
Informatica 33 (2009) 245–259 245

Identifying Learners Robust to Low Quality Data

Andres A. Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse and Amri Napolitano
Florida Atlantic University,
Boca Raton, Florida, USA
E-mail: {andres, taghi}@cse.fau.edu , {jvanhulse, amrifau}@gmail.com

Keywords: quality of data, class imbalance, random forest, robust learning

Received: October 12, 2008

Low quality or noisy data, which typically consists of erroneous values for both dependent and independent
variables, has been demonstrated to have a significantly negative impact on the classification performance
of most learning techniques. The impact on learner performance can be magnified when the class dis-
tribution is imbalanced or skewed. Unfortunately in real world environments, the presence of low quality
imbalanced data is a common occurrence. In most scenarios, the actual quality of such datasets is unknown
to the data mining practitioner. In this study, we identify learners (from a total of 11 classification algo-
rithms) with robust performance in the presence of low quality imbalanced measurement data. Noise was
injected into seven imbalanced software measurement datasets, initially relatively free of noise. Learn-
ers were evaluated using analysis of variance models based on their performance as the level of injected
noise, the number of attributes with noise, and the percentage of minority instances containing noise were
increased. Four performance metrics suitable for class imbalanced data were used to measure learner per-
formance. Based on our results, we recommend using the random forest ensemble learning technique for
building classification models from software measurement data, regardless of the quality and class distri-
bution of the data.

Povzetek: Predstavljena je metoda za identificiranje robustnih klasifikatorjev pri šumnih podatkih.

1 Introduction
Not only are real-world datasets often class imbalanced,
but typically their attributes (including the class) can con-
tain erroneous values that may negatively impact learn-
ing performance [17, 29, 32]. Consequently, it is not un-
common for empirical software engineering practitioners
to construct learners using suboptimal or low quality im-
balanced data. Note that in this work1, only binary clas-
sification problems were considered. In software quality
classification, class imbalance occurs when the number of
fault-prone (fp) modules is significantly outnumbered by
the number of not fault-prone (nfp) program modules. No
other related work in the software quality prediction do-
main was found that evaluated the robustness of learning
techniques, using four performance metrics, relative to low
quality imbalanced measurement data. In this study, simu-
lated noise was injected in both the independent attributes
as well as the class (i.e., labeling errors) of seven class im-
balanced software engineering measurement datasets. The
substantial and significant scope of our experiments make
this study truly unique for the domain of empirical software
engineering.

The robustness of 11 distinct algorithms trained using
low quality imbalanced real-world measurement data is

1This is an expanded version, by invitation, of the work accepted
and presented at the 2008 IEEE International Conference on Information
Reuse and Integration- IRI’08 [11]

evaluated by analyzing four metrics related to learner per-
formance. Noisy data was simulated by injecting artifi-
cially induced, domain realistic noise into the indepen-
dent attributes and class of seven real-world class imbal-
anced software measurement datasets as explained in Sec-
tion 4.3. Four performance metrics particularly well suited
to deal with class imbalanced data were selected for this
study. The area under the ROC curve (AUC), the area
under the Precision-Recall curve (PRC), the Kolmogorov-
Smirnov statistic (KS), and the F-measure (FM) test statis-
tic were selected (see Section 4.2) to measure the impact
on learning performance. The overall impact of noise on
each learner was measured as the level of noise, the num-
ber of attributes with injected noise, and the percentage of
minority instances containing noise increased across all the
datasets (see Section 5). Furthermore, we illustrate the im-
pact of the factor interaction between the overall noise lev-
els and the percent of minority instances with noise. Con-
clusions are presented in Section 6.

2 Related work

Regardless of the perceived soundness of a preferred clas-
sification algorithm, learning from low quality class im-
balanced data will very likely result in biased and subop-
timal performance. Several studies in classification initia-
tives have demonstrated that the presence of noisy values

246 Informatica 33 (2009) 245–259 A. Folleco et al.

(mainly corrupted class labels) in the training dataset will
likely impact the predictive accuracy of a learning algo-
rithm [17, 32]. Arguably, the main factors determining data
quality include independent attribute noise [27, 32], depen-
dent attribute or class noise [16, 5], and missing or omitted
values [20]. The data quality characteristics considered in
this study include the presence of noise in both the inde-
pendent and dependent (class) attributes.

In addition, the real-world measurement datasets used in
this work are inherently class imbalanced. A software mea-
surement dataset selected for binary classification tasks (we
only consider binary classification in this work) is said to
be imbalanced if the number of positive (fault-prone or fp)
class modules is less than the number of negative (not fault-
prone or nfp) class modules. Typically, minority instances
make up the positive class, while the negative class is com-
posed of the majority instances. Frequently in real-world
scenarios, the practitioner is primarily interested in iden-
tifying examples from the minority group. In the context
of software engineering, this is frequently seen in mission
critical applications, where a premium is placed on identi-
fying fault-prone modules during the test phase. Low qual-
ity real-world datasets containing class imbalance distribu-
tions pose a great challenge to any data mining and ma-
chine learning effort. In fact, researchers contend that data
quality and class imbalance can significantly impact the re-
liability of machine learning models in real-world scenar-
ios, and consequently demand empirical consideration and
experimental evaluation [10, 35]. Data with such charac-
teristics can be found in a wide variety of application do-
mains besides software quality classification, including for
example network intrusion detection [19] and fraud detec-
tion [13].

In our study, we investigate the robustness of 11 learn-
ing algorithms in the presence of low quality class imbal-
anced real-world software measurement datasets, initially
relatively free of noise. Weiss [29] performed a prelimi-
nary study of the effects of class and attribute noise on clas-
sification with simulated datasets using the C4.5 learner.
However, no real world datasets or additional learners were
used. Weiss and Provost [30] investigated the effect of
class distribution and training set size on classification per-
formance. Their results imply that the natural class dis-
tribution generates higher overall accuracy. However, the
overall accuracy rate is often not considered an appropriate
measurement method when dealing with class imbalanced
datasets. Furthermore, they also suggested that a more bal-
anced class distribution can result in higher AUC values.
Van Hulse et al. [28] conducted an investigation of the im-
pact on classification performance from class imbalanced
data injected with simulated class noise. The AUC metric
was used to measure the learning performance. The in-
dependent attributes were not considered for noise injec-
tion in their study. Studies have been conducted to investi-
gate the impact of noise using classification performance-
enhancing techniques like cost sensitive learning [33, 34]
with various cost ratios [9]. In general, relatively few stud-

ies have evaluated the impact of noise (in the class only) in
imbalanced data. To our knowledge, no related works have
investigated the impact of class and attribute noise on learn-
ers constructed from class skewed measurement datasets
using several performance metrics suitable for class imbal-
anced distributions.

3 Learning algorithms
The open-source Java based Weka data mining and ma-
chine learning tool [31] was used to implement the learners
in this study. The learners used were selected because most
of them are commonly used in class imbalance scenarios
and several are also used in the software engineering and
software quality classification domain. The default param-
eter values of some of the techniques were changed when
their respective classification performances improved sub-
stantially.

3.1 Random forest
The random forest (RF) classifier was developed by
Breiman [3]. RF is a powerful, relatively new approach to
data exploration, data analysis, classification, and predic-
tive modeling. A random forest is a collection of unpruned,
CART-like trees [4] following specific rules for tree grow-
ing, tree combination, self-testing, and post-processing.
Trees are grown using binary partitioning in which each
parent node is split into no more than two children. Each
tree is grown on a different random subsample of the train-
ing data. Randomness is also injected into the tree split
selection process. RF selects a relatively small subset of
available attributes at random. In the Weka tool, the default
for the numFeatures parameter uses b log2 M + 1 c at-
tributes selected at random for each node in the tree where
M is the original number of independent attributes in the
data. Attribute selection significantly speeds up the tree
generation process. Once a node is split on the best split-
ter attribute, the process is repeated entirely on each child
node. Then, a new list of predictive attributes is selected
at random for each node. The trees must remain unpruned
to their absolute maximum size in order to maximize the
chances of including important attributes into the trees.

Bootstrapping is a process of random sampling with re-
placement from the training dataset. By applying boot-
strapping during the tree induction process, approximately
37% of the observations in the training dataset are not
used and form the out-of-bag samples. Another impor-
tant parameter in the RF algorithm is the number of
trees numTrees in the ensemble. The default value for
numTrees in Weka is 10, however previous research by
our group [15] found 100 to be a more appropriate value,
so 100 was used instead. Combining results from multi-
ple models (trees) generally yields better performance re-
sults than those obtained from a single model. Combining
trees by averaging the votes will only be beneficial if the
trees are different from each other. RF induces vastly more

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 247

between-tree variation by forcing random splits on differ-
ent predictive attributes. Having a diverse collection of ro-
bust trees lowers the overall error rate, avoids over-fitting
training data, imbues a substantial resilience to noisy val-
ues, and therefore enhances the performance of the RF [3]
ensemble classifier.

3.2 k Nearest Neighbors (Two versions)

K nearest neighbors [1] (kNN) is called IBk in the Weka
implementation of an instance-based classification tech-
nique using k nearest neighbors. The class of a test case is
predicted by majority voting of the k nearest neighbors. If
only one nearest neighbor is selected to predict the class of
a test instance, especially in the presence of outliers and/or
low quality data, it may lead to increased inaccuracy. The
Euclidean distance is often used as a similarity function
to determine the potential candidate nearest neighbors. A
possible disadvantage of IBk is that its computation time
depends on the size of the number of nearest neighbors. As
the number of nearest neighbors increases, so do the com-
putational resources and time needed. In our experiments,
kNN classifiers were built with changes to two parameters:
The ‘distanceWeighting’ parameter was set to ‘Weight by
1/distance’ and two different ‘kNN’ classifiers were built
using k = 2 and k = 5 neighbors. These were denoted
‘2NN’ and ‘5NN,’ respectively.

3.3 C4.5 Decision Tree (Two versions)

C4.5 [23] is a benchmark decision tree classification algo-
rithm. J48 is Weka’s implementation of this algorithm. It is
an inductive supervised classifier that uses decision trees to
represent the underlying structure of the input data. The
algorithm has four major components: the decision tree
generator, the production rule generator, the decision tree
interpreter, and the production rule interpreter. These mod-
ules are used for constructing and evaluating the classifi-
cation tree models. The algorithm begins with an empty
tree, to which is added decision and leaf nodes, starting at
the root (top) node. In the next step, using one of the at-
tributes xj (j = 1, . . . ,m = #attributes) the instances in
the root node are split into two (or more) child nodes Nl

and Nr. For example, if xj is a continuous attribute and
i = 1, . . . , n = #instances, we define Nl = { xi ∈
D | xij < t }, and Nr = { xi ∈ D | xij ≥ t } for some
value of t from xj . C4.5 evaluates each of the attributes
xj to determine the best split at each tree node. The split-
ting process is recursively applied to each of the resulting
child/leaf nodes until some stopping criteria is met. Af-
ter the tree is fully built, C4.5 provides the option to prune
sections of the tree to avoid over-fitting. Two different ver-
sions of the C4.5 classifier were used in our experiments.
The version we call C4D uses the default parameter settings
in Weka to build the tree(s). The version of C4.5 we call
C4N disables decision-tree pruning and enables Laplace
smoothing. These settings were recommended for speed

and performance by Weiss [30].

3.4 Support Vector Machine
The support vector machine (SVM) classifier, called SMO
in Weka, can be used to solve two-class (binary) classifica-
tion problems [24]. These classifiers find a maximum mar-
gin linear hyperplane within the instance space that provide
the greatest separation between the two classes. Instances
that are closest to the maximum margin linear hyperplane
form the support vectors. Once the instances that form the
support vector have been identified, the maximum margin
linear hyperplane can then be constructed. We consider
the following linear hyperplane separating two classes [31]
from:

x = b+
∑

αi yi a(i) · a (1)

where i is a support vector, yi is the class of the training
instance a(i), b, and αi are numeric parameters that are
adjusted based on the classification algorithm. The term
a(i) · a represents the dot product of the test instance with
one of the support vectors. Identifying a solution to the lin-
ear hyperplane by Equation 1 is the same as solving a con-
strained quadratic optimization problem. In this study, the
SVM classifier had two changes to the default parameters:
the complexity constant ‘c’ was set to 5.0 and ‘buildLogis-
ticModels’ was set to ‘true.’ By default, a linear kernel was
used.

3.5 Logistic Regression
Logistic regression (LR) is a statistical regression
model [14] that can be used to estimate two-class classi-
fication problems. Using the training data instances as in-
put, a logistic regression model is created which is used
to decide the class membership of the test data instances.
The logistic function used for modeling may be defined as
follows:

f(z) =
1

1 + e−z

where z denotes the input instances from the training data
and e denotes the base of the natural logarithm. The logistic
function can take as input z any negative or positive value,
while the output of the function is always in the range of
zero to one. The output of the logistic regression classifier
expresses the probability of an instance belonging to a cer-
tain class. An instance of a training dataset that is used as
input for the logistic regression model can be:

z = ω0+(ω1×x1)+(ω2×x2)+(ω3×x3)+...+(ωk×xk)

where ω0 is known as the intercept, ω1, ω2, ω3, . . ., ωk

are called the regression coefficients or model weights, x1,
x2, x3, . . ., xk denote the corresponding instance attribute
values from the training set, and k is the total number of

248 Informatica 33 (2009) 245–259 A. Folleco et al.

attributes considered. Each of the weights describes the
impact of the corresponding attribute value on z. Recall
that z is used to determine the class membership of the in-
stance. The weights must be adjusted in order to optimize
the logistic regression model on the training data. The log-
likelihood of the model is used to estimate the goodness of
fit and the weights for the model are chosen to maximize
this log-likelihood function. In this study, the Weka default
parameter settings were used for this classifier.

3.6 Naive Bayes

Naive Bayes (NB) is a simple and fast algorithm based on
the Bayesian rule of conditional probability [12]. NB as-
sumes that attributes are independent of each other within
a given class. Even though this condition may not be realis-
tic in real-world data, NB has been known to perform well
with this assumption of attribute independence. The algo-
rithm estimates the class probabilities P (fp|x) using the
Bayes theorem by considering the following expression,

P (fp|x) =
P (fp, x)
P (x)

=
P (x|fp)P (fp)

P (x)

=
P (x1|fp)...P (xm|fp)P (fp)

P (x)
(2)

where m is the number of attributes and fp is the fault-
prone (or the minority/positive) class. The independence of
attributes can be used to factor the class conditional prob-
ability P (x|fp) into P (x1|fp)...P (xm|fp). This transfor-
mation allows for the estimation of m one-dimensional dis-
tributions P (xj |fp), j = 1, ...,m, instead of estimating the
joint distribution of P (x|fp) from the data. In our exper-
iments, the default parameter values were used within the
Weka implementation of this algorithm.

3.7 Rule-Based Classifier

RIPPER (Repeated Incremental Pruning to Produce Error
Reduction - RIP) is a rule-based classifier and is named
JRip [6] in Weka. This algorithm was introduced by Co-
hen [6] as a fast classifier of "If-Then" classification rules.
Initially, the algorithm splits the training dataset into two
parts. One part is used to induce rules, while the second
part of the training dataset is used to validate the induced
rules. If a rule’s classification accuracy falls below a min-
imum accuracy threshold, the rule is then eliminated from
the model. RIP imposes a rule induction ordering, minor-
ity class rules first, followed by the majority class. Once all
of the instances in the minority class have been covered, a
default rule is generated to classify the majority data. This
feature reduces the description length of a rule set. The de-
fault Weka parameters for this classifier were not changed
in our experiments.

3.8 Multilayer Perceptron Networks

Multilayer Perceptron (MLP) is a network of percep-
trons [21]. A perceptron is the simplest neural network rep-
resenting a linear hyperplane within instance space. MLPs
can be used to solve complex problems. Every MLP con-
tains an input and output layer and at least one hidden layer.
A layer is an arrangement of neurons that include hidden
ones which do not have any connections to external sources
or environments. MLPs are typically implemented as a
back-propagation neural network. In a back-propagation
neural network, the error from an output neuron is fed back
to the same neuron. The neuron output is the thresholded
weighted sum of all its inputs from the previous layer. This
process is continued iteratively until the error can be tol-
erated or reaches a specific threshold. MLPs map the in-
stances in the input data onto a set of output values using
three or more layers of neurons. Activation functions are
used to calculate the output from the input into the neu-
rons, which is comprised of weighted sums of the outputs
from the previous layer. Two parameters from MLP were
changed from their default values. The ‘hiddenLayers’ pa-
rameter was changed to ‘3’ to define a network with one
hidden layer containing three nodes, and the ‘validationSet-
Size’ parameter was changed to ‘10’ to cause the classifier
to leave 10% of the training data aside to be used as a val-
idation set to determine when to stop the iterative training
process.

3.9 Radial Basis Function Networks

Radial basis function networks (RBF) are another type of
artificial neural network [21]. They are similar to MLPs
except in the method used for processing the data within
a single hidden layer. The hidden layer is of high enough
dimension which provides a nonlinear transformation from
the input space. The output layer in these networks pro-
vides a linear transformation from the hidden-unit space to
the output space. When using RBF neurons, a category
of patterns can be regarded as a Gaussian distribution of
points in pattern space. The neuron fires when its input is
sufficiently close to activate the Gaussian. Inputs are en-
coded by computing a measure of how close they are to a
receptive field, e.g., distance between the input vector and
the centroid of that neuron. In this study, the only parame-
ter change for RBF was to set the parameter ‘numClusters’
to 10.

4 Empirical methodology

4.1 Software Measurement Datasets

The JM1, CM1, MW1, PC1, KC1, KC2, and KC3 datasets
were obtained from the NASA Metrics Data Program
(MDP). Learners were built using 13 basic metrics [16]
as independent variables. The dependent variable was a
binary module-class label, i.e., fault-prone or not fault-

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 249

prone. The minority class is represented as the positive
(fault-prone) class, while the majority class is represented
as the negative (not fault-prone) class. All the instances in
the data represent measurements taken from the software
modules.

The KC1, KC2, and KC3 projects comprise a mission
control system and were developed and implemented by
different personnel with no overlapping software compo-
nents. The KC1 system, implemented in C++, is a software
component of a large ground system. The KC2 system, im-
plemented in C++, is the science data processing compo-
nent of a storage management system used for ground pro-
cessing data. The KC3 system, written in Java, is software
developed for collection, processing, and delivery of satel-
lite meta-data. The PC1 system, implemented in C, is flight
control software from an earth orbiting satellite. The JM1
project, implemented in C, is a real-time ground system
that uses simulation to generate predictions for space mis-
sions. The MW1 project, implemented in C, is the control
software of a zero gravity experiment related to combus-
tion. The CM1 project, implemented in C, is a science in-
strument system used for mission measurements. The soft-
ware modules fault data obtained for the software projects
indicated the number of faults detected during the corre-
sponding software development cycles.

A rule-based noise filter was applied to the CM1, MW1,
PC1, KC1, KC2, and KC3 datasets to identify and remove
noisy instances [18]. Table 1 provides details about the
seven initial2 datasets and their respective cleansed ver-
sions. See Van Hulse and Khoshgoftaar [26] for a detailed
discussion of the cleansing process for JM1. The ‘i/c’
sub-headers indicate the initial and cleansed number of in-
stances of a dataset, listed as ‘#initial / #cleansed’. The
row labeled ‘P’ indicates the number of positive examples
in the initial and cleansed datasets. Likewise, the row la-
beled ‘N’ indicates the number of negative examples. The
‘P + N’ row contains the total number of instances in the
initial and cleansed datasets, respectively. The ‘%P’ row
contains the level of imbalance present in the initial and
cleansed datasets. For example, PC1 initially contained
1107 instances, of which 6.9% were positive. After cleans-
ing, 703 total instances remained of which 7.5% were pos-
itive. Only the cleansed datasets were used in this work be-
cause they were subjected to a methodical and carefully de-
signed noise cleansing process developed by Khoshgoftaar
et al. [18] (see also Van Hulse [25] for a discussion of the
noise cleansing procedure). The motivation for using rela-
tively cleansed datasets before actually injecting the noise
is to ensure the reliability of the results. Adding noise to
inherently low quality data can significantly bias and com-
promise the reliability of any results derived from using
such data.

Table 2 contains the overall classification performance
obtained across all eleven classifiers for each cleansed
dataset. According to the AUC, PRC, KS, and FM val-

2JM1 is an exception to these initial datasets because it is a subset of
the much larger original JM dataset [25].

ues (described in Section 4.2), the best classification perfor-
mance was obtained using the largest (and relatively clean-
est) dataset, JM1. The second best performance was ob-
tained using KC1 (second largest), and the worst perfor-
mance was obtained using MW1 (the most imbalanced and
nearly the smallest dataset). The average values shown in
the ’Avg’ row were calculated across all seven datasets.

4.2 Performance Metrics

In a binary decision problem, a learner labels examples as
either positive or negative. If very few examples belong to
the positive class (as few as 1% or less), a learner could
obtain an overall accuracy of 99% by just classifying all
instances as negative. This method is useless in a domain
like software quality classification because the examples of
interest are typically from the positive class. Thus, per-
formance metrics such as accuracy or the misclassification
rate are inappropriate for substantially class imbalanced
data.

The Receiver Operating Characteristic curve [22] (ROC)
graphs true positive rates on the y-axis versus the false pos-
itive rates on the x-axis. The resulting curve illustrates
the trade-off between detection and false alarm rates. Of-
ten, performance metrics consider only the default deci-
sion threshold of 0.5. ROC curves illustrate the perfor-
mance across all decision thresholds. The threshold inde-
pendent nature of ROC curves makes them well suited for
describing the classification performance of models built
on class imbalanced data. For a single numeric measure,
the area under the ROC curve (AUC) is widely used, pro-
viding a general idea of the predictive potential of the clas-
sifier. Two classifiers can be evaluated by comparing their
AUC values. Provost and Fawcett [22] give an extensive
overview of ROC curves and their potential use for optimal
classification.

The Precision-Recall curve [8] (PR) provides a different
perspective regarding a classifier’s performance on class
imbalanced datasets. Precision measures that fraction of
instances classified as positive that are truly positive. Re-
call measures the fraction of positive instances that have
correct labels. The PR curve graphs recall on the x-axis
and precision on the y-axis. A single numeric measure for
the PR curve is the area under the PR curve (PRC). Often,
a large change in the number of false positives can lead to
a small change in the false positive rate which is used in
ROC analysis. On the other hand, PR analysis typically
compares false positives to true positives rather than true
negatives, encapsulating the impact of the large number of
negatives instances on classification performance. How-
ever, a classifier that optimizes the area under the ROC is
not guaranteed to optimize the area under the PR curve [8].
The expressions for precision and recall (which is the same
as the true positive rate) are as follows:

250 Informatica 33 (2009) 245–259 A. Folleco et al.

Table 1: Datasets Positive & Negative Instance Distributions

JM1 PC1 CM1 MW1 KC1 KC2 KC3
Instance (i/c) (i/c) (i/c) (i/c) (i/c) (i/c) (i/c) Total
P 470/235 76/53 48/39 31/20 325/271 106/82 43/38 1099/738
N 2393/2210 1031/650 457/277 372/291 1782/1093 414/333 415/264 6864/5118
P +N 2863/2445 1107/703 505/316 403/311 2107/1364 520/415 458/302 7963/5856
%P 16.4/9.6 6.9/7.5 9.5/12.3 7.7/6.4 15.4/19.9 20.4/19.8 9.4/12.6 13.8/12.6

Table 2: Classification Performance by Cleansed Dataset

Data AUC Data PRC Data KS Data FM
JM1 0.9987 JM1 0.9956 JM1 0.9974 JM1 0.9972
KC1 0.9977 KC1 0.9923 KC1 0.9763 KC1 0.9739
KC2 0.9922 KC2 0.9774 PC1 0.9607 KC2 0.9471
PC1 0.9915 PC1 0.9650 KC2 0.9532 CM1 0.9350
KC3 0.9865 CM1 0.9595 KC3 0.9521 PC1 0.9301
CM1 0.9837 KC3 0.9580 CM1 0.9487 KC3 0.9244
MW1 0.9767 MW1 0.9266 MW1 0.9428 MW1 0.9040
Avg 0.9897 0.9678 0.9616 0.9445

Precision =
#TP

#TP +#FP
(3)

Recall =
#TP

#TP +#FN

Similarly to the PRC curve, the F-Measure (FM) is de-
rived from recall and precision. There is a decision
threshold parameter required for this metric, and the de-
fault decision threshold of 0.5 was used in this work. Fur-
ther, the expression defining the FM metric has a tunable
parameter β used to indicate the relative importance of re-
call and precision. Typically, one can alter β to place more
emphasis on either recall or precision. In this study, β =
1.

FM =
(1 + β2)×Recall × Precision

β2 ×Recall + Precision

The Kolmogorov-Smirnov significance test [7, 13] mea-
sures the maximum difference between the empirical dis-
tribution function of the posterior probabilities p(x) of in-
stances in each class. Let i ∈ {positive | negative} and
Fi(t) = P (p(x) ≤ t | i), 0 ≤ t ≤ 1. The Fi(t) can be
estimated by the proportion of class (positive | negative)
instances ≤ t.

Fi(t) =
#class (i) instances with posterior probability ≤ t

#class (i) instances

Therefore, the KS statistic is defined as follows:

KS = max
t ∈ [0,1]

|Fpositive(t)− Fnegative(t)|

As the separation between the two distribution functions
becomes larger, the distinction between the two classes a

classifier has made will also improve. The maximum pos-
sible value for the KS is one (representing perfect separa-
tion), with a minimum of zero. The KS statistic is a com-
monly used metric of classifier performance in the credit
scoring application domain [13].

4.3 Noise Injection Procedure

This section describes the noise injection procedure em-
ployed in our empirical study. Note that attribute noise was
injected into all selected instances in the derived datasets,
while class noise was only injected into the training in-
stances, so that the class labels for the test instances were
left uncorrupted. In order to add attribute noise into the
datasets, the level of attribute noise (La) and the number
of significant attributes to be injected with the noise (Na)
were the parameters considered. In the case of class noise,
the level of class noise (Lc) and the percentage of instances
with class noise injected that were originally from the pos-
itive (fault-prone) class (Lm) were the parameters consid-
ered. In this study, the noise injection procedure consisted
of both attribute and class noise and therefore all four pa-
rameters (La, Na, Lc, Lm) were considered.

4.3.1 Class Noise

The class was injected with noise by swapping the respec-
tive class label of some training set instances, e.g., positive
→ negative or negative → positive. The number of train-
ing set instances injected with class noise was a function
of two parameters, Lc and Lm. Five levels of class noise,
Lc ∈ {10%, 20%, 30%, 40%, 50%}, were used. The ac-
tual number of training dataset instances to be injected with
class noise was calculated as 2 ×Lc × |P |, where |P | is the
number of positive instances in the dataset. For example, a

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 251

dataset with 1000 instances, 10% fault-prone modules (100
positive modules), and a Lc of 30% would have a total of
60 instances (2 × 30% × 100) injected with noise.

Further, five percentages of positive instances, Lm ∈
{0%, 25%, 50%, 75%, 100%}, were corrupted from the
positive to the negative class. That is, five different rela-
tive proportions of positive → negative versus negative →
positive were used in this study. Continuing with the pre-
vious example, suppose that the percentage of class noise
corrupted from the positive class was Lm = 75%. Then
of the 60 noisy training set instances, 45 (or 75% of 60) of
these will be from the positive class. The remaining 15 in-
stances with injected noise will be from the negative class.
Therefore, a randomly selected group of 45 instances from
the 100 positive instances in the initial training dataset will
have their respective class labels switched from positive to
negative. In a similar fashion, a randomly selected 15 in-
stances from the 900 negative instances in the initial train-
ing dataset, will have their class labels changed from neg-
ative to positive. Once the noise injection process is com-
pleted, the corrupted dataset of this example would have a
total of 100 - 45 + 15 = 70 positive and 900 + 45 - 15 = 930
negative instances.

4.3.2 Independent Attribute Noise

Independent attributes (software metrics) were in-
jected with noise at five levels, with La ∈
{10%, 20%, 30%, 40%, 50%}. Noise was first injected
into the most significant predictive attribute (based on
the two-sample KS significance test - see Section 4.2),
creating a total of 35 derived datasets (seven initial datasets
and five levels of La). The next 35 datasets were obtained
by corrupting both the most and second-most significant
attributes. This procedure was repeated until the seven
most significant attributes (Na ∈ {1, 2, 3, 4, 5, 7}) were
corrupted. The results of six attributes injected with noise
were excluded from this study because of similarities to
the results obtained when Na = 7. A noise level of 10%
implied that the values for the selected attributes were
corrupted for 10% of the instances. Noise was injected by
replacing the selected attribute value with a randomly se-
lected attribute value reflecting an instance of the opposite
class. For a given injected noise level, the negative and
positive proportions of the instances injected with noise
was approximately the same as the negative and positive
proportions of the given dataset. For example, if the given
dataset had a proportion of 80:20 for negative:positive
instances and if 180 instances were injected with noise,
then the set of instances to be corrupted with attribute
noise would have contained 144 negative and 36 positive
instances.

Since we are evaluating the impact of noise on classi-
fier performance, it is sensible to inject noise into attributes
that are useful for differentiating between fp and nfp in-
stances. In the case of noise injected into a single attribute,
if the chosen attribute was not useful for prediction, then

the classifiers can easily circumvent the effects of attribute
noise. For the purposes of this study, attribute signifi-
cance was evaluated using a two-sample KS significance
test. Other studies can use other attribute significance algo-
rithms and noise injection methodologies.

4.4 Experimental Design Summary
Ten-fold cross validation was applied to build and test the
learning models. Additionally, 10 independent repetitions
of each experiment were performed to avoid any bias that
may occur during the random selection process. The results
reported in this work represent the average of these repeti-
tions. A total of 5,544,000 learning models were built and
evaluated from 11 learners × 6 (total number of signifi-
cant independent attributes) × 5 (levels of attribute noise)
× 7 datasets × 100 (10 runs of 10-fold CV) × 24 (levels
of class noise and percentages of minority instances with
noise3).

Figure 1: Overall Noise Impact on Learners

5 Learning performance
This section is organized as follows: Section 5.1 illustrates
the overall impact on learning performance across all levels
of noise and all datasets; Section 5.2 presents the results of
the analysis of learner performance aggregated by increas-
ing levels of injected noise; Section 5.3 presents the results
of the analysis grouped by the percentage of the minority
class injected with noise; Section 5.4 tabulates the impact
on learner performance as the number of attributes with in-
jected noise increases; Section 5.5 illustrates with figures
the cross-effect of the increasing levels of noise and the per-
centage of positive instances injected with noise on learn-
ing performance; and Section 5.6 contains the analysis of

3The class noise case excluded (one out of 25 possible combinations)
was for the 50% level of noise to be injected into 100% of the minority
class. This case would cause all minority instances to be relabeled, leaving
no minority class instances in the training data.

252 Informatica 33 (2009) 245–259 A. Folleco et al.

variance models (ANOVA) which statistically corroborated
all the observations made from the analysis of the results.

5.1 Overall Classifier Performance

Figure 1 illustrates the impact of both class and attribute
noise across all datasets on each learner. The average value
obtained by the learners for each of the four performance
metrics is provided. According to the AUC, KS, and PRC
metrics, the learner with the best and most robust perfor-
mance is RF, closely followed by 5NN and MLP. RIP, how-
ever, is the best performing learner as measured by FM, fol-
lowed closely by RF, C4D, and NB. The worst performing
learners are RIP, RBF, and C4D according to the AUC, KS,
and PRC metrics. In contrast, the FM metric shows 2NN
and SVM as the worst performing learners. Notice that
SVM (in particular) and 2NN obtained above average per-
formance according to the AUC, KS, and PRC metrics. In
summary, the performances of eight of the learners (C4N,
MLP, RIP, 5NN, SVM, LR, C4D, 2NN) according to the
FM are significantly different from those obtained by the
AUC, KS, and PRC metrics. These differences emphasize
the importance of using an appropriate performance met-
ric when evaluating model performance. The performance
metric should most closely match the intended use of the
learner during post-development deployment.

5.2 Impact of Increasing Levels of Noise on
Learning

Table 3 presents the impact of increasing noise levels (10%,
20%, 30%, 40%, 50%) on learner performance across all
datasets and all levels of Lm and Na. More specifically,
Table 3 considers the performance of the learners built from
training datasets with La equal to Lc, and averaged over all
datasets and all levels of Lm and Na. 10% noise, for ex-
ample, considers the datasets with both 10% attribute noise
(La) and 10% class noise (Lc). Regardless of the metric
used, the peformance of all learners generally decreases as
the level of noise increases. At the highest level of noise
(50%), some learners exhibited a slight increase in perfor-
mance. This is due to the fact that the scenario with 50%
class noise and 100% of the injected noise coming from the
positive class could not be implemented. In this case, there
would be no instances left in the minority class. This same
effect can be observed in Table 4 as well.

In Table 3, the highest value in each row is bolded. The
row labeled ‘Avg’ contains the average of the five levels
of noise for each learner. The average value of the best
performing learner is underlined if it is significantly better,
at the 95% confidence level, than the value from the second
best learner (Tables 4 and 5 also have these enhancements).
The AUC, KS, and PRC metrics agree that RF is the best
and most robust learner. On the other hand, RIP is the most
robust learner at lower levels of noise as measured by the
the FM metric, while NB is the best performing learner

at higher levels of noise. In addition, RIP has the highest
average FM, while RF has the second best.

5.3 Impact of Minority Class Noise on
Learning

The impact of the percentage of instances from the positive
class injected with class noise across all datasets and all
levels of noise is presented in Table 4. This table presents
the impact of minority class noise on the classification per-
formance of each learner. Once again, according to the
AUC, KS, and PRC metrics, RF is the most robust learner
relative to increasing levels of Lm. Furthermore, the aver-
age performances of these three metrics (AUC, KS, PRC)
showed RF as the best and most robust learner.

The FM metric, on the other hand, shows RIP as the top
performing learner for Lm = 0%, 25%, and 50%. When
Lm = 75% or 100%, the top performing learner was NB.
However, the learner with the best averaged performance
was RIP, followed by RF. Incidently, none of the learners
showed an increase in FM when 100% of the positive in-
stances had noise. The results based on the FM metric con-
tinue to be quite different from the results obtained using
the AUC, KS, and PRC metrics.

5.4 Impact of the Number of Significant
Attributes with Noise

Table 5 illustrates the impact of increasing the number of
attributes with noise on learner performance. For each
learner, the performance is averaged over all datasets and
all values of Lm, Lc, and La. Once again according to the
same three metrics (AUC, KS, and PRC), RF is the best
performing learner. Relative to the FM metric, RIP is the
most robust learner, while RF is the second best performing
learner. Clearly, the selection of a learning technique can be
dramatically influenced by the choice of performance met-
ric used for measuring the results. It is also apparent that
the learning performance of all learners drop as the num-
ber of significant attributes with injected noise increased.
This is particularly noticeable when Na was 5 or 7. For the
datasets used in this study, 5 attributes represent approxi-
mately 39% of all the attributes.

5.5 Impact of Noise Levels and Percentage
of Noise Injected into Minority Instances

Figures 2 to 9 illustrate with line plots the impact of the fac-
tor interaction between the overall noise levels and the per-
centage of noisy instances injected into the positive class
Lm, across all datasets. Only the best and worst perform-
ing learners are presented for each respective performance
metric due to space limitations.

Figures 2 and 3 illustrate the impact of the cross-effect
between the overall noise and Lm as measured by the AUC
metric. RF was the best performing learner relative to this

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 253

Table 3: Impact of Increasing Noise Levels on Learning

Met n-% C4N NB MLP RIP 5NN SVM RF RBF LR C4D 2NN
AUC 10 0.9728 0.9702 0.9758 0.9425 0.9808 0.9891 0.9939 0.9124 0.9674 0.9320 0.9708

20 0.9651 0.9584 0.9712 0.9279 0.9742 0.9804 0.9906 0.8782 0.9543 0.9017 0.9581
30 0.9465 0.9458 0.9578 0.8785 0.9645 0.9505 0.9846 0.8461 0.9385 0.8644 0.9414
40 0.9209 0.9281 0.9349 0.8095 0.9478 0.8842 0.9704 0.8106 0.9077 0.8105 0.9201
50 0.9178 0.9209 0.9399 0.8139 0.9210 0.8627 0.9510 0.7828 0.9066 0.8093 0.8899

Avg 0.9446 0.9447 0.9559 0.8745 0.9577 0.9334 0.9781 0.8460 0.9349 0.8636 0.9359
KS 10 0.9175 0.8638 0.8880 0.8827 0.9100 0.9314 0.9557 0.8354 0.8801 0.8733 0.8778

20 0.8994 0.8333 0.8736 0.8474 0.8844 0.9069 0.9404 0.7863 0.8525 0.8314 0.8389
30 0.8423 0.8083 0.8420 0.7320 0.8495 0.8483 0.9179 0.7416 0.8246 0.7411 0.7965
40 0.7789 0.7804 0.7964 0.5902 0.8018 0.7419 0.8784 0.6928 0.7769 0.6149 0.7546
50 0.7911 0.7670 0.8041 0.5903 0.7477 0.7231 0.8187 0.6827 0.7773 0.6210 0.7102

Avg 0.8458 0.8106 0.8408 0.7285 0.8387 0.8303 0.9022 0.7477 0.8223 0.7363 0.7956
PRC 10 0.9155 0.8608 0.9251 0.8754 0.9407 0.9554 0.9728 0.8353 0.9085 0.8655 0.9062

20 0.8953 0.8408 0.9123 0.8496 0.9207 0.9338 0.9584 0.7917 0.8838 0.8291 0.8618
30 0.8444 0.8233 0.8828 0.7618 0.8892 0.8806 0.9316 0.7498 0.8545 0.7585 0.8015
40 0.7847 0.8018 0.8382 0.6412 0.8334 0.7794 0.8779 0.7007 0.8063 0.6507 0.7259
50 0.7725 0.7869 0.8403 0.6397 0.7489 0.7601 0.7911 0.6781 0.8037 0.6499 0.6284

Avg 0.8425 0.8227 0.8797 0.7536 0.8665 0.8618 0.9063 0.7511 0.8513 0.7507 0.7848
FM 10 0.8838 0.7799 0.8495 0.9051 0.8669 0.8218 0.9208 0.8323 0.8280 0.8918 0.8291

20 0.8376 0.7452 0.8018 0.8846 0.8048 0.7139 0.8564 0.7660 0.7454 0.8506 0.7375
30 0.7120 0.7211 0.6694 0.7982 0.6939 0.6088 0.7389 0.6732 0.6503 0.7240 0.6410
40 0.5753 0.7006 0.5225 0.6596 0.5555 0.4938 0.5891 0.5749 0.5516 0.5806 0.5313
50 0.5956 0.7024 0.5318 0.6557 0.5603 0.4938 0.5908 0.5837 0.5514 0.6014 0.5025

Avg 0.7209 0.7298 0.6750 0.7807 0.6963 0.6264 0.7392 0.6860 0.6654 0.7297 0.6483

Table 4: Impact of Minority Class Noise, Lm

Met Lm C4N NB MLP RIP 5NN SVM RF RBF LR C4D 2NN
AUC 0% 0.9658 0.9796 0.9805 0.9448 0.9703 0.9890 0.9909 0.9348 0.9801 0.9442 0.9570

25% 0.9580 0.9603 0.9718 0.9384 0.9645 0.9844 0.9844 0.8841 0.9602 0.9114 0.9410
50% 0.9487 0.9395 0.9614 0.9020 0.9532 0.9486 0.9756 0.8215 0.9377 0.8641 0.9246
75% 0.9360 0.9192 0.9354 0.8021 0.9418 0.8663 0.9650 0.7735 0.9033 0.7952 0.9171

100% 0.9136 0.9257 0.9223 0.7777 0.9679 0.8825 0.9805 0.8246 0.8900 0.8014 0.9526
Avg 0.9444 0.9449 0.9543 0.8730 0.9595 0.9342 0.9793 0.8477 0.9342 0.8632 0.9384

KS 0% 0.9054 0.8988 0.8970 0.8859 0.8742 0.9341 0.9358 0.8794 0.9113 0.8888 0.8527
25% 0.8783 0.8366 0.8723 0.8693 0.8545 0.9212 0.9141 0.8059 0.8630 0.8444 0.8020
50% 0.8607 0.7909 0.8474 0.7736 0.8207 0.8497 0.8888 0.7221 0.8203 0.7639 0.7723
75% 0.8214 0.7558 0.7996 0.5731 0.8040 0.7230 0.8648 0.6568 0.7671 0.6037 0.7581

100% 0.7565 0.7716 0.7746 0.5281 0.8631 0.7237 0.9299 0.6724 0.7428 0.5709 0.8136
Avg 0.8445 0.8107 0.8382 0.7260 0.8433 0.8303 0.9067 0.7473 0.8209 0.7343 0.7997

PRC 0% 0.9065 0.8790 0.9325 0.8745 0.9164 0.9552 0.9613 0.8575 0.9388 0.8606 0.8547
25% 0.8757 0.8417 0.9112 0.8618 0.8931 0.9440 0.9277 0.8017 0.8952 0.8348 0.7990
50% 0.8395 0.8103 0.8874 0.7961 0.8507 0.8816 0.8851 0.7309 0.8494 0.7795 0.7452
75% 0.8115 0.7848 0.8414 0.6312 0.8073 0.7636 0.8501 0.6722 0.7936 0.6492 0.7248

100% 0.7808 0.8005 0.8180 0.5952 0.8944 0.7660 0.9367 0.6970 0.7736 0.6246 0.8430
Avg 0.8428 0.8233 0.8781 0.7518 0.8724 0.8621 0.9122 0.7519 0.8501 0.7497 0.7933

FM 0% 0.8550 0.8223 0.8640 0.9053 0.8501 0.8881 0.8810 0.8552 0.8766 0.8952 0.7337
25% 0.8354 0.7583 0.8229 0.8925 0.8344 0.7720 0.8746 0.8050 0.7954 0.8677 0.7062
50% 0.7740 0.7133 0.7041 0.8337 0.7322 0.5876 0.7816 0.6960 0.6490 0.7800 0.6546
75% 0.5940 0.6793 0.6185 0.6499 0.5574 0.4474 0.6051 0.5504 0.5067 0.5757 0.5871

100% 0.5336 0.6693 0.4605 0.6136 0.4939 0.4229 0.5443 0.5083 0.4861 0.5120 0.5743
Avg 0.7184 0.7285 0.6940 0.7790 0.6936 0.6236 0.7373 0.6830 0.6627 0.7261 0.6512

254 Informatica 33 (2009) 245–259 A. Folleco et al.

Table 5: Noise Impact by Number of Significant Attributes, Na

Met Na C4N NB MLP RIP 5NN SVM RF RBF LR C4D 2NN
AUC 1 0.9558 0.9672 0.9685 0.9029 0.9727 0.9408 0.9840 0.8543 0.9334 0.8926 0.9594

2 0.9547 0.9627 0.9674 0.8949 0.9694 0.9419 0.9844 0.8543 0.9410 0.8867 0.9541
3 0.9497 0.9563 0.9649 0.8824 0.9635 0.9426 0.9816 0.8543 0.9448 0.8717 0.9433
4 0.9493 0.9493 0.9635 0.8795 0.9593 0.9420 0.9823 0.8528 0.9431 0.8707 0.9358
5 0.9375 0.9380 0.9592 0.8682 0.9533 0.9375 0.9748 0.8478 0.9418 0.8515 0.9264
7 0.9273 0.9006 0.9160 0.8341 0.9370 0.9107 0.9682 0.8286 0.9124 0.8218 0.9082

Avg 0.9457 0.9456 0.9566 0.8770 0.9592 0.9359 0.9792 0.8487 0.9361 0.8658 0.9379
KS 1 0.8771 0.8700 0.8745 0.7863 0.8725 0.8576 0.9251 0.7697 0.8279 0.7887 0.8493

2 0.8721 0.8556 0.8704 0.7680 0.8622 0.8556 0.9254 0.7676 0.8393 0.7784 0.8303
3 0.8557 0.8340 0.8614 0.7426 0.8523 0.8503 0.9140 0.7612 0.8453 0.7483 0.8046
4 0.8549 0.8150 0.8558 0.7383 0.8448 0.8456 0.9133 0.7570 0.8401 0.7469 0.7931
5 0.8303 0.7898 0.8447 0.7192 0.8326 0.8270 0.8917 0.7441 0.8278 0.7174 0.7765
7 0.7987 0.7097 0.7473 0.6511 0.7904 0.7673 0.8648 0.7031 0.7644 0.6672 0.7413

Avg 0.8481 0.8124 0.8423 0.7343 0.8425 0.8339 0.9057 0.7504 0.8242 0.7412 0.7992
PRC 1 0.8730 0.8958 0.9105 0.8103 0.9007 0.8870 0.9266 0.7824 0.8619 0.8023 0.8342

2 0.8725 0.8787 0.9067 0.7953 0.8929 0.8845 0.9290 0.7746 0.8710 0.7944 0.8224
3 0.8537 0.8547 0.8982 0.7654 0.8831 0.8806 0.9186 0.7654 0.8751 0.7614 0.8008
4 0.8527 0.8228 0.8946 0.7615 0.8749 0.8771 0.9195 0.7583 0.8689 0.7598 0.7908
5 0.8359 0.7926 0.8855 0.7476 0.8641 0.8609 0.9045 0.7409 0.8581 0.7385 0.7731
7 0.7844 0.7006 0.7928 0.6697 0.8130 0.8018 0.8686 0.7033 0.7850 0.6732 0.7264

Avg 0.8454 0.8242 0.8814 0.7583 0.8715 0.8653 0.9111 0.7542 0.8533 0.7549 0.7913
FM 1 0.7578 0.7855 0.7055 0.8287 0.7289 0.6478 0.7664 0.7156 0.6891 0.7743 0.6675

2 0.7538 0.7730 0.7032 0.8158 0.7241 0.6466 0.7651 0.7080 0.6912 0.7684 0.6669
3 0.7316 0.7555 0.6962 0.7907 0.7147 0.6424 0.7526 0.6997 0.6880 0.7402 0.6630
4 0.7290 0.7320 0.6920 0.7874 0.7057 0.6401 0.7514 0.6926 0.6857 0.7375 0.6608
5 0.7173 0.7063 0.6847 0.7782 0.6986 0.6311 0.7398 0.6785 0.6706 0.7238 0.6480
7 0.6671 0.6334 0.6041 0.7145 0.6396 0.5735 0.6968 0.6473 0.5959 0.6661 0.6201

Avg 0.7261 0.7310 0.6810 0.7859 0.7019 0.6302 0.7454 0.6903 0.6701 0.7351 0.6544

Figure 2: Cross-effect of Noise Level and Lm on RF by
AUC

noise combination. The impact on RF was only at the high-
est level of noise (50%) and when Lm was more than 50%.
On the other hand, RBF was the learner most affected by
this factor interaction. Even at the lowest level of noise of
10% and with Lm = 50% or more, the performance of RBF
declined substantially.

Figures 4 and 5 illustrate the impact of the factor interac-
tion between the overall noise and Lm as measured by the
KS metric. For the RF learner, which was the best perform-

Figure 3: Cross-effect of Noise Level and Lm on RBF by
AUC

ing and most robust learner relative to the KS, significant
deterioration was only seen at the 40% level of noise or
higher, and when Lm was more than 50%. In contrast, RIP
was the learner most affected by this interaction. The per-
formance of RIP was affected little at the lowest level of
noise of 10%. However, for all other noise levels and when
Lm was 25% or more, the performance of RIP declined
dramatically.

Figures 6 and 7 illustrate the impact of the factor interac-

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 255

Figure 4: Cross-effect of Noise Level and Lm on RF by KS

Figure 5: Cross-effect of Noise Level and Lm on RIP by
KS

tion between the overall noise and Lm as measured by the
PRC metric. The best performing and most robust learner
to this type of noise was RF. On the other hand, RBF was
the learner most affected by this factor interaction. Even
at the lowest level of noise of 10% and with Lm = 50% or
more, RBF’s performance declined very significantly.

Figures 8 and 9 illustrate the impact of the cross-effect
between the overall noise and Lm as measured by the FM
metric. The best performing and most robust learner was
RIP. Nevertheless, the performance of RIP was noticeably
affected when the noise level was 30% or more and Lm

was 50% or more. On the other hand, SVM was the learner
most affected by this factor interaction. Even at the low-
est level of noise and when Lm was 25% or more, SVM’s
performance declined very significantly.

These figures clearly illustrate the very significant dete-
rioration of learning performance when both the levels of
noise and the percent of positive instances with noise in-
creased. In real-life scenarios, this observation would im-
ply that noise, and, in particular, the amount of noise in the

Figure 6: Cross-effect of Noise Level and Lm on RF by
PRC

Figure 7: Cross-effect of Noise Level and Lm on RBF by
PRC

minority class specifically, are critically important factors
determining the ultimate reliability and value of any classi-
fication undertaking.

5.6 Analysis of Variance (ANOVA)

The results presented in this study are also tested and val-
idated for statistical significance at the α = 5% level using
five factor analysis of variance [2] models. An ANOVA
model can be used to test the hypothesis that the classifi-
cation performances of each level of the main factors are
equal against the alternative hypothesis that at least one
is different. Note that in this study, only the main factor
representing the classification techniques (learners) and the
corresponding cross-effects with the other factors were in-
vestigated in detail. The five factor models [2] used in this
work can be represented as follows:

256 Informatica 33 (2009) 245–259 A. Folleco et al.

Figure 8: Cross-effect of Noise Level and Lm on RIP by
FM

Figure 9: Cross-effect of Noise Level and Lm on SVM by
FM

ψ(jklmin) = µ+ Cj + Lc
k + Lm

l + La
m +Na

i + ε(jklmin)

where the parameters of the model are defined as:

– ψ(jklmin) is the response variable (AUC, KS, PRC, or
FM) for the nth observation of the jth level of C, kth

level of Lc, lth level of Lm, mth level of La, and ith

level of Na.

– µ is the overall mean effect on the observations of each
response variable.

– Cj (resp., Lc
k, Lm

l , La
m, Na

i) is the mean performance
of level j (resp., k, l, m, i) for factor C (resp., Lc, Lm,
La, Na).

– ε(jklmin) is the random error.

The main factor (the learner) is tested to see if the av-
erage performance of the 11 levels (classifiers/learners) of
C and the corresponding interactions with the five levels
of Lc, the five levels of Lm, the five levels of La, and the
six groups of Na are equal, respectively. Only the most
significant two or three-way interactions were reported in
this article. An example of a two-way factor interaction
can be C × Lm

(jl), which represents the interaction of the
learners and the Lm factor. To determine which response
variable (AUC, KS, PRC, or FM) values are significantly
different, a pair-wise comparison of each response variable
with the null hypothesis that they are equal (i.e., not sig-
nificantly different) can be used. In this study, we apply
the Tukey’s Honestly Significant Difference (HSD) test to
identify which levels of the main factor are significantly
different [2].

The ANOVA models were built using the AUC, KS,
PRC, and FM metrics as the respective response variables.
The Fisher’s distribution values (F -values) of the factor
and the most significant multi-way interactions were tab-
ulated with their corresponding p-values in Table 6. This
table shows the significance of the experimental factor and
its interactions by the respective p-values. The main factor
and the two or three-way interaction terms are statistically
significant at α = 5% with p-values << 0.001, which are
denoted < 0.0001. We report the most significant two or
three-way factor interactions.

In Table 6, the learners (or C factor) had the highest
F -values as measured by all four metrics. This agrees
with our previous observation made in the analysis that the
choice of learner, particularly in the presence of low qual-
ity class imbalanced data, can be critical to classification
performance. The most significant multi-way factor inter-
action was statistically determined to be the learners and
the number of instances injected with noise from the mi-
nority class, C × Lm. This observation indicates that on
average, the performance of the classification techniques
investigated in this study were most affected when the pos-
itive instances contained noise. This is true regardless of
the performance metric used in this work. The second
most significant factor interaction was with the levels of
class noise, C × Lc. This indicates that on average the
level of class noise can also significantly impact the perfor-
mance of the learning techniques. Furthermore, the three-
way factor interaction of the learners, the percentage of
positive instances with noise, and the level of class noise
(C × Lc × Lm) also shows a significant impact on learn-
ing performance. Once again, all four performance metrics
concurred on this result.

On the other hand, and according to all four metrics, the
interaction with the level of attribute noise (C × La) was
relatively less significant compared to the other two-way
cross-effect presented in Table 6. This also corroborates
previous observations made elsewhere by our group that
attribute noise is not nearly as significant as class noise to
classification performance.

Table 7 provides the mean values of each metric as well

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 257

Table 6: ANOVA Models

AUC KS PRC FM
Factor DoF F -val p-val F -val p-val F -val p-val F -val p-val

C 10 33528.0 <0.0001 18082.2 <0.0001 16223.8 <0.0001 13660.7 <0.0001
C ×Na 50 201.6 <0.0001 198.8 <0.0001 204.6 <0.0001 142.4 <0.0001
C × La 40 39.4 <0.0001 57.6 <0.0001 108.1 <0.0001 76.3 <0.0001
C × Lc 40 1191.3 <0.0001 1438.3 <0.0001 1027.2 <0.0001 1582.9 <0.0001
C × Lm 40 2967.4 <0.0001 3830.0 <0.0001 1838.0 <0.0001 3300.6 <0.0001
C ×Na × La 200 9.3 <0.0001 8.2 <0.0001 9.0 <0.0001 8.2 <0.0001
C ×Na × Lc 200 5.1 <0.0001 5.7 <0.0001 4.7 <0.0001 2.6 <0.0001
C × Lm ×Na 200 10.5 <0.0001 16.4 <0.0001 11.5 <0.0001 4.1 <0.0001
C × Lc × La 160 1.1 0.3 2.3 <0.0001 1.2 0.0420 0.6 1.0
C × Lm × La 160 2.4 <0.0001 4.3 <0.0001 1.4 0.0003 1.8 <0.0001
C × Lc × Lm 160 587.2 <0.0001 831.2 <0.0001 440.3 <0.0001 837.1 <0.0001

Table 7: ANOVA Factor: C
AUC KS PRC FM

C Mean HSD C Mean HSD C Mean HSD C Mean HSD
RF 0.9792 A RF 0.9057 A RF 0.9111 A RIP 0.7859 A

5NN 0.9591 B C4N 0.8481 B MLP 0.8814 B RF 0.7454 B
MLP 0.9566 C 5NN 0.8425 C 5NN 0.8715 C C4D 0.7351 C
C4N 0.9457 D MLP 0.8423 C SVM 0.8653 D NB 0.7310 D
NB 0.9456 D SVM 0.8339 D LR 0.8533 E C4N 0.7261 E

2NN 0.9379 E LR 0.8242 E C4N 0.8454 F 5NN 0.7019 F
LR 0.9361 F NB 0.8124 F NB 0.8242 G RBF 0.6903 G

SVM 0.9359 F 2NN 0.7992 G 2NN 0.7913 H MLP 0.6810 H
RIP 0.8770 G RBF 0.7504 H RIP 0.7583 I LR 0.6701 I
C4D 0.8658 H C4D 0.7411 I C4D 0.7549 J 2NN 0.6544 J
RBF 0.8487 I RIP 0.7343 J RBF 0.7542 J SVM 0.6302 K

as the significant HSD grouping levels for each learner.
Note that if two or more instances of the factor have the
same block letter, then their performances are not signifi-
cantly different. Table 7 shows the overall impact of noise
across all levels of noise and all datasets on the perfor-
mance of each learner C. According to the AUC, KS, and
PRC metrics, RF performs significantly better than all of
the other learners. The second best learner varies by metric
(5NN for AUC, C4N for KS, and MLP for PRC). In gen-
eral, RF, 5NN, and MLP perform very well as measured
by AUC, KS, and PRC, while C4D, RIP, and RBF are the
most affected by noise. The FM metric, however, shows
RIP as the most robust learner in group ‘A’, followed by
RF in group ‘B’. The two learners most impacted by noise
were 2NN and SVM, according to the FM metric. Inter-
estingly, two of the worst performing learners (C4D and
RIP) according to the AUC, KS, and PRC are among the
top three performing techniques according to FM.

The best performing and most robust classifier regardless
of the quality of the data was RF, according to the AUC,
KS, and PRC metrics. According to the FM metric, RF
was the second best performing learner and was uniquely
placed in group ‘B’, while RIP was the best performing
learner. It is noteworthy to emphasize the unmatched ro-
bustness of RF in the presence of any type and level of
noise injected in these experiments. To summarize, the
ANOVA analysis presented in this section has corroborated

our previous observations and conclusions regarding the
robustness of the RF learner in the presence of low qual-
ity and class imbalanced data. Further, the percent of in-
stances injected with noise from the minority class and the
level of class noise present in the data, respectively, had the
most profound effect on learning. The results from the FM
metric are substantially different from the other three met-
rics (AUC, KS, PRC) and thus reiterate the importance of
determining the appropriate metric for measuring learner
performance.

6 Conclusion
The objective of this study was to investigate the robust-
ness of a variety of common-used learning algorithms rel-
ative to low quality, class imbalanced measurement data.
Real-world software measurement data typically contains
an imbalanced class distribution, and if erroneous attribute
values are also present, the impact on learning would be
more significant. Our classification study using 11 differ-
ent learning techniques and low quality, class imbalanced
data can be most helpful to practitioners in many appli-
cation domains. In order to conduct this investigation, a
comprehensive suite of experiments was designed and im-
plemented with the use of seven real world measurement
datasets, initially relatively free of noise. A novel noise
injection procedure was designed and applied using sev-

258 Informatica 33 (2009) 245–259 A. Folleco et al.

eral domain realistic noise parameters. The results were
measured using four distinct performance metrics appro-
priate for imbalanced data. The level of comprehensive-
ness achieved in this study can be easily seen by the mere
fact that over 5.5 million classification models were built
and evaluated during our experimentation.

In general, the results unequivocally demonstrated that
the quality of the measurement data (both attribute and
class noise) can impact classification performance signif-
icantly. All conclusions and observations made in the anal-
ysis of this study were statistically verified by construct-
ing analysis of variance (ANOVA) models. The learning
technique with the best and most consistent performance
in all experiments was the random forest ensemble clas-
sification technique. Three (AUC, KS, PRC) of the four
performance metrics used in this study concurred on the
determination of RF as the best and most robust learner.
According to the FM metric, RF was second only to the
RIP rule-based learner. On the other hand, those learners
most impacted by low quality class imbalanced data were
C4D, RIP, and RBF, according to the AUC, KS, and PRC
metrics. Curiously, C4D and RIP learners were amoung
the top three best performing techniques as measured by
FM. The worst performing learners according to the FM
metric were SVM and 2NN. These results are also unusual
because both learners, SVM (in particular) and 2NN, are
known to generate acceptable classification performances
even in the presence of low quality class imbalanced data,
as reported in this study with the results from the AUC, KS,
and PRC metrics.

Regardless of the quality of the measurement data and
whether or not the data has significant class imbalance, we
are very confident in recommending the random forest en-
semble classifier for learning initiatives. To our knowl-
edge, no other related classification study has identified
a learning technique significantly robust with consistently
excellent performance in the presence of low quality, class
imbalanced measurement data using four distinct perfor-
mance metrics. Future work will consider performance
enhancing techniques such as cost-sensitive learning and
boosting and will also include additional datasets and learn-
ing techniques. Additional noise injection methodologies
can also be considered in future work.

References

[1] D. W. Aha. Lazy learning. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1997.

[2] M. L. Berenson, D. M. Levine, and M. Goldstein. In-
termediate Statistical Methods and Applications: A
Computer Package Approach. Prentice-Hall, Inc.,
1983.

[3] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Chapman and
Hall/CRC Press, Boca Raton, FL, 1984.

[5] C. E. Brodley and M. A. Friedl. Identifying misla-
beled training data. Journal of Artificial Intelligence
Research, 11:131–167, 1999.

[6] W. W. Cohen. Fast effective rule induction. In Proc.
12th International Conference on Machine Learning,
pages 115–123. Morgan Kaufmann, 1995.

[7] W. Conover. Practical Nonparametric Statistics. John
Wiley and Sons, NY, 1971.

[8] J. Davis and K. Goadrich. The relationship between
precision-recall and roc curves. In Proceedings of
23rd International Conference on Maachine Learn-
ing, Pittsburgh, PA, 2006.

[9] C. Elkan. The foundations of cost-sensitive learning.
In Proceedings of the Seventeenth International Con-
ference on Machine Learning, pages 239–246, 2001.

[10] Y. Feng, Z. Wu, and Z. Zhou. Enhancing relia-
bility throughout knowledge discovery process. In
6th IEEE International Conference on Data Mining -
Reliability Issues in Knowledge Discovery Workshop
(RIKD06), pages 754–758, 2006.

[11] A. Folleco, T. M. Khoshgoftaar, J. Van Hulse, and
L. Bullard. Identifying learners robust to low qual-
ity data. In Proceedings of the IEEE International
Conference on Information Reuse and Integration-
IRI’08, pages 190–195, July 2008.

[12] E. Frank, L. Trigg, G. Holmes, and I. Witten. Naive
bayes for regression. Machine Learning, pages 1–20,
2000.

[13] D. J. Hand. Good practice in retail credit scorecard
assessment. Journal of the Operational Research So-
ciety, 56:1109–1117, 2005.

[14] D. Hosmer and S. Lemeshow. Applied Logistic Re-
gression. John Wiley Sons, Inc, 2nd edition, 2000.

[15] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse.
An empirical study of learning from imbalanced data
using random forest. In Proceedings of 19th IEEE In-
ternational Conference on Tools with Artificial Intelli-
gence, pages 310–317, Patras, Greece, October 2007.

[16] T. M. Khoshgoftaar, V. Joshi, and N. Seliya. Detect-
ing noisy instances with the ensemble filter: A study
in software quality estimation. International Journal
of Software Engineering and Knowledge Engineer-
ing, 16(1):1–24, 2006.

[17] T. M. Khoshgoftaar and N. Seliya. The necessity of
assuring quality in software measurement data. In
Proceedings of 10th International Software Metrics

IDENTIFYING LEARNERS ROBUST TO LOW QUALITY DATA Informatica 33 (2009) 245–259 259

Symposium, pages 119–130, Chicago, IL, September
2004. IEEE Computer Society.

[18] T. M. Khoshgoftaar, N. Seliya, and K. Gao. Detect-
ing noisy instances with the rule-based classification
model. Intelligent Data Analysis:An International
Journal, 9(4):347–364, 2005.

[19] W. Lee, S. J. Stolfo, and K. W. Mok. A data min-
ing framework for building intrusion detection mod-
els. Proceedings of IEEE Symposium on Security and
Privacy, pages 120–132, May 1999.

[20] R. J. A. Little and D. B. Rubin. Statistical Analysis
with Missing Data. John Wiley and Sons, Hoboken,
NJ, 2nd edition, 2002.

[21] J. Moody and C. J. Darken. Fast learning in networks
of locally tuned processing units. Neural Computa-
tion, 1(2):281–294, 1989.

[22] F. Provost and T. Fawcett. Robust classification for
imprecise environments. Machine Learning, 42:203–
231, 2001.

[23] J. R. Quinlan. C4.5: Programs For Machine Learn-
ing. Morgan Kaufmann, San Mateo, California, 1993.

[24] B. Schölkopf, C. J. C. Burges, and A. J. Smola, ed-
itors. Advances in Kernel Methods: Support Vec-
tor Learning. MIT Press, Cambridge, Massachusetts,
1999.

[25] J. Van Hulse. Data quality in data mining and ma-
chine learning. Ph.D. Dissertation, Department of
Computer Science and Engineering, Florida Atlantic
University, Boca Raton, FL USA, May 2007. Advised
by T. M. Khoshgoftaar.

[26] J. Van Hulse and T. M. Khoshgoftaar. Class noise de-
tection using frequent itemsets. Intelligent Data Anal-
ysis: An International Journal, 10(6):487–507, 2006.

[27] J. Van Hulse, T. M. Khoshgoftaar, and H. Huang. The
pairwise attribute noise detection algorithm. Knowl-
edge and Information Systems Journal, Special Issue
on Mining Low Quality Data, 11(2):171–190, 2007.

[28] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano.
Skewed class distributions and mislabeled examples.
In Seventh IEEE International Conference on Data
Mining - Workshops (ICDMW’07), pages 477–482,
October 2007.

[29] G. Weiss. Learning with rare cases and small dis-
juncts. In Proceedings of the 12th International
Conference on Machine Learning, pages 558–565.
Morgan-Kaufmann, 1995.

[30] G. M. Weiss and F. Provost. Learning when training
data are costly: the effect of class distribution on tree
induction. Journal of Artificial Intelligence Research,
19:315–354, 2003.

[31] I. H. Witten and E. Frank. Data Mining: Practi-
cal machine learning tools and techniques. Morgan
Kaufmann, San Francisco, California, 2nd edition,
2005.

[32] X. Zhu and X. Wu. Class noise vs attribute noise: A
quantitative study of their impacts. Artificial Intelli-
gence Review, 22(3-4):177–210, November 2004.

[33] X. Zhu and X. Wu. Cost-guided class noise han-
dling for effective cost-sensitive learning. In 4th IEEE
International Conference on Data Mining (ICDM
2004), pages 297–304, November 2004.

[34] X. Zhu, X. Wu, T. M. Khoshgoftaar, and Y. Shi. An
empirical study of the noise impact on cost-sensitive
learning. In International Joint Conference on Artifi-
cial Intelligence, pages 1168–1174, 2007.

[35] L. Zhuang and H. Dai. Reducing performance bias
for unbalanced text mining. In 6th IEEE Interna-
tional Conference on Data Mining - Reliability Issues
in Knowledge Discovery Workshop (RIKD06), pages
770–774, 2006.

260 Informatica 33 (2009) 245–259 A. Folleco et al.

