system
design.

In this paper, based on Petri nets, we propose a
method for refining a given set of object interaction
scenarios into object-based behavioural specifications,
where the above-mentioned problems can be resolved
effectively. It involves the following steps :

Step 1. Each object interaction scenario is specified
as a labelled Petri net (labelled net) with an AMG-
structure (i.e. structurally an augmented marked graph).

Step 2. The labelled nets are synthesised into an
integrated net which serves to represent the system.
Based on the properties of AMG-structure, the system is
analysed.

Step 3. Duplicate labels are eliminated from the
integrated net, while preserving the firing sequences
(event sequences).

Step 4. Individual object-based specifications are
obtained as projections of the integrated net onto the
objects.

Figure 2 shows an overview of the proposed method.

Figure 2: Overview of the proposed method.

Our proposed method offers a number of distinctive
features.

Formal specification of object interaction scenarios.
The object interaction scenarios are specified as
unambiguous and semantically rich labelled nets. The
partial orderings of events as well as the causal
relationships between events and conditions are
explicitly represented.

Effective analysis on the essential system properties.
The integrated system possesses an AMG-structure. By
making use of the special properties of AMG-structure,
the system can be effectively analysed on its liveness,
boundedness, reversibility and conservativeness.

4. projecting the net onto
 the individual objects

2. synthesising the labelled nets
 into an integrated net and
 analysing the system

obj interact
scenario 1

. . .

labelled net
(N1, M10)

labelled net
(N2, M20)

labelled net
(Nn, Mn0)

the
integrated net

a uniquely
labelled net

projected nets for
individual objects

3. eliminating duplicate labels
 from the integrated net

individual object-based
behavioural specifications

obj interact
scenario 2

1

1. specifying object interaction
 scenarios as labelled nets

obj interact
scenario 3

A PETRI-NET APPROACH TO REFINING... Informatica 33 (2009) 221–232 223

Correctness of the derived specifications. Individual
object behavioural specifications are rigorously derived
from the object interaction scenarios through synthesis
and projection. The specifications so obtained reflect
exactly the given object interaction scenarios.

Readiness for implementation purposes. In the
specifications, every condition or event is uniquely
represented so that they can be readily used for
implementation purposes.

The rest of this paper is organised as follows.
Section 2 provides the preliminaries to be used in this
paper. Section 3 introduces the AMG-structure, where
augmented marked graphs and their properties are
described. In Section 4, we show the formal specification
of object interaction scenarios as labelled nets (Step 1 of
the proposed method). In Section 5, we focus on
synthesising the labelled nets into an integrated system,
and analysing the system properties (Step 2 of the
proposed method). Section 6 then presents an algorithm
for eliminating duplicate labels from the integrated net
(Step 3 of the proposed method). In Section 7, we show
how individual object-based behavioural specifications
are obtained as projections of the integrated net (Step 4
of the proposed method). Section 8 gives a real-life
example for illustration. Section 9 concludes this paper.

It should be noted that this paper primarily focus on
refinement of object-based behavioural specifications -
deriving individual object-based specifications from the
object interaction scenarios. The structural aspect of an
object-oriented system will not be investigated.

2 Preliminaries
This section provides the preliminaries for readers who
are not familiar with Petri nets [29, 30, 31, 32].

A place-transition net (PT-net) is a directed graph
consisting of two sorts of nodes called places and
transitions, such that no arcs connect two nodes of the
same sort. Graphically, a place is denoted by a circle, a
transition by a box, and an arc by a directed line. A Petri
net is a PT-net with some tokens assigned to its places,
and the token distribution over its places is denoted by a
marking function.

Definition 2.1. A place-transition net (PT-net) is a 4-
tuple N = P, T, F, W , where P is a set of places, T is a
set of transitions, F (P T) (T P) is a flow relation
and W : F { 1, 2, ... } is a weight function. N is said to
be ordinary if and only if the range of W is { 1 }. An
ordinary PT-net is usually written as P, T, F .

Definition 2.2. Let N = P, T, F, W be a PT-net.
For x (P T), x = { y | (y, x) F } and x = { y | (x,
y) F } are called the pre-set and post-set of x,
respectively. For X = { x1, x2, …, xn } (P T), X =
x1

x2 … xn and X = x1
 x2

 … xn
 are

called the pre-set and post-set of X, respectively.
Definition 2.3. For a PT-net N = P, T, F, W , a

path is a sequence of nodes x1, x2, ..., xn , where (xi,
xi+1) F for i = 1, 2, ..., n-1. A path is said to be
elementary if and only if it does not contain the same
node more than once.

Definition 2.4. For a PT-net N = P, T, F, W , a
cycle is a sequence of places p1, p2, ..., pn such that
t1, t2, ..., tn T : p1, t1, p2, t2, ..., pn, tn forms an
elementary path and (tn, p1) F.

Definition 2.5. For a PT-net N = P, T, F, W , a
marking is a function M : P { 0, 1, 2, ... } where M(p)
is the number of tokens in p. (N, M0) represents N with
an initial marking M0.

Definition 2.6. For a PT-net N = P, T, F, W , a
transition t is said to be enabled at a marking M if and
only if p t : M(p) W(p,t). On firing t, M is
changed to M' such that p P : M'(p) = M(p) - W(p,t)
+ W(t,p). In notation, M [N,t M' or M [t M'.

Definition 2.7. For a PT-net (N, M0), a sequence of
transitions = t1, t2, ..., tn is called a firing sequence if
and only if M0 [t1 ... [tn Mn. In notation, M0 [N, Mn or
M0 [Mn.

Definition 2.8. For a PT-net (N, M0), a marking M is
said to be reachable if and only if there exists a firing
sequence such that M0 [M. In notation, M0 [N, M
or M0 [M. [N, M0 or [M0 represents the set of all
reachable markings of (N, M0).

Definition 2.9. Let N = P, T, F, W be a PT-net,
where P = { p1, p2, ..., pm } and T = { t1, t2, ..., tn }. The
incidence matrix of N is an m n matrix V whose typical
entry vij = W(pi,tj) - W(tj,pi) represents the change in
number of tokens in pi after firing tj once, for i = 1, 2, ...,
m and j = 1, 2, ..., n.

Liveness, boundedness, safeness, reversibility and
conservativeness are well known properties of Petri nets.
Liveness implies deadlock freeness. Boundedness refers
to the property that the system is free from any potential
capacity overflow. Safeness and conservativeness are
two special cases of boundedness. Reversibility refers to
the capability of a system of being recovered or
reinitialised from any reachable state. In general,
liveness, boundedness and reversibility collectively
characterise a robust or well-behaved system.

Definition 2.10. For a PT-net (N, M0), a transition t
is said to be live if and only if M [M0, M' : M [
M' [t. (N, M0) is said to be live if and only if every
transition is live.

Definition 2.11. For a PT-net (N, M0), a place p is
said to be k-bounded (or bounded) if and only if M
[M0 : M(p) k, where k > 0. (N, M0) is said to be k-
bounded (or bounded) if and only if every place is k-
bounded.

Definition 2.12. A PT-net (N, M0) is said to be safe
if and only if every place is 1-bounded.

Definition 2.13. A PT-net (N, M0) is said to be
reversible if and only if M [M0 : M [M0.

Definition 2.14. A PT-net (N, M0) is said to be well-
behaved if and only if it is live, bounded and reversible.

Definition 2.15. A PT-net N = P, T, F, W is said
to be conservative if and only if there exists a m-vector
> 0 such that V = 0, where m = | P | and V is the
incidence matrix of N.

Figure 3 shows a PT-net (N, M0) which is live,
bounded, safe, reversible and conservative.

224 Informatica 33 (2009) 221–232 K.-S. Cheung

Figure 3. A live, bounded, safe, reversible and
conservative PT-net.

3 AMG-structure and its properties
AMG-structure refers to an augmented-marked-graph
structure. In the literature, augmented marked graphs are
not well known, as compared to other sub-classes of Petri
nets such as free-choice nets [33]. However, they possess
many special properties pertaining to liveness,
boundedness and reversibility. This section introduces
augmented marked graphs and their special properties.

Definition 3.1 [34]. An augmented marked graph
(N, M0; R) is an ordinary PT-net (N, M0) with a specific
subset of places R, satisfying that : (a) Every place in R
is marked by M0. (b) The net (N', M0') obtained from (N,
M0; R) by removing the places in R and their associated
arcs is a marked graph. (c) For each place r R, there
exist kr 1 pairs of transitions Dr = { ts1, th1, ts2, th2, ...,
tskr, thkr }, such that r = { ts1, ts2, ..., tskr } T and r = {
th1, th2, ..., thkr } T and that, for each tsi, thi Dr, there
exists in N' an elementary path ri connecting tsi to thi. (d)
In (N', M0'), every cycle is marked and no ri is marked.

Figure 4 shows an augmented marked graph (N, M0;
R), where R = { r1, r2 }.

Figure 4. An augmented marked graph.

Definition 3.2. Let (N, M0) be a PT-net, where R = {
r1, r2, …, rk } is the set of marked places such that | ri | >
0 and | ri

 | > 0 for i = 1, 2, …, k. (N, M0) is said to be of
an AMG-structure if and only if (N, M0; R) is an
augmented marked graph.

Definition 3.3. For a PT-net (N, M0), a set of places
S is called a siphon if and only if S S. S is said to be
minimal if and only if there does not exist any siphon S'
in N such that S' S. S is said to be empty at a marking
M [M0 if and only if S contains no places which are
marked by M.

Definition 3.4. For a PT-net (N, M0), a set of places
Q is called a trap if and only if Q Q. Q is said to be
maximal if and only if there does not exist any trap Q' in
N such that Q Q'. Q is said to be marked at a marking
M [M0 if and only if Q contains at least one place
which is marked by M.

Property 3.1 [34]. An augmented marked graph is
live and reversible if and only if it does not contain any
potential deadlock. (Note : A potential deadlock is a
siphon which would eventually become empty.)

Definition 3.5. For an augmented marked graph (N,
M0; R), a minimal siphon is called an R-siphon if and
only if it contains at least one place in R.

Property 3.2 [35, 36]. An augmented marked graph
(N, M0; R) is live and reversible if and only if no R-
siphons eventually become empty.

Property 3.3 [34, 35, 36]. An augmented marked
graph (N, M0; R) is live and reversible if every R-siphon
contains a marked trap.

For the augmented marked graph (N, M0; R) shown
in Figure 4, each R-siphon contains a marked trap. (N,
M0; R) is live and reversible.

Definition 3.6 [37]. Suppose an augmented marked
graph (N, M0; R) is transformed into a PT-net (N', M0') as
follows. For each r R, where Dr = { ts1, th1, ts2, th2,
..., tskr, thkr }, replace r with a set of places { q1, q2, ...,
qkr }, such that M0'[qi] = M0[r] and qi

 = { tsi } and qi = {
thi } for i = 1, 2, ..., kr. (N', M0') is called the R-transform
of (N, M0; R).

Property 3.4 [37]. Let (N', M0') be the R-transform
of an augmented marked graph (N, M0; R). (N, M0; R) is
bounded and conservative if and only if every place in
(N', M0') belongs to a cycle.

Figure 5 shows the R-transform (N', M0') of the
augmented marked graph (N, M0; R) in Figure 4. (N',
M0') is bounded, where every place belongs to a cycle.
(N, M0; R) is bounded and conservative.

Figure 5. The R-transform of the augmented marked
graph in Figure 4.

p1
p2

p4 p5

p7
p8

t2 t3 t4 t5

t12

p6

t6

p3

t7

t8 t9 t10 t11

t1

p10

q22

t10

t1

q12

t2

p4

p2 p3

p7

t8
t9

p5

p8

t3

t4

p9

t7

p6t5
p1t6

q21

q11

r2

t10

t1

r1

t2

p4

p2

p3

p7

t8 t9

t6

p5

p8

t3

t4

p9

p10

t7

p6t5 p1

A PETRI-NET APPROACH TO REFINING... Informatica 33 (2009) 221–232 225

4 Specifying object interaction
scenarios as labelled nets

In this section, we show how an object interaction
scenario can be formally specified as a labelled net with
an AMG-structure (Step 1 of our proposed method).

A labelled net is a Petri net, where labels are
assigned to places and transitions. Usually, places are
labelled by conditions to denote specific system substates
where the conditions hold, and transitions by events to
denote specific occurrences of the events.

Definition 4.1. A labelled Petri net (or labelled net)
is a 7-tuple N = P, T, F, C, E, Lp, Lt , where P, T, F
is an ordinary PT-net, C is a set of condition labels, E is a
set of event labels, Lp : P C is a function for assigning
a condition label to every place, and Lt : T E is a
function for assigning an event label to every transition.

Definition 4.2. Let N = P, T, F, C, E, Lp, Lt be a
labelled net. A place p is said to be uniquely labelled in
N if and only if p' P : (Lp(p') = Lp(p)) (p' = p). A
transition t is said to be uniquely labelled in N if and only
if t' T : (Lt(t') = Lt(t)) (t' = t). N is said to be
uniquely labelled if and only if all places and transitions
are uniquely labelled.

Figure 6 shows a typical labelled net. Places p3, p4,
p5, p6, p9 and p10 are uniquely labelled, whereas p1, p2, p7

and p8 are not, as for example, condition label c1 appears
in p1 and p7, and c2 in p2 and p8. Transitions t3, t4 and t5

are uniquely labelled, whereas t1, t2, t6 and t7 are not, as
for example, event label e1 appears in t1 and t6, and e2 in
t2 and t7. Therefore, the labelled net is not uniquely
labelled.

Figure 6. A labelled net which is not uniquely labelled.

For an object interaction scenario specified as a
labelled net, the location where an event occurs is
represented by a transition and the location of a condition
by a place. The semantic meanings of conditions and
events are denoted by the labels of the places and
transitions respectively. For an event to occur, some
conditions must be fulfilled in advance and some
afterwards. These pre-conditions and post-conditions are
represented by the pre-set and post-set of the transition
representing the event.

Step 1 of the proposed method is to specify the given
object interaction scenarios as labelled nets with an
AMG-structure. Consider an object-oriented system
involving two objects, x and y, of classes X and Y
respectively. There are three typical interaction scenarios
exhibited by x and y, specified as UML sequence
diagrams and collaboration diagrams (BRJ99, RJB99) in
Figure 7. In conventional UML sequence diagrams and
collaboration diagrams, there are no formal notations for
denoting the pre-condition and post-condition of each
event occurrence in an object interaction scenario.
Therefore, for an explicit representation of the causal
relationship between events and conditions, appropriate
condition labels are appended to these diagrams.

Figure 7. Object interaction scenarios in UML sequence
diagrams and collaboration diagram.

Figure 8 shows object interaction Scenarios 1, 2 and
3, specified as labelled nets (N1, M10), (N2, M20) and (N3,
M30) respectively. They all are of AMG-structure.

(N1, M10) is constructed for representing scenario 1
as follows. For each location of a condition, a new place
with a proper condition label is created. For example, p11

denotes a location of condition c11 for object x, so
condition label x.c11 is assigned to p11. For each event
occurrence, a new transition with a proper event label is
constructed. For example, t11 denotes an occurrence of
event e1, so event label e1 is assigned to t11. The event
occurrence has a pre-condition x.c11 and a post-condition
x.c12. Hence, t11 = { p11 } and t11

 = { p12 }. Arcs
between p11 (pre-condition) and t11 and between t11 and
p12 (post-condition) are appended for denoting their
causal relationships. The rest locations of conditions and
events are created accordingly. Following the same rules,
(N2, M20) and (N3, M30) are constructed for representing
scenarios 2 and 3, respectively.

x : X y : Y

e1

e2

e3

c11

c12

c13

c11

c21

c22

c23

c21

e4 c24

x : X

y : Y

2 : e2

1 : e1

3 : e3

4 : e4

Scenario 1 :

x : X y : Y

e5

e6

c11

c14

c15

c11

c21

c22

c25

c21

x : X

y : Y

2 : e61 : e5

3.2 : e7

x : X y : Y

e9

e1

e7

c11

c14

c27

c11

c21

c26

c17

c21

e1

x : X

y : Y

2 : e101 : e9 4 : e11

Scenario 2 :

Scenario 3 :

e8c16 c24

4 : e8

e3e7

c16

3.1 : e3

3 : e7

t7

p2

t2t1

c2

e2e1

e2

p3c3 p4 p5c5c4

t4e4

p8c2

t5e5

p7c1p6c6

t6e1

p1c1

t3e3

p10c8c7 p9

226 Informatica 33 (2009) 221–232 K.-S. Cheung

Figure 8. Labelled nets representing the object
interaction scenarios in Figure 7.

5 Synthesising and analysing the
integrated system

After specifying the object interaction scenarios as
augmented marked graphs (Step 1 of the proposed
method), we synthesise these scenarios into an integrated
system. In principle, a scenario portrays partial system
behaviours of how the objects are interacted in order to
perform a specific functionality. These augmented
marked graphs are essentially partial system behavioural
specifications which are to be synthesised together to
form a single coherent whole.

This section describes Step 2 of our proposed
method - the synthesis of labelled nets into an integrated
net which represents the integrated system, and analysis
of the system. The synthesis is based on the authors'
earlier work on use-case-driven system design [38]. It is
made by fusing those places with refer to the same
system initial state or condition. The integrated net so
obtained is of AMG-structure, so its liveness,
boundedness, reversibility and conservativeness can be
effectively analysed by making use of the special
properties of augmented marked graphs.

Consider the labelled nets (N1, M10), (N2, M20) and
(N3, M30) in Figure 8. Places p11 in (N1, M10), p21 in (N2,
M20) and p31 in (N3, M30) refer to the same condition
x.c11. Also, places p15 in (N1, M10), p24 in (N2, M20) and
p34 in (N3, M30) refer to the same condition y.c21. Hence,
p11, p21 and p31 are fused into one place p41, and p15, p24

and p34 into p42.
Figure 9 then shows the integrated net (N, M0)

obtained after synthesising (N1, M10), (N2, M20) and (N3,
M30). (N, M0) is of an AMG-structure, meaning that it is
structurally an augmented marked graph (N, M0; R),
where R = { p41, p42 }.

Figure 9. The integrated net obtained by synthesising the
labelled nets in Figure 8.

For (N, M0; R), every R-siphon contains a marked
place, and hence, would never become empty. According
to Properties 3.2 and 3.3, (N, M0; R) is live and
reversible. Since every place in its R-transform is
covered by cycles, according to Property 3.4, (N, M0; R)
is also bounded and conservative. Therefore, it can be
concluded that the integrated system is well-behaved.

6 Eliminating duplicate labels from
the integrated net

Consolidating the object interaction scenarios, the
integrated net obtained from Step 2 of the proposed
method serves to represent the system as a coherent
integrated whole. In general, this integrated net is not
necessarily uniquely labelled. For the integrated net (N,
M0) in Figure 9 for example, places p15 and p26 have the
same condition label y.c22, and transitions t13 and t24 have
the same event label e3. This reflects the fact that the
locations or conditions for occurrence of the same event
may be different at different moments within a scenario
or among different scenarios. Yet, every condition is
eventually implemented as a unique system substate and
every event as a unique operation. Therefore, in order for
the integrated net to be effectively used for
implementation purposes, it need to be uniquely labelled
where all the duplicate condition labels and duplicate
event labels are eliminated.

p25

p11

t11e1

t12e2

x.c11

p12
x.c12 p15

y.c22

t14e4

p14
y.c21p16

y.c23

p13
x.c13 t13e3

p17
y.c24

(N1, M10)

p33
x.c17

p37
y.c27t33e7

p34
x.c16

p31

t31
e9

t32e10

x.c11

p32x.c14 p36
y.c26

t34e11

p35y.c21

(N3, M30)

p21

t21
e5

t22e6

p23
x.c15x.c11

p22x.c14 p26
y.c22

t25e8

y.c21p27
y.c25

t24e3

p24
x.c16 p28y.c24

(N2, M20)

t23e7

p22

p23

p24

p41
x.c11

p42

y.c21

t11e1

t12e2

p12
x.c12 p15

y.c22

t14e4

p16
y.c23

p13x.c13 t13e3

p17
y.c24

p33
x.c17

p37
y.c27t33e7

p34
x.c16

t31e9

t32e10

p32
x.c14 p36

y.c26

t34e11

t21e5

t22e6

x.c15

x.c14p26
y.c22

t25e8

p27
y.c25

t24e3

x.c16p28
y.c24

t23e7

A PETRI-NET APPROACH TO REFINING... Informatica 33 (2009) 221–232 227

The elimination cannot be done by just fusing places
with the same condition label, and transitions with the
same event label. This is because the resulting net may
exhibit firing sequences different from the original ones.
In other words, the system behaviours may be distorted.
Step 3 of the proposed method is to eliminate all
duplicate labels while preserving the original firing
sequences (event sequences). This section describes this
step in details.

Definition 6.1. Let S be a uniquely labelled subnet
of a labelled net N. The pattern of S in N, denoted as
Patt(N, S), is a condition-event net with an identical
structure and label allocation as S while ignoring the
identities of places and transitions of S.

Definition 6.2. Let Lx and Ly be patterns of subnets
in a labelled net. Lx Ly and Lx Ly denote the union
and intersection of Lx and Ly, respectively. Lx \ Ly

denotes the displacement of Lx from Ly. Lx and Ly are
said to be disjoint if and only if Lx Ly = .

Definition 6.3. For a labelled net N, a uniquely
labelled subnet S is called a common subnet if and only
if there exists at least one uniquely labelled subnet S'
such that S' S and Patt(N, S') = Patt(N, S). Let S be a
pattern of the common subnets in N. [N, L] = { S |
Patt(N, S) = L } represents the group of common subnets
having the same pattern L.

Definition 6.4. For a subnet S = P', T', F' of a PT-
net, Pre(S) = (P'\T') (T'\P') is called the pre-set of S,
Post(S) = (P'\T') (T'\P') is called the post-set of S,
Head(S) = Pre(S) (P' T') is called the head of S, and
Tail(S) = Post(S) (P' T') is called the tail of S.

Definition 6.5. A subnet S of a PT-net N = P, T, F
is said to be of PP-type if and only if Head(S) P and
Tail(S) P.

Figure 10 shows a uniquely labelled subnet S which
is PP-type. Figure 11 shows the pattern of S.

Figure 10. A uniquely labelled subnet S of a labelled net.

Figure 11. Pattern of S of the labelled net in Figure 10.

We propose to eliminate duplicate labels by fusion
of common subnets, as outlined below.

Identify groups of common subnets for fusion. These
groups of common subnets need to be maximal and
disjoint for two reasons. First, the net obtained after the
fusion will become uniquely labelled. Second, the
number of groups of common subnets for fusion can be
reduced to minimum as they are maximal.

Transformation of common subnets. For preservation
of firing sequences, common subnets are transformed
before fusion. Based on coloured Petri nets [39], a unique
colour is assigned to each common subnet as colour
labels of its ingoing and outgoing arcs. A token flowing
into the common subnet is coloured according to the
colour label of the ingoing arc. Its colour is reset as it
flows out via the same colour-labelled outgoing arc.
Besides, the subnets are converted to PP-type.

Fusion of transformed common subnets. The
transformed common subnets of each group are fused
into a single subnet. A uniquely labelled net is ultimately
obtained.

The following algorithm formally describes the
elimination process. A detailed elaboration of the
elimination process can be found in the authors' earlier
work [40].

Elimination of Duplicate Labels from a Labelled Net

1. Identify maximal disjoint groups of common subnets :

 1.1 Find all possible common subnets from N. Let = { L1, L2,
..., Ln } be their patterns.

 1.2 Retain only the maximal patterns : Remove any Li from if
there exists Lj such that Li is a sub-pattern of Lj and
Si [N, Li], Sj [N, Lj] : Si is a subnet of Sj.

 1.3 Make the overlapping patterns disjoint : For every Li, Lj
such that Li Lj and Li and Lj are not disjoint, set = (- {
Li, Lj }) { Li Lj } { Li\Lj } { Lj\Li }.

 1.4 Categorise the common subnets of N into groups { [N, Li],
Li }.

2. For each group of common subnets [N, Li] :

 2.1 Convert each subnet S [N, Li] if S is not of PP-type :

2.1.1 For each transition ti Head(S) : (a) Create dummy
transition ti' with unique label i, dummy place pi' with
label i, and arcs (ti', pi') and (pi', ti). (b) For each p
ti : Remove arc (p, ti), and then create arc (p, ti'). (c)
Re-define S by including pi' and (pi', ti).

2.1.2 For each transition tj Tail(S) : (a) Create dummy
transition tj' with unique label j, dummy place pj' with
label j, and arcs (tj, pj') and (pj', tj'). (b) For each p
tj : Remove arc (tj, p), and then create arc (tj', p). (c)
Re-define S by including pj' and (tj, pj').

 2.2 Assign a unique colour label for each subnet S [N, Li] :

2.2.1 For each arc (ti, pi) where ti Pre(S) and pi
Head(S) : Assign colour label to (ti, pi).

2.2.2 For each arc (pj, tj) where pj Tail(S) and tj
Post(S) : Assign colour label to (pj, tj).

 2.3 Fuse the common subnets in [N, Li] into one single subnet.

We apply the algorithm for eliminating the duplicate
labels for the integrated net (N, M0) in Figure 9. Figure
12 shows the uniquely labelled net (N', M0') so obtained.

e3

c5 c6 c7

c3 c4

S

p3 p4

p8

t3

p5 p6

t4

p7

t5

c3 c4

e3

c5 c6 c7

e4 e5

c8 c9

p1c1 c2

t1e1 t2

p2

p9

e2

228 Informatica 33 (2009) 221–232 K.-S. Cheung

Figure 12. The uniquely labelled net obtained after
eliminating duplicate labels from the integrated net in

Figure 9.

7 Obtaining object-Based
behavioural specifications

In this section, we show Step 4 of our proposed method -
to obtain the individual object-based behavioural
specifications. These individual object-based behavioural
specifications are obtained by projecting the integrated
net onto individual objects.

The projection is made by ignoring those places,
transitions and arcs which are irrelevant to the object
concerned. The projected net so obtained serves as the
object behavioural specifications.

Consider the integrated net (N', M0') in Figure 12.
The projection onto object x is obtained as follows. We
keep those places with object label x (including dummy
places) and those transitions (including dummy
transitions) having at least one input place or output
place labelled by x, as well as their associated arcs.
Similarly, for the projection onto object y, we keep those
places with object label y (including dummy places) and
those transitions (including dummy transitions) having at
least one input place or output place labelled by y, as
well as their associated arcs.

Figure 13 shows the projections (Nx, Mx0) and (Ny,
My0) obtained by projecting the net (N', M0') in Figure 12
onto objects x and y, respectively. (Nx, Mx0) and (Ny,
My0) are uniquely labelled, simply because (N', M0') is
uniquely labelled. They serve as the behavioural
specifications for objects x and y, where conditions and
events are uniquely represented.

8 Real-life example
This section presents a real-life example to further
illustrate the refinement process.

Figure 13. The nets obtained by projecting the integrated
net in Figure 12 onto objects x and y.

The real-life example is an Office Access Control
System. The system is briefly described as follows. It is a
system used in a company for controlling staff accesses
to its 30+ offices and laboratories. Among these offices
and laboratories, some can be accessed by all staff while
some others by authorised staff only and/or during
specified time periods only. For controlling the staff
access, every entrance is implemented with a card-reader,
an emergency switch and an electronic lock, all being
connected to a centralised server. The server maintains
the access privileges and validates every access to the
offices/laboratories. There are three typical cases for
each request for access.

Authorised access (U1). A staff member wants to
access an office/laboratory. He/She presents his/her staff
card via a card-reader. Access is granted. The door is
unlocked for five seconds and then re-locked.

Unauthorised access (U2). A staff member wants to
access an office/laboratory. He/She presents his/her staff
card via a card-reader. Access is not granted. The door is
locked.

Emergency access (U3). A staff member wants to
access an office/laboratory for emergency. He/She
presses the emergency key. The door is unlocked
immediately, until it is reset by a security officer.

From the object-oriented perspectives, the server (s :
Server) and doors (d : Door) are objects of the Office
Access Control System. They are interacting with each
other in order to perform the above system
functionalities. There are three object interaction
scenarios, corresponding to U1, U2 and U3.

Figure 14 shows these object interaction scenarios
specified as UML sequence diagrams and collaboration
diagrams, where appropriate condition labels are
appended for denoting the pre-conditions and post-
conditions for each event occurrence.

p36

11

11

12

12

21

21

22

22

31

31

32

32

41

41

42

32

t43

p47 p48

p27 p23

t11

t12

t14

p16 p33

t31

t32

t34

t21

t22

t25

t41 t44t42

p41
x.c11

p42

y.c21

e1

e2

p12
x.c12

e4

y.c23

p13
x.c13

x.c17

p37
y.c27

e9

e10

y.c26

e11

e5

e6

x.c15

p43x.c14p44
y.c22

e8

y.c25

t45e3

x.c16y.c24

t46e7

1 42 3

p451
p46

2

21

21

22

22

41

41

42

42

t31

p36

t34

11

11

12

12

31

31

32

32

p41

t11

t12

p12

t14

p13

p33

t31

t32

t34

t21

t22

p23

p43

t25

p48

t46

t44t43

p46

p42

t11

t12

t14

p16

p37

t32

t21

t22

p44

t25

p27

t45

p47

t41 t42

p45

x.c11

e1

e2

x.c12

e4

x.c13

x.c17

e9

e10

e11

e5

e6

x.c15

x.c14

e8

x.c16

e7

43

2

(Nx Mx0)

y.c21

e1

e2

e4

y.c23

y.c27

e9

e10

y.c26

e11

e5

e6

y.c22

e8

y.c25

e3

y.c24

1 2

1

(Ny My0)

A PETRI-NET APPROACH TO REFINING... Informatica 33 (2009) 221–232 229

Legends for condition labels :

c11 Server is ready

c12 Server is processing access request

c13 Server is waiting for re-lock

c14 Server is writing log (successful access)

c15 Server is writing log (unsuccessful access)

c16 Server is waiting for emergency reset

c17 Server is writing log (emergency access)

c21 Door is locked

c22 Door is waiting for response

c23 Door is unlocked (successful access)

c24 Door is unlocked (emergency access)

Legends for event labels :

e1 Request for access is received

e2 Access is granted

e3 Time expires after access granted

e4 Successful access is committed

e5 Access is not granted

e6 Unsuccessful access is committed

e7 Request for emergency access is received

e8 Door is reset to normal

e9 Emergency access is committed

Figure 14. Object interaction scenarios specified as UML
sequence diagrams and collaboration diagrams (the

Office Access Control System).

Step 1 of the proposed method is to specify object
interaction scenarios as labelled nets. Figure 15 shows
the labelled nets (N1, M10), (N2, M20) and (N3, M30)
representing the object interaction scenarios for U1, U2

and U3, respectively.
Step 2 of the proposed method is to synthesise the

labelled net into an integrated system, and analyse the
system on its liveness, boundedness, reversibility and
conservativeness. (N1, M10), (N2, M20) and (N3, M30) are
synthesised into an integrated net (N, M0) by fusing those
places which refer to the same system initial states or
conditions : Places p11, p21 and p31 are fused into one
place p41, and p15, p24 and p34 into p42. Figure 16 shows
the integrated net (N, M0) so obtained.

Figure 15. Labelled nets representing the object
interaction scenarios in Figure 14.

Figure 16. The integrated net obtained by synthesising
the labelled nets in Figure 15.

The integrated net (N, M0) is of an AMG-structure.
Let R = { p41, p42 }. For (N, M0; R), every R-siphon
contains a marked place and hence would never become
empty. According to Properties 3.2 and 3.3, (N, M0; R) is
live and reversible. Since every place in its R-transform
is covered by cycles, according to Property 3.4, (N, M0;
R) is also bounded and conservative. Therefore, it may
be concluded that the Office Access Control System is
well-behaved.

3 : e31 : e1

3 : e6

4 : e4

3 : e9

s : Server d : Door

e1

e2

c11

c12

c13

c11

c21

c22

c23

c21

e3
2 : e2

Scenario U1 :

e1

e5

c11

c12

c15

c11

c21

c22

c21

s : Server

2 : e5
1 : e1

e7
c11

c16

c11

c21

c24

c17

Scenario U2 :

Scenario U3 :

e6

e4

c14

s : Server d : Door

s : Server d : Door

e9

d : Door

s : Server

d : Door

e8

c21

s : Server

d : Door

1 : e7 2 : e8
p34

p31

t31

p32 p35

t33

t32

p33

p15

p11

t11

t12

p13

p12 p16

p17

t14

t13

p14

p24

p21

t21

p22 p25

t23

t22

p23

e1

e2

s.c13
s.c11

s.c12 d.c22

d.c21

d.c23

e4

(N1, M10)

e3

s.c14

e1

s.c11

s.c12 d.c22 d.c21

e6

(N2, M20)

e5

s.c15

e7

s.c11

s.c16 d.c24 d.c21

e9

(N3, M30)

e8

s.c17

s.c11 p41

t11e1

t12e2

p13
s.c13

p12s.c12 p16
d.c22

p42

d.c21

d.c23

t14e4

e3

p14s.c14

t21e1

p22s.c12 p25
d.c22

t23e6

t22e5

p23
s.c15

t31e7

p32s.c16 p35
d.c24

t33e9

t32e8

s.c17

t13

p33

230 Informatica 33 (2009) 221–232 K.-S. Cheung

As shown in Figure 16, (N, M0) is not uniquely
labelled as it contains duplicate labels. For example,
place p12 and p22 have the same condition label s.c12 and
transitions t11 and t21 have the same event label e1. Since
every condition is eventually implemented as a unique
substate and every event as a unique operation, in order
for the integrated net to be effectively used for
implementation purposes, these duplicate labels must be
eliminated.

Step 3 of the proposed method is to eliminate
duplicate condition labels and duplicate event labels from
the integrated net (N, M0) through the fusion of common
subnets. We perform this elimination process by
applying the algorithm described in Section 6. Figure 17
shows the uniquely labelled net (N', M0') so obtained.

Figure 17. The uniquely labelled net obtained after
eliminating duplicate labels from the integrated net in

Figure 16.

Step 4 of the proposed method is to obtain the
individual object-based behavioural specification as
projections of the integrated net onto the objects. The
projection is made by ignoring those places, transitions
and arcs which are irrelevant to the object concerned.

Consider the integrated net (N', M0') in Figure 17.
For the projection onto object s (the server object), we
keep those places with object label s (including dummy
places) and those transitions (including dummy
transitions) having at least one input place or output
place labelled by s, as well as their associated arcs.
Similarly, for the projection onto object d (the door
object), we keep those places with object label d
(including dummy places) and those transitions
(including dummy transitions) having at least one input
place or output place labelled by d, as well as their
associated arcs. Figure 18 shows the projections (Ns,
Ms0) and (Nd, Md0) obtained by projecting the integrated
net (N', M0') in Figure 17 onto objects s and d,
respectively.

Figure 18. The nets obtained by projecting the integrated
net in Figure 17 onto objects s and d.

As the integrated net (N', M0') is uniquely labelled,
its projections (Ns, Ms0) and (Nd, Md0) are also uniquely
labelled, where every condition or event is uniquely
represented. (Ns, Ms0) and (Nd, Md0) then serve as the
behavioural specifications for the server (s : Server) and
door (d : Door) objects, respectively.

9 Conclusion
One of the most difficult tasks in object-oriented system
design is to obtain individual object-based behavioural
specifications from a given set of object interaction
scenarios. Not only conventional specification constructs
for object interaction scenarios are too primitive to
represent the partial ordering of events and the causal
relationship between the events and conditions, there also
involves different abstractions between intra-object
lifecycle and inter-object interaction. Moreover, we have
to ensure that the derived object-based behavioural
specifications reflect exactly the given object interaction
scenarios and that the system is well-behaved.

We proposed a Petri-net-based method for refining a
given set of object interaction scenarios into individual
object-based behavioural specifications. By specifying
the object interaction scenarios as labelled nets with an
AMG-structure and synthesising them into an integrated
net, we analyse the system, based on the special
properties of augmented marked graphs. For unique
representation of events and conditions, an algorithm is
applied to the integrated net to eliminate duplicate
condition labels and event labels while preserving the
event sequences. Object-based behavioural specifications
are then obtained as projections of the integrated nets
onto the objects. The whole refinement process has been
described, elaborated and illustrated using the Office
Access Control System example.

11

11

1211

12

12

p41

t43

p13

p44 p45

p42

p17

t14

t13

p14

t23

t22

p23

t31

p32 p35

t33

t32

p33

t41 t42

p43

e1

t12e2

s.c13
s.c11

s.c12 d.c22

d.c21

d.c23

e4

e3

s.c14

e6

e5

s.c15

e7

s.c16 d.c24

e9

e8

s.c17

1 1

1

11

11 12

12

11 12

1211

p41

t43

t12

p13

p44

t14

t13

p14

t23

t22

p23

t31

t33

t32

p33

t41 t42

p43

t43

t12

p45

p42

t13

t31

p35

t32

t41 t42

p43

p32

e1

e2

s.c13

s.c11

s.c12

e4

e3

s.c14

e6

e5

s.c15

e7

e9

e8

s.c17

1 1

1

e1

e2

d.c22 d.c21

d.c23

e3

t22e5

d.c24

e8

1 1

1

(Ns Ms0) (Nd, Md0)

s.c16 e7

p17

A PETRI-NET APPROACH TO REFINING... Informatica 33 (2009) 221–232 231

The proposed method offers a number of distinctive
features. First, object interaction scenarios are formally
specified as labelled nets which are unambiguous and
semantically rich for an explicit representation of events,
conditions and their causal relationships. Second, object-
based behavioural specifications are rigorously derived
from the given object interaction scenarios through
systematic synthesis and projection. The behavioural
specifications so obtained would reflect exactly the given
object interaction scenarios. Third, liveness, boundedness,
reversibility and conservativeness of the system can be
effectively analysed by making use of the special
properties of augmented marked graphs. Fourth, every
event or condition is uniquely represented in the
behavioural specifications so that the specifications can
be readily used for implementation purposes.

With a strong theoretical foundation of Petri nets, the
proposed method can be effectively used for refining
object-based behavioural specifications from a set object
interaction scenarios. It resolves a number of problems
perplexing the designers of object-oriented systems, such
as the lack of formality in specifying object interaction
scenarios and the difficulty of ensuring the correctness of
object behavioural specifications. The latter is especially
important for systems involving shared resources, where
erroneous situations such as deadlock and capacity
overflow are easily induced. The proposed method can
be implemented as tool to support object-oriented system
design. By capturing the functional requirements of a
system as a set of object interaction scenarios, it helps
perform rigorous system synthesis and analysis. The
correctness of this refinement can be assured. Moreover,
the object-based behavioural specifications so obtained
can be readily used for code generation. This inevitably
contributes towards a smooth transitions from functional
requirements through design to implementation for
object-oriented system development.

References
[1] J. Iivari (1995), "Object Orientation as Structural,

Functional and Behavioural Modelling : A
Comparison of Six Methods for Object-Oriented
Analysis", Information and Software Technology,
Vol. 37, No. 3, pp. 155-163.

[2] K.S. Cheung and K.O. Chow (1996), "Comparison
of Object-Oriented Models by Views and
Abstraction Constructs", Proceedings of the
International Conference on Intelligent
Technologies in Human-Related Sciences, pp. 335-
342, Leon, Spain.

[3] K.O. Chow and S. Yeung (1996), "Behavioural
Modelling in Object-Oriented Methodologies",
Information and Software Technology, Vol. 38, No.
10, pp. 657-666.

[4] K.S. Cheung, K.O. Chow and T.Y. Cheung (1997),
"A Feature-Based Approach for Consistent Object-
Oriented Requirements Specifications". W.G.
Wojtkowshi et al. (eds.), Systems Development
Methods for the Next Century, pp. 31-38, Plenum
Publishing.

[5] K.S. Cheung, K.O. Chow and T.Y. Cheung (1999),
"Extending Formal Specification to Object Oriented
Models Through Level-View Structured Schemas".
J. Chen, J. Lu and B. Meyer (eds.), Technology of
Object Oriented Languages and Systems, Vol. 31,
pp. 118-125, IEEE Computer Society Press.

[6] B. Breu et al. (1998), "Systems, Views and Models
of UML". M. Schader and A. Korthaus (eds.), The
Unified Modeling Language : Technical Aspects
and Applications, Physica-Verlag.

[7] G. Booch, J. Rumbaugh and I. Jacobson (1999),
The Unified Modeling Language : User Guide,
Addison-Wesley.

[8] J. Rumbaugh, I. Jacobson and G. Booch (1999),
The Unified Modeling Language : Reference
Manual, Addison-Wesley.

[9] I. Graham et al. (2001), Object-Oriented Methods :
Principles and Practice, Addison-Wesley.

[10] I. Jacobson et al. (1992), Object-Oriented Software
Engineering : A Use-Case-Driven Approach,
Addison-Wesley.

[11] I. Jacobson, G. Booch and J. Rumbaugh (1999),
The Unified Software Development Process,
Addition Wesley.

[12] G. Schneider and J.P. Winters (1998), Applying Use
Cases, Addison-Wesley.

[13] P. Kruchten (1999), The Rational Unified Process :
An Introduction, Addison-Wesley.

[14] D. Rosenberg (1999), Use Case Driven Object
Modeling with UML : A Practical Approach,
Addison-Wesley.

[15] D. Rosenberg and K. Scott (2001), Applying Use
Case Driven Object Modeling with UML, Addison-
Wesley.

[16] J. Arlow and I. Neustadt (2002), UML and the
Unified Process : Practical Object-Oriented
Analysis and Design, Addison-Wesley.

[17] S. Kirani and W.T. Tsai (1994), "Method Sequence
Specification and Verification of Classes", Journal
of Object-Oriented Programming, Vol. 7, No. 6, pp.
28-38.

[18] K.S. Cheung, K.O. Chow and T.Y. Cheung (1998),
"Consistency Analysis on Lifecycle Model and
Interaction Model". C. Rolland and G. Grosz (eds.),
Object-Oriented Information Systems, pp. 427-441,
Springer.

[19] K.S. Cheung, K.O. Chow and T.Y. Cheung (1998),
"Deriving Scenarios of Object Interaction through
Petri Nets". J. Chen et al. (eds.), Technology of
Object Oriented Languages and Systems, Vol. 27,
pp. 118-125, IEEE Computer Society Press.

[20] M. Glinz (2000), "A Lightweight Approach to
Consistency of Scenarios and Class Models",
Proceedings of the IEEE International Conference
on Requirements Engineering, pp. 49-58, IEEE
Computer Society Press.

[21] F. Bordeleau and R.J.A. Buhr (1997), "UCM-
ROOM Modelling : From Use Case Maps to
Communicating State Machines", Proceedings of
the IEEE International Symposium and Workshop

232 Informatica 33 (2009) 221–232 K.-S. Cheung

on Engineering of Computer-Based Systems, pp.
169-178, IEEE Computer Society Press.

[22] F. Bordeleau, J.P. Corriveau and B. Selic (2000),
"A Scenario-Based Approach to Hierarchical State
Machine Design", Proceedings of the International
Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 78-85, IEEE Computer
Society Press.

[23] B. Dano, H. Briand and F. Barbier (1996),
"Progressing Towards Object-Oriented
Requirements Specifications Using the Use Case
Concept", Proceedings of the IEEE Symposium and
Workshop on Engineering of Computer-Based
Systems, pp. 450-456, IEEE Computer Society
Press.

[24] B. Dano, H. Briand and F. Barbier (1997), "An
Approach Based on the Concept of Use Case to
Produce Dynamic Object-Oriented Specifications",
Proceedings of the IEEE International Symposium
on Requirements Engineering, pp. 54-64, IEEE
Computer Society Press.

[25] P. Graubmann (1988), "The Construction of EN
Systems from a Given Trace Behaviour", Advances
in Petri Nets, Lecture Notes in Computer Science,
Vol. 340, pp. 133-153, Springer-Verlag.

[26] E. Smith (1991), "On Net Systems Generated by
Process Foldings", Advances in Petri Nets, Lecture
Notes in Computer Science, Vol. 524, pp. 253-295,
Springer-Verlag.

[27] K. Hiraishi (1992), "Construction of a Class of Safe
Petri Nets by Presenting Firing Sequences",
Application and Theory of Petri Nets, Lecture Notes
in Computer Science, Vol. 616, pp. 244-262,
Springer-Verlag.

[28] W.J. Lee, S.D. Cha and Y.R. Kwon (1998),
"Integration and Analysis of Use Cases Using
Modular Petri Nets in Requirement Engineering",
IEEE Transactions on Software Engineering, Vol.
24, No. 12, pp. 1115-1130.

[29] J.L. Peterson (1981), Petri Net Theory and the
Modelling of System, Prentice Hall.

[30] W. Reisig (1985), Petri Nets : An Introduction,
Springer-Verlag.

[31] T. Murata (1989), "Petri Nets : Properties, Analysis
and Applications", Proceedings of the IEEE, Vol.
77, No. 4, pp. 541-580.

[32] J. Desel and W. Reisig (1998), "Place Transition
Petri Nets", Lectures on Petri Nets 1 : Basic Models,
Lecture Notes in Computer Science, Vol. 1491, pp.
122-173, Springer-Verlag.

[33] J. Desel and J. Esparza (1995), Free-choice Petri
Nets, Cambridge University Press.

[34] F. Chu and X. Xie (1997), "Deadlock Analysis of
Petri Nets Using Siphons and Mathematical
Programming", IEEE Transactions on Robotics and
Automation, Vol. 13, No. 6, pp. 793-804.

[35] K.S. Cheung (2004), "New Characterisations for
Live and Reversible Augmented Marked Graphs",
Information Processing Letters, Vol. 92, No. 5, pp.
239-243.

[36] K.S. Cheung and K.O. Chow (2005), "Cycle
Inclusion Property of Augmented Marked Graphs",
Information Processing Letters, Vol. 94, No. 6, pp.
271-276.

[37] K.S. Cheung (2007), "Liveness and Boundedness of
Augmented Marked Graphs", IMA Journal of
Mathematical Control and Information, Vol. 24, No.
2, pp. 235-244.

[38] K.S. Cheung, T.Y. Cheung and K.O. Chow (2006),
"A Petri-Net-Based Synthesis Methodology for
Use-Case-Driven System Design", Journal of
Systems and Software, Vol. 79, No. 6, pp. 772-790.

[39] K. Jensen (1986), "Coloured Petri Nets", Petri Nets :
Central Models and Their Properties, Lecture
Notes in Computer Science, Vol. 254, pp. 248-299,
Springer-Verlag.

[40] K.S. Cheung and K.O. Chow (2006), "Elimination
of Duplicate Labels in Petri-Net-Based System
Specification", Proceedings of the International
Conference on Computer and Information
Technology, pp. 932-936, IEEE Computer Society
Press.

