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In object-oriented system design, functional requirements are given and expressed as object interaction 
scenarios whereas implementation is based on classes of objects. One need to derive, from the given 
object interaction scenarios, object-based behavioural specifications which reflect exactly these object 
interaction scenarios for implementation purposes. In this paper, a Petri-net-based method is proposed 
for the refinement. It begins with specifying each object interaction scenario as a labelled Petri net with 
an AMG-structure. These labelled Petri nets are synthesised into a single integrated net which 
represents the integrated system. By making use of the special properties of the AMG-structure, the 
system can be effectively analysed on its liveness, boundedness, reversibility and conservativeness. 
Duplicate labels are then eliminated by fusing common subnets, so as to attain a uniquely labelled net 
on which individual object-based behavioural specifications are obtained as projections.

Povzetek: Uporabljen je pristop Petrijevih mrež za objektne specifikacije.

1 Introduction
In the past two decades, object orientation has been an 
influential discipline in software engineering1. According 
to the principles of object orientation, an object is an 
entity that encapsulates states and behaviours. A system 
is considered as a collection of objects which are 
interacting with others in order to accomplish the system 
functionalities. It can be abstracted in two aspects 
(structure and behaviour) and two levels (intra-object and 
inter-object) as shown in Figure 1 [1, 2, 3, 4, 5, 6, 7, 8, 
9]. Structurally, objects with the same attributes are 
grouped into classes while classes having common 
attributes are generalised to form an inheritance 
hierarchy. Objects exhibit different behaviours on 
interacting with others, thus demonstrating different 
object interaction scenarios. This paper investigates the 
behavioural aspect of objects.

In object-oriented system design, the functional 
requirements of a system are given by the end-users as 
use cases - the typical cases of how a system can be used 
[10, 11]. These use cases are elaborated and expressed in 
terms of object interaction scenarios and specified as 
UML sequence diagrams and collaboration diagrams [11, 
12, 13, 14, 15, 16]. We need to create, from the object 
interaction scenarios, object-based specifications 

                                                          
1This paper is an extended version of the authors' paper 
presented at the REFINE 2006 workshop.

delineating the behaviours of individual objects for 
detailed system design and implementation.
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Figure 1: An object-oriented system by aspects and 
abstraction levels.

In this refinement process, at least the following 
problems have to be tackled.

Specification constructs for object interaction 
scenarios being too primitive. Conventional specification 
constructs for object interaction scenarios lacks the 
formality for representing the pre-conditions and post-
conditions for each event occurrence. These are however 
essentially required in deriving the object behavioural 
specifications, where the conditions, events and their 
causal relationships need to be explicitly specified.



222 Informatica 33 (2009) 221–232 K.-S. Cheung

Different abstractions between intra-object lifecycle 
and inter-object interaction. It is difficult to derive 
individual object behaviours (within a single object 
lifecycle) from the object interaction scenarios (among 
multiple objects) because of the difference in abstraction 
(intra-object versus inter-object). In the literature of 
object-oriented system design, there is a lack of 
systematic approaches to solving this problem 
satisfactorily.

Difficulty in verifying the correctness of the object 
behavioural specifications. The object behavioural 
specifications so derived should be correct in the sense 
that they reflect exactly the given object interaction 
scenarios [4, 17, 18, 19, 20]. Without a formal method, 
one needs to go through all possible object interaction 
scenarios to ensure correctness of the specifications. The 
process is time-consuming.

Lack of rigorous methods for analysing the system 
properties. One major objective in system design is to 
obtain a live, bounded and reversible system - liveness 
implies freeness of deadlocks, and boundedness implies 
absence of capacity overflows, while reversibility refers 
to recoverability. Without a rigorous analysis method, it 
is difficult for one to analyse whether the outcome 
system design is live, bounded and reversible.

In the literature, there are only a few approaches or 
methods for deriving an object-based behavioural 
specifications from a given set of use cases or object 
interaction scenarios. Bordeleau proposed an approach 
which takes a traceable progression from use cases to the 
object-based state machines [21, 22]. Dano proposed an 
approach where the use cases are synthesised into a 
system design according to some mapping rules [23, 24]. 
However, these approaches solve only trivial issues. The 
system design cannot be rigorously analysed on its 
liveness, boundedness and reversibility. Moreover, they 
are themselves incomplete and insufficient in the sense 
that the derived object-based state machines may not 
reflect exactly the given use cases or object interaction 
scenarios.

On the other hand, there are approaches or methods 
which derive a system from a given set of event traces or 
sequences. Graubmann proposed a method for 
constructing an elementary net system from a set of event 
traces [25]. The method is based on the dependence 
relation between events. A set of possible states and state 
transitions, which are compatible to the dependence 
relation, are deduced. Smith proposed a method for 
constructing a condition-event system from a set of 
occurrence nets based on the concept of quotient nets 
[26]. Hiraishi proposed a method for constructing a Petri 
net from a set of firing sequences [27]. In Hiraishi's 
method, a language is first identified from the firing 
sequences. Based on the dependency relation extracted 
from the language, a safe Petri net is created. Lee also 
proposed an approach for integration of use cases using 
constraint-based modular Petri nets [28]. However, 
without concepts of object-orientation, these approaches 
and methods cannot be applied to object-oriented system 
design.

In this paper, based on Petri nets, we propose a 
method for refining a given set of object interaction 
scenarios into object-based behavioural specifications, 
where the above-mentioned problems can be resolved 
effectively. It involves the following steps :

Step 1. Each object interaction scenario is specified 
as a labelled Petri net (labelled net) with an AMG-
structure (i.e. structurally an augmented marked graph).

Step 2. The labelled nets are synthesised into an 
integrated net which serves to represent the system. 
Based on the properties of AMG-structure, the system is 
analysed.

Step 3. Duplicate labels are eliminated from the 
integrated net, while preserving the firing sequences 
(event sequences).

Step 4. Individual object-based specifications are 
obtained as projections of the integrated net onto the 
objects.

Figure 2 shows an overview of the proposed method.

Figure 2: Overview of the proposed method.

Our proposed method offers a number of distinctive 
features.

Formal specification of object interaction scenarios.
The object interaction scenarios are specified as 
unambiguous and semantically rich labelled nets. The 
partial orderings of events as well as the causal 
relationships between events and conditions are 
explicitly represented.

Effective analysis on the essential system properties.
The integrated system possesses an AMG-structure. By 
making use of the special properties of AMG-structure, 
the system can be effectively analysed on its liveness, 
boundedness, reversibility and conservativeness.
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Correctness of the derived specifications. Individual 
object behavioural specifications are rigorously derived 
from the object interaction scenarios through synthesis 
and projection. The specifications so obtained reflect 
exactly the given object interaction scenarios.

Readiness for implementation purposes. In the 
specifications, every condition or event is uniquely 
represented so that they can be readily used for 
implementation purposes.

The rest of this paper is organised as follows. 
Section 2 provides the preliminaries to be used in this 
paper. Section 3 introduces the AMG-structure, where 
augmented marked graphs and their properties are 
described. In Section 4, we show the formal specification 
of object interaction scenarios as labelled nets (Step 1 of 
the proposed method). In Section 5, we focus on 
synthesising the labelled nets into an integrated system, 
and analysing the system properties (Step 2 of the 
proposed method). Section 6 then presents an algorithm 
for eliminating duplicate labels from the integrated net 
(Step 3 of the proposed method). In Section 7, we show 
how individual object-based behavioural specifications 
are obtained as projections of the integrated net (Step 4 
of the proposed method). Section 8 gives a real-life 
example for illustration. Section 9 concludes this paper.

It should be noted that this paper primarily focus on 
refinement of object-based behavioural specifications -
deriving individual object-based specifications from the 
object interaction scenarios. The structural aspect of an 
object-oriented system will not be investigated.

2 Preliminaries
This section provides the preliminaries for readers who 
are not familiar with Petri nets [29, 30, 31, 32].

A place-transition net (PT-net) is a directed graph 
consisting of two sorts of nodes called places and 
transitions, such that no arcs connect two nodes of the 
same sort. Graphically, a place is denoted by a circle, a 
transition by a box, and an arc by a directed line. A Petri 
net is a PT-net with some tokens assigned to its places, 
and the token distribution over its places is denoted by a 
marking function.

Definition 2.1. A place-transition net (PT-net) is a 4-
tuple N =  P, T, F, W , where P is a set of places, T is a 
set of transitions, F  (P  T)  (T  P) is a flow relation 
and W : F  { 1, 2, ... } is a weight function. N is said to 
be ordinary if and only if the range of W is { 1 }. An 
ordinary PT-net is usually written as  P, T, F .

Definition 2.2. Let N =  P, T, F, W  be a PT-net. 
For x  (P  T), x = { y | (y, x)  F } and x = { y | (x, 
y)  F } are called the pre-set and post-set of x, 
respectively. For X = { x1, x2, …, xn }  (P  T), X = 
x1 

x2  …  xn and X = x1
  x2

  …  xn
 are 

called the pre-set and post-set of X, respectively.
Definition 2.3. For a PT-net N =  P, T, F, W , a 

path is a sequence of nodes  x1, x2, ..., xn , where (xi, 
xi+1)  F for i = 1, 2, ..., n-1. A path is said to be 
elementary if and only if it does not contain the same 
node more than once.

Definition 2.4. For a PT-net N =  P, T, F, W , a 
cycle is a sequence of places  p1, p2, ..., pn  such that 
t1, t2, ..., tn  T :  p1, t1, p2, t2, ..., pn, tn  forms an 
elementary path and (tn, p1)  F.

Definition 2.5. For a PT-net N =  P, T, F, W , a 
marking is a function M : P  { 0, 1, 2, ... } where M(p) 
is the number of tokens in p. (N, M0) represents N with 
an initial marking M0.

Definition 2.6. For a PT-net N =  P, T, F, W , a 
transition t is said to be enabled at a marking M if and 
only if  p  t : M(p)  W(p,t). On firing t, M is 
changed to M' such that  p  P : M'(p) = M(p) - W(p,t) 
+ W(t,p). In notation, M [N,t M' or M [t M'.

Definition 2.7. For a PT-net (N, M0), a sequence of 
transitions  =  t1, t2, ..., tn  is called a firing sequence if 
and only if M0 [t1 ... [tn Mn. In notation, M0 [N, Mn or 
M0 [ Mn.

Definition 2.8. For a PT-net (N, M0), a marking M is 
said to be reachable if and only if there exists a firing 
sequence  such that M0 [ M. In notation, M0 [N, M 
or M0 [ M. [N, M0 or [M0 represents the set of all 
reachable markings of (N, M0).

Definition 2.9. Let N =  P, T, F, W  be a PT-net, 
where P = { p1, p2, ..., pm } and T = { t1, t2, ..., tn }. The 
incidence matrix of N is an m  n matrix V whose typical 
entry vij = W(pi,tj) - W(tj,pi) represents the change in 
number of tokens in pi after firing tj once, for i = 1, 2, ..., 
m and j = 1, 2, ..., n.

Liveness, boundedness, safeness, reversibility and 
conservativeness are well known properties of Petri nets.
Liveness implies deadlock freeness. Boundedness refers 
to the property that the system is free from any potential 
capacity overflow. Safeness and conservativeness are 
two special cases of boundedness. Reversibility refers to 
the capability of a system of being recovered or 
reinitialised from any reachable state. In general, 
liveness, boundedness and reversibility collectively 
characterise a robust or well-behaved system.

Definition 2.10. For a PT-net (N, M0), a transition t 
is said to be live if and only if  M  [M0,  M' : M [
M' [t. (N, M0) is said to be live if and only if every 
transition is live.

Definition 2.11. For a PT-net (N, M0), a place p is 
said to be k-bounded (or bounded) if and only if  M 
[M0 : M(p)  k, where k > 0. (N, M0) is said to be k-
bounded (or bounded) if and only if every place is k-
bounded.

Definition 2.12. A PT-net (N, M0) is said to be safe 
if and only if every place is 1-bounded.

Definition 2.13. A PT-net (N, M0) is said to be 
reversible if and only if  M  [M0 : M [ M0.

Definition 2.14. A PT-net (N, M0) is said to be well-
behaved if and only if it is live, bounded and reversible.

Definition 2.15. A PT-net N =  P, T, F, W  is said 
to be conservative if and only if there exists a m-vector 
> 0 such that V = 0, where m = | P | and V is the 
incidence matrix of N.

Figure 3 shows a PT-net (N, M0) which is live, 
bounded, safe, reversible and conservative.
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Figure 3. A live, bounded, safe, reversible and 
conservative PT-net.

3 AMG-structure and its properties
AMG-structure refers to an augmented-marked-graph 
structure. In the literature, augmented marked graphs are 
not well known, as compared to other sub-classes of Petri 
nets such as free-choice nets [33]. However, they possess 
many special properties pertaining to liveness,
boundedness and reversibility. This section introduces 
augmented marked graphs and their special properties.

Definition 3.1 [34]. An augmented marked graph
(N, M0; R) is an ordinary PT-net (N, M0) with a specific 
subset of places R, satisfying that : (a) Every place in R 
is marked by M0. (b) The net (N', M0') obtained from (N, 
M0; R) by removing the places in R and their associated 
arcs is a marked graph. (c) For each place r  R, there 
exist kr  1 pairs of transitions Dr = { ts1, th1, ts2, th2, ..., 
tskr, thkr }, such that r = { ts1, ts2, ..., tskr }  T and r = { 
th1, th2, ..., thkr }  T and that, for each tsi, thi  Dr, there 
exists in N' an elementary path ri connecting tsi to thi. (d) 
In (N', M0'), every cycle is marked and no ri is marked.

Figure 4 shows an augmented marked graph (N, M0; 
R), where R = { r1, r2 }.

Figure 4. An augmented marked graph.

Definition 3.2. Let (N, M0) be a PT-net, where R = { 
r1, r2, …, rk } is the set of marked places such that | ri | > 
0 and | ri

 | > 0 for i = 1, 2, …, k. (N, M0) is said to be of 
an AMG-structure if and only if (N, M0; R) is an 
augmented marked graph.

Definition 3.3. For a PT-net (N, M0), a set of places 
S is called a siphon if and only if S  S. S is said to be 
minimal if and only if there does not exist any siphon S' 
in N such that S'  S. S is said to be empty at a marking 
M  [M0 if and only if S contains no places which are 
marked by M.

Definition 3.4. For a PT-net (N, M0), a set of places 
Q is called a trap if and only if Q  Q. Q is said to be 
maximal if and only if there does not exist any trap Q' in 
N such that Q  Q'. Q is said to be marked at a marking 
M  [M0 if and only if Q contains at least one place 
which is marked by M.

Property 3.1 [34]. An augmented marked graph is 
live and reversible if and only if it does not contain any 
potential deadlock. (Note : A potential deadlock is a 
siphon which would eventually become empty.)

Definition 3.5. For an augmented marked graph (N, 
M0; R), a minimal siphon is called an R-siphon if and 
only if it contains at least one place in R.

Property 3.2 [35, 36]. An augmented marked graph 
(N, M0; R) is live and reversible if and only if no R-
siphons eventually become empty.

Property 3.3 [34, 35, 36]. An augmented marked 
graph (N, M0; R) is live and reversible if every R-siphon 
contains a marked trap.

For the augmented marked graph (N, M0; R) shown 
in Figure 4, each R-siphon contains a marked trap. (N, 
M0; R) is live and reversible.

Definition 3.6 [37]. Suppose an augmented marked 
graph (N, M0; R) is transformed into a PT-net (N', M0') as 
follows. For each r  R, where Dr = { ts1, th1, ts2, th2, 
..., tskr, thkr }, replace r with a set of places { q1, q2, ..., 
qkr }, such that M0'[qi] = M0[r] and qi

 = { tsi } and qi = { 
thi } for i = 1, 2, ..., kr. (N', M0') is called the R-transform 
of (N, M0; R).

Property 3.4 [37]. Let (N', M0') be the R-transform 
of an augmented marked graph (N, M0; R). (N, M0; R) is 
bounded and conservative if and only if every place in 
(N', M0') belongs to a cycle.

Figure 5 shows the R-transform (N', M0') of the 
augmented marked graph (N, M0; R) in Figure 4. (N', 
M0') is bounded, where every place belongs to a cycle. 
(N, M0; R) is bounded and conservative.

Figure 5. The R-transform of the augmented marked 
graph in Figure 4.
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4 Specifying object interaction 
scenarios as labelled nets

In this section, we show how an object interaction 
scenario can be formally specified as a labelled net with 
an AMG-structure (Step 1 of our proposed method).

A labelled net is a Petri net, where labels are 
assigned to places and transitions. Usually, places are 
labelled by conditions to denote specific system substates 
where the conditions hold, and transitions by events to 
denote specific occurrences of the events.

Definition 4.1. A labelled Petri net (or labelled net) 
is a 7-tuple N =  P, T, F, C, E, Lp, Lt , where  P, T, F 
is an ordinary PT-net, C is a set of condition labels, E is a 
set of event labels, Lp : P  C is a function for assigning 
a condition label to every place, and Lt : T  E is a 
function for assigning an event label to every transition.

Definition 4.2. Let N =  P, T, F, C, E, Lp, Lt  be a 
labelled net. A place p is said to be uniquely labelled in 
N if and only if  p'  P : (Lp(p') = Lp(p))  (p' = p). A 
transition t is said to be uniquely labelled in N if and only 
if  t'  T : (Lt(t') = Lt(t))  (t' = t). N is said to be 
uniquely labelled if and only if all places and transitions 
are uniquely labelled.

Figure 6 shows a typical labelled net. Places p3, p4, 
p5, p6, p9 and p10 are uniquely labelled, whereas p1, p2, p7

and p8 are not, as for example, condition label c1 appears 
in p1 and p7, and c2 in p2 and p8. Transitions t3, t4 and t5

are uniquely labelled, whereas t1, t2, t6 and t7 are not, as 
for example, event label e1 appears in t1 and t6, and e2 in 
t2 and t7. Therefore, the labelled net is not uniquely 
labelled.

Figure 6. A labelled net which is not uniquely labelled.

For an object interaction scenario specified as a 
labelled net, the location where an event occurs is 
represented by a transition and the location of a condition 
by a place. The semantic meanings of conditions and 
events are denoted by the labels of the places and 
transitions respectively. For an event to occur, some 
conditions must be fulfilled in advance and some 
afterwards. These pre-conditions and post-conditions are 
represented by the pre-set and post-set of the transition 
representing the event.

Step 1 of the proposed method is to specify the given 
object interaction scenarios as labelled nets with an 
AMG-structure. Consider an object-oriented system 
involving two objects, x and y, of classes X and Y 
respectively. There are three typical interaction scenarios 
exhibited by x and y, specified as UML sequence 
diagrams and collaboration diagrams (BRJ99, RJB99) in 
Figure 7. In conventional UML sequence diagrams and 
collaboration diagrams, there are no formal notations for 
denoting the pre-condition and post-condition of each 
event occurrence in an object interaction scenario. 
Therefore, for an explicit representation of the causal 
relationship between events and conditions, appropriate 
condition labels are appended to these diagrams.

Figure 7. Object interaction scenarios in UML sequence 
diagrams and collaboration diagram.

Figure 8 shows object interaction Scenarios 1, 2 and 
3, specified as labelled nets (N1, M10), (N2, M20) and (N3, 
M30) respectively. They all are of AMG-structure.

(N1, M10) is constructed for representing scenario 1 
as follows. For each location of a condition, a new place 
with a proper condition label is created. For example, p11

denotes a location of condition c11 for object x, so 
condition label x.c11 is assigned to p11. For each event 
occurrence, a new transition with a proper event label is 
constructed. For example, t11 denotes an occurrence of 
event e1, so event label e1 is assigned to t11. The event 
occurrence has a pre-condition x.c11 and a post-condition 
x.c12. Hence, t11 = { p11 } and t11

 = { p12 }. Arcs 
between p11 (pre-condition) and t11 and between t11 and 
p12 (post-condition) are appended for denoting their 
causal relationships. The rest locations of conditions and 
events are created accordingly. Following the same rules, 
(N2, M20) and (N3, M30) are constructed for representing 
scenarios 2 and 3, respectively.

x : X y : Y

e1

e2

e3

c11

c12

c13

c11

c21

c22

c23

c21

e4 c24

x : X

y : Y

2 : e2

1 : e1

3 : e3

4 : e4

Scenario 1 :

x : X y : Y

e5

e6

c11

c14

c15

c11

c21

c22

c25

c21

x : X

y : Y

2 : e61 : e5

3.2 : e7

x : X y : Y

e9

e1

e7

c11

c14

c27

c11

c21

c26

c17

c21

e1

x : X

y : Y

2 : e101 : e9 4 : e11

Scenario 2 :

Scenario 3 :

e8c16 c24

4 : e8

e3e7

c16

3.1 : e3

3 : e7

t7

p2

t2t1

c2

e2e1

e2

p3c3 p4 p5c5c4

t4e4

p8c2

t5e5

p7c1p6c6

t6e1

p1c1

t3e3

p10c8c7 p9



226 Informatica 33 (2009) 221–232 K.-S. Cheung

Figure 8. Labelled nets representing the object 
interaction scenarios in Figure 7.

5 Synthesising and analysing the 
integrated system

After specifying the object interaction scenarios as 
augmented marked graphs (Step 1 of the proposed 
method), we synthesise these scenarios into an integrated 
system. In principle, a scenario portrays partial system 
behaviours of how the objects are interacted in order to 
perform a specific functionality. These augmented 
marked graphs are essentially partial system behavioural 
specifications which are to be synthesised together to 
form a single coherent whole.

This section describes Step 2 of our proposed 
method - the synthesis of labelled nets into an integrated 
net which represents the integrated system, and analysis 
of the system. The synthesis is based on the authors' 
earlier work on use-case-driven system design [38]. It is 
made by fusing those places with refer to the same 
system initial state or condition. The integrated net so 
obtained is of AMG-structure, so its liveness, 
boundedness, reversibility and conservativeness can be 
effectively analysed by making use of the special 
properties of augmented marked graphs.

Consider the labelled nets (N1, M10), (N2, M20) and 
(N3, M30) in Figure 8. Places p11 in (N1, M10), p21 in (N2, 
M20) and p31 in (N3, M30) refer to the same condition 
x.c11. Also, places p15 in (N1, M10), p24 in (N2, M20) and 
p34 in (N3, M30) refer to the same condition y.c21. Hence, 
p11, p21 and p31 are fused into one place p41, and p15, p24

and p34 into p42.
Figure 9 then shows the integrated net (N, M0) 

obtained after synthesising (N1, M10), (N2, M20) and (N3, 
M30). (N, M0) is of an AMG-structure, meaning that it is 
structurally an augmented marked graph (N, M0; R), 
where R = { p41, p42 }.

Figure 9. The integrated net obtained by synthesising the 
labelled nets in Figure 8.

For (N, M0; R), every R-siphon contains a marked 
place, and hence, would never become empty. According 
to Properties 3.2 and 3.3, (N, M0; R) is live and 
reversible. Since every place in its R-transform is 
covered by cycles, according to Property 3.4, (N, M0; R) 
is also bounded and conservative. Therefore, it can be 
concluded that the integrated system is well-behaved.

6 Eliminating duplicate labels from 
the integrated net

Consolidating the object interaction scenarios, the 
integrated net obtained from Step 2 of the proposed 
method serves to represent the system as a coherent 
integrated whole. In general, this integrated net is not 
necessarily uniquely labelled. For the integrated net (N, 
M0) in Figure 9 for example, places p15 and p26 have the 
same condition label y.c22, and transitions t13 and t24 have 
the same event label e3. This reflects the fact that the 
locations or conditions for occurrence of the same event 
may be different at different moments within a scenario 
or among different scenarios. Yet, every condition is 
eventually implemented as a unique system substate and 
every event as a unique operation. Therefore, in order for 
the integrated net to be effectively used for 
implementation purposes, it need to be uniquely labelled 
where all the duplicate condition labels and duplicate 
event labels are eliminated.
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The elimination cannot be done by just fusing places 
with the same condition label, and transitions with the 
same event label. This is because the resulting net may 
exhibit firing sequences different from the original ones. 
In other words, the system behaviours may be distorted. 
Step 3 of the proposed method is to eliminate all 
duplicate labels while preserving the original firing 
sequences (event sequences). This section describes this 
step in details.

Definition 6.1. Let S be a uniquely labelled subnet 
of a labelled net N. The pattern of S in N, denoted as 
Patt(N, S), is a condition-event net with an identical 
structure and label allocation as S while ignoring the 
identities of places and transitions of S.

Definition 6.2. Let Lx and Ly be patterns of subnets 
in a labelled net. Lx  Ly and Lx  Ly denote the union 
and intersection of Lx and Ly, respectively. Lx \ Ly

denotes the displacement of Lx from Ly. Lx and Ly are 
said to be disjoint if and only if Lx  Ly = .

Definition 6.3. For a labelled net N, a uniquely 
labelled subnet S is called a common subnet if and only 
if there exists at least one uniquely labelled subnet S' 
such that S'  S and Patt(N, S') = Patt(N, S). Let S be a 
pattern of the common subnets in N. [N, L] = { S | 
Patt(N, S) = L } represents the group of common subnets
having the same pattern L.

Definition 6.4. For a subnet S =  P', T', F'  of a PT-
net, Pre(S) = (P'\T')  (T'\P') is called the pre-set of S, 
Post(S) = (P'\T')  (T'\P') is called the post-set of S, 
Head(S) = Pre(S)  (P'  T') is called the head of S, and 
Tail(S) = Post(S)  (P'  T') is called the tail of S.

Definition 6.5. A subnet S of a PT-net N =  P, T, F 
is said to be of PP-type if and only if Head(S)  P and 
Tail(S)  P.

Figure 10 shows a uniquely labelled subnet S which 
is PP-type. Figure 11 shows the pattern of S.

Figure 10. A uniquely labelled subnet S of a labelled net.

Figure 11. Pattern of S of the labelled net in Figure 10.

We propose to eliminate duplicate labels by fusion 
of common subnets, as outlined below.

Identify groups of common subnets for fusion. These 
groups of common subnets need to be maximal and 
disjoint for two reasons. First, the net obtained after the 
fusion will become uniquely labelled. Second, the 
number of groups of common subnets for fusion can be 
reduced to minimum as they are maximal.

Transformation of common subnets. For preservation 
of firing sequences, common subnets are transformed 
before fusion. Based on coloured Petri nets [39], a unique 
colour is assigned to each common subnet as colour 
labels of its ingoing and outgoing arcs. A token flowing
into the common subnet is coloured according to the 
colour label of the ingoing arc. Its colour is reset as it 
flows out via the same colour-labelled outgoing arc. 
Besides, the subnets are converted to PP-type.

Fusion of transformed common subnets. The 
transformed common subnets of each group are fused 
into a single subnet. A uniquely labelled net is ultimately 
obtained.

The following algorithm formally describes the 
elimination process. A detailed elaboration of the 
elimination process can be found in the authors' earlier 
work [40].

Elimination of Duplicate Labels from a Labelled Net

1.  Identify maximal disjoint groups of common subnets :

   1.1 Find all possible common subnets from N. Let  = { L1, L2, 
..., Ln } be their patterns.

   1.2 Retain only the maximal patterns : Remove any Li from  if 
there exists Lj   such that Li is a sub-pattern of Lj and 
Si  [N, Li],  Sj  [N, Lj] : Si is a subnet of Sj.

   1.3 Make the overlapping patterns disjoint : For every Li, Lj  
such that Li  Lj and Li and Lj are not disjoint, set  = ( - { 
Li, Lj })  { Li  Lj }  { Li\Lj }  { Lj\Li }.

   1.4 Categorise the common subnets of N into groups { [N, Li], 
Li   }.

2. For each group of common subnets [N, Li] :

   2.1 Convert each subnet S  [N, Li] if S is not of PP-type :

2.1.1 For each transition ti  Head(S) : (a) Create dummy 
transition ti' with unique label i, dummy place pi' with 
label i, and arcs (ti', pi') and (pi', ti). (b) For each p 
ti : Remove arc (p, ti), and then create arc (p, ti'). (c) 
Re-define S by including pi' and (pi', ti).

2.1.2 For each transition tj  Tail(S) : (a) Create dummy 
transition tj' with unique label j, dummy place pj' with 
label j, and arcs (tj, pj') and (pj', tj'). (b) For each p 
tj : Remove arc (tj, p), and then create arc (tj', p). (c) 
Re-define S by including pj' and (tj, pj').

   2.2 Assign a unique colour label  for each subnet S  [N, Li] :

2.2.1 For each arc (ti, pi) where ti  Pre(S) and pi 
Head(S) : Assign colour label  to (ti, pi).

2.2.2 For each arc (pj, tj) where pj  Tail(S) and tj 
Post(S) : Assign colour label  to (pj, tj).

   2.3 Fuse the common subnets in [N, Li] into one single subnet.

We apply the algorithm for eliminating the duplicate 
labels for the integrated net (N, M0) in Figure 9. Figure 
12 shows the uniquely labelled net (N', M0') so obtained.
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Figure 12. The uniquely labelled net obtained after 
eliminating duplicate labels from the integrated net in 

Figure 9.

7 Obtaining object-Based 
behavioural specifications

In this section, we show Step 4 of our proposed method -
to obtain the individual object-based behavioural 
specifications. These individual object-based behavioural 
specifications are obtained by projecting the integrated 
net onto individual objects.

The projection is made by ignoring those places, 
transitions and arcs which are irrelevant to the object 
concerned. The projected net so obtained serves as the 
object behavioural specifications.

Consider the integrated net (N', M0') in Figure 12. 
The projection onto object x is obtained as follows. We 
keep those places with object label x (including dummy 
places) and those transitions (including dummy 
transitions) having at least one input place or output 
place labelled by x, as well as their associated arcs. 
Similarly, for the projection onto object y, we keep those 
places with object label y (including dummy places) and 
those transitions (including dummy transitions) having at 
least one input place or output place labelled by y, as 
well as their associated arcs.

Figure 13 shows the projections (Nx, Mx0) and (Ny, 
My0) obtained by projecting the net (N', M0') in Figure 12
onto objects x and y, respectively. (Nx, Mx0) and (Ny, 
My0) are uniquely labelled, simply because (N', M0') is 
uniquely labelled. They serve as the behavioural 
specifications for objects x and y, where conditions and 
events are uniquely represented.

8 Real-life example
This section presents a real-life example to further 
illustrate the refinement process.

Figure 13. The nets obtained by projecting the integrated 
net in Figure 12 onto objects x and y.

The real-life example is an Office Access Control 
System. The system is briefly described as follows. It is a 
system used in a company for controlling staff accesses 
to its 30+ offices and laboratories. Among these offices 
and laboratories, some can be accessed by all staff while 
some others by authorised staff only and/or during 
specified time periods only. For controlling the staff 
access, every entrance is implemented with a card-reader, 
an emergency switch and an electronic lock, all being 
connected to a centralised server. The server maintains 
the access privileges and validates every access to the 
offices/laboratories. There are three typical cases for 
each request for access.

Authorised access (U1). A staff member wants to 
access an office/laboratory. He/She presents his/her staff 
card via a card-reader. Access is granted. The door is 
unlocked for five seconds and then re-locked.

Unauthorised access (U2). A staff member wants to 
access an office/laboratory. He/She presents his/her staff 
card via a card-reader. Access is not granted. The door is 
locked.

Emergency access (U3). A staff member wants to 
access an office/laboratory for emergency. He/She 
presses the emergency key. The door is unlocked 
immediately, until it is reset by a security officer.

From the object-oriented perspectives, the server (s : 
Server) and doors (d : Door) are objects of the Office 
Access Control System. They are interacting with each 
other in order to perform the above system 
functionalities. There are three object interaction 
scenarios, corresponding to U1, U2 and U3.

Figure 14 shows these object interaction scenarios 
specified as UML sequence diagrams and collaboration 
diagrams, where appropriate condition labels are 
appended for denoting the pre-conditions and post-
conditions for each event occurrence.
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Legends for condition labels :

c11 Server is ready

c12 Server is processing access request

c13 Server is waiting for re-lock

c14 Server is writing log (successful access)

c15 Server is writing log (unsuccessful access)

c16 Server is waiting for emergency reset

c17 Server is writing log (emergency access)

c21 Door is locked

c22 Door is waiting for response

c23 Door is unlocked (successful access)

c24 Door is unlocked (emergency access)

Legends for event labels :

e1 Request for access is received

e2 Access is granted

e3 Time expires after access granted

e4 Successful access is committed

e5 Access is not granted

e6 Unsuccessful access is committed

e7 Request for emergency access is received

e8 Door is reset to normal

e9 Emergency access is committed

Figure 14. Object interaction scenarios specified as UML 
sequence diagrams and collaboration diagrams (the 

Office Access Control System).

Step 1 of the proposed method is to specify object 
interaction scenarios as labelled nets. Figure 15 shows 
the labelled nets (N1, M10), (N2, M20) and (N3, M30) 
representing the object interaction scenarios for U1, U2

and U3, respectively.
Step 2 of the proposed method is to synthesise the 

labelled net into an integrated system, and analyse the 
system on its liveness, boundedness, reversibility and 
conservativeness. (N1, M10), (N2, M20) and (N3, M30) are 
synthesised into an integrated net (N, M0) by fusing those 
places which refer to the same system initial states or 
conditions : Places p11, p21 and p31 are fused into one 
place p41, and p15, p24 and p34 into p42. Figure 16 shows 
the integrated net (N, M0) so obtained.

Figure 15. Labelled nets representing the object 
interaction scenarios in Figure 14.

Figure 16. The integrated net obtained by synthesising 
the labelled nets in Figure 15.

The integrated net (N, M0) is of an AMG-structure. 
Let R = { p41, p42 }. For (N, M0; R), every R-siphon 
contains a marked place and hence would never become 
empty. According to Properties 3.2 and 3.3, (N, M0; R) is 
live and reversible. Since every place in its R-transform 
is covered by cycles, according to Property 3.4, (N, M0; 
R) is also bounded and conservative. Therefore, it may 
be concluded that the Office Access Control System is 
well-behaved.
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As shown in Figure 16, (N, M0) is not uniquely 
labelled as it contains duplicate labels. For example, 
place p12 and p22 have the same condition label s.c12 and 
transitions t11 and t21 have the same event label e1. Since 
every condition is eventually implemented as a unique 
substate and every event as a unique operation, in order 
for the integrated net to be effectively used for 
implementation purposes, these duplicate labels must be 
eliminated.

Step 3 of the proposed method is to eliminate 
duplicate condition labels and duplicate event labels from
the integrated net (N, M0) through the fusion of common 
subnets. We perform this elimination process by 
applying the algorithm described in Section 6. Figure 17
shows the uniquely labelled net (N', M0') so obtained.

Figure 17. The uniquely labelled net obtained after 
eliminating duplicate labels from the integrated net in 

Figure 16.

Step 4 of the proposed method is to obtain the 
individual object-based behavioural specification as 
projections of the integrated net onto the objects. The 
projection is made by ignoring those places, transitions 
and arcs which are irrelevant to the object concerned.

Consider the integrated net (N', M0') in Figure 17. 
For the projection onto object s (the server object), we 
keep those places with object label s (including dummy 
places) and those transitions (including dummy 
transitions) having at least one input place or output 
place labelled by s, as well as their associated arcs. 
Similarly, for the projection onto object d (the door 
object), we keep those places with object label d 
(including dummy places) and those transitions 
(including dummy transitions) having at least one input 
place or output place labelled by d, as well as their 
associated arcs. Figure 18 shows the projections (Ns, 
Ms0) and (Nd, Md0) obtained by projecting the integrated 
net (N', M0') in Figure 17 onto objects s and d, 
respectively.

Figure 18. The nets obtained by projecting the integrated 
net in Figure 17 onto objects s and d.

As the integrated net (N', M0') is uniquely labelled, 
its projections (Ns, Ms0) and (Nd, Md0) are also uniquely 
labelled, where every condition or event is uniquely 
represented. (Ns, Ms0) and (Nd, Md0) then serve as the 
behavioural specifications for the server (s : Server) and 
door (d : Door) objects, respectively.

9 Conclusion
One of the most difficult tasks in object-oriented system 
design is to obtain individual object-based behavioural 
specifications from a given set of object interaction 
scenarios. Not only conventional specification constructs 
for object interaction scenarios are too primitive to 
represent the partial ordering of events and the causal 
relationship between the events and conditions, there also 
involves different abstractions between intra-object 
lifecycle and inter-object interaction. Moreover, we have 
to ensure that the derived object-based behavioural 
specifications reflect exactly the given object interaction 
scenarios and that the system is well-behaved.

We proposed a Petri-net-based method for refining a 
given set of object interaction scenarios into individual 
object-based behavioural specifications. By specifying 
the object interaction scenarios as labelled nets with an 
AMG-structure and synthesising them into an integrated 
net, we analyse the system, based on the special 
properties of augmented marked graphs. For unique 
representation of events and conditions, an algorithm is 
applied to the integrated net to eliminate duplicate 
condition labels and event labels while preserving the 
event sequences. Object-based behavioural specifications 
are then obtained as projections of the integrated nets 
onto the objects. The whole refinement process has been 
described, elaborated and illustrated using the Office 
Access Control System example.
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The proposed method offers a number of distinctive 
features. First, object interaction scenarios are formally 
specified as labelled nets which are unambiguous and 
semantically rich for an explicit representation of events, 
conditions and their causal relationships. Second, object-
based behavioural specifications are rigorously derived 
from the given object interaction scenarios through 
systematic synthesis and projection. The behavioural 
specifications so obtained would reflect exactly the given 
object interaction scenarios. Third, liveness, boundedness, 
reversibility and conservativeness of the system can be 
effectively analysed by making use of the special 
properties of augmented marked graphs. Fourth, every 
event or condition is uniquely represented in the 
behavioural specifications so that the specifications can 
be readily used for implementation purposes.

With a strong theoretical foundation of Petri nets, the 
proposed method can be effectively used for refining 
object-based behavioural specifications from a set object 
interaction scenarios. It resolves a number of problems 
perplexing the designers of object-oriented systems, such 
as the lack of formality in specifying object interaction 
scenarios and the difficulty of ensuring the correctness of 
object behavioural specifications. The latter is especially 
important for systems involving shared resources, where 
erroneous situations such as deadlock and capacity 
overflow are easily induced. The proposed method can 
be implemented as tool to support object-oriented system 
design. By capturing the functional requirements of a 
system as a set of object interaction scenarios, it helps 
perform rigorous system synthesis and analysis. The 
correctness of this refinement can be assured. Moreover, 
the object-based behavioural specifications so obtained 
can be readily used for code generation. This inevitably 
contributes towards a smooth transitions from functional 
requirements through design to implementation for 
object-oriented system development.
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