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This paper proposes a technique to compute dynamic slices of feature-oriented programs with aspect-
oriented extensions. The technique uses a dependence based intermediate program representation called
composite feature-aspect dependence graph (CFADG) to represent feature-oriented software that contain
aspects. The CFADG of a feature-oriented program is based on the selected features that are composed
to form a software product and the selected aspects to be weaved. The proposed dynamic slicing tech-
nique has been named feature-aspect node-marking dynamic slicing (FANMDS) algorithm. The proposed
feature-aspect node marking dynamic slicing algorithm is based on marking and unmarking the executed
nodes in the CFADG suitably during run-time. The advantage of the proposed approach is that no trace
file is used to store the execution history. Also, the approach does not create any additional nodes during
run-time.

Povzetek: Prispevek predstavlja izvirni pristop pri programiranju na osnovi sprejemljivk z aspektno orien-
tiranimi podaljški. Gre za računanje dinamičnih odsekov omenjenih programov.

1 Introduction

Weiser [33] first introduced the concept of a program slice.
Program slicing decomposes a program into different parts
related to a particular computation. A slicing criterion is
used to construct a program slice. A slicing criterion is a tu-
ple, < s, v >, consisting of a statement s, in a program and
a variable v, used or defined at that statement s. Program
slicing technique is employed in many areas of software
engineering including debugging, program understanding,
testing, reverse engineering, etc.

Feature-oriented programming (FOP) is concerned with
the separate definition of individual features and the com-
position of required features to build varieties of a partic-
ular software product. The functionalities of a software
product are identified as features in FOP paradigm. FOP is
used to implement software product lines and incremental
designs. A family of software systems constitutes a soft-
ware product line [20].
Motivation: Today, the variability of software products is
crucial for successful software development. One mech-
anism to provide the required variability is through Soft-
ware Product Lines, which is inspired by product lines
used in the industry, like product lines used in the pro-
duction of a car or a meal at some fast-food restaurant.
Feature-Oriented Programming (FOP) approach is used
to implement software product lines. Despite the advan-

tages, feature-oriented programming (FOP) yields some
problems in expressing features such as lack of express-
ing crosscutting modularity. During software evolution,
a software should adapt the unanticipated requirements
and circumstances. This leads to modifications and ex-
tensions that crosscut many existing implementation units.
The problem of crosscutting modularity is solved by us-
ing aspect-oriented programming (AOP). Kiczales et al.
[8] proposed AOP paradigm to separate and modularize
the crosscutting concerns like exception handling, synchro-
nization, logging, security, resource sharing, etc. The mod-
ularity of crosscutting concerns in FOP can be improved
by integrating AOP paradigm into FOP paradigm. In dy-
namic slicing techniques, first an intermediate representa-
tion of the program is statically created in the form of a
dependence graph. Then, the dynamic slice is computed
by traversing the graph, starting from the point specified
in the slicing criterion, using an algorithm. For the pro-
grams in general languages like C/C++, Java etc., a sin-
gle dependence graph is created. There is no composition
of features in these languages. FOP is used to develop a
family of software products. In FOP (with AOP exten-
sions), multiple dependence graphs are created depending
upon the composition of features and aspects. For exam-
ple, if there are four features and two aspects in a product
line out of which two features and one aspect are manda-
tory, then there are eight possible combinations of features
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and aspects. Each possible combination of features and as-
pects creates a different product. Thus, there are eight soft-
ware products in the product line. Accordingly, there are
eight dependence graphs, one graph for each product. Dy-
namic slice for each possible combination of features and
aspects is computed using the corresponding dependence
graph. The dynamic slice consists of statements from the
composed program that is generated after composition of
features and aspects. These statements are again mapped
back to the program used for composition. This mapping
is not required in general languages like C/C++, Java etc.
Again, feature-oriented programs have some special char-
acteristics such as mixins, mixin layers, refinements etc.
which are not present in case of general languages like
C/C++, Java etc. These characteristics of feature-oriented
programs require inclusion of some new nodes/edges in the
dependence graph. Similarly, these characteristics require
introduction of some new steps/phases in the slicing algo-
rithm (e.g., the handling mixins, the handling of mixin lay-
ers, etc.), which are not required in the case of general lan-
guages like C/C++, Java, etc. The existing dynamic slic-
ing algorithms for aspect-oriented programs cannot be di-
rectly applied for slicing of feature-oriented programs with
aspect-oriented extensions due to the specific features of
feature-oriented programs such as the presence of mixin
layers, refinements of classes, refinements of constructors
etc. These characteristics of feature-oriented programs re-
quires inclusion of some new nodes/edges in the depen-
dence graph. Similarly, these characteristics require the
introduction of some new steps/phases in the slicing algo-
rithm. Although FOP is an extension of OOP, the existing
dynamic slicing algorithms for C/C++, Java cannot be di-
rectly applied for slicing of feature-oriented programs due
to the presence of aforementioned specific features. Since,
program slicing has many applications including testing,
software maintenance etc., there is an increasing demand
for slicing of feature-oriented programs.
Objective: The main objectives of this work are to develop
a suitable intermediate representation of feature-oriented
programs with aspect-oriented extension and to propose an
efficient slicing algorithm to compute dynamic slices for
the above types of programs using the developed interme-
diate representation. A dependence graph is used to sig-
nify the intermediate representation. For a single feature-
oriented program, more than one dependence graph can be
obtained depending on the number of features to be com-
posed and the number of aspects to be captured. We also
aim at calculating the slice computation time for different
compositions of features and different aspects captured.
Organization: The organization of rest of the paper is as
follows. Section 2 provides a brief introduction to feature-
oriented programming (FOP) and program slicing. Section
3 discusses the construction of composite feature-aspect
dependence graph (CFADG), which is a dependence based
intermediate representation of feature-oriented programs
containing aspects. In Section 4, the details of our pro-
posed algorithm named feature-aspect node marking dy-

namic slicing (FANMDS) algorithm, is discussed. This
section also presents the space and time complexity of
FANMDS algorithm. Section 5 furnishes a brief overview
of the implementation of FANMDS algorithm along with
experimental results. A brief comparison of the proposed
work with some other related work is furnished in Section
6. Section 7 concludes the paper along with some possible
future work.

2 Basic concepts

In this Section, we provide some basic concepts of feature-
oriented programming and outline the features of Jak lan-
guage, which is a feature-oriented programming language.
We also discuss the problems of feature-oriented pro-
gramming and solutions to these problems through aspect-
oriented programming extensions.

2.1 Feature-oriented programming (FOP)

Prehofer [1] was the pioneer to coin the term feature-
oriented programming (FOP). The key idea behind FOP is
to build the software by composing features. Features are
the basic building blocks that are used to satisfy user re-
quirements on a software system. The step-wise refinement
where features incrementally refine other features leads to
a stack of features that are arranged in layers. One suitable
technique to implement the features is through the use of
Mixin Layers. A Mixin Layer is a static component that
encapsulates fragments of several different classes (Mix-
ins) to compose all fragments consistently. Several lan-
guages like Jak [2],1, Fuji2, FeatureHouse3, FeatureRuby
[40, 41], FeatureC++ [5, 3, 4] support the concept of fea-
tures explicitly. FeatureIDE [6]4 is a tool that supports
Feature-Oriented Software Development (FOSD) in many
languages. We have taken Jak program as input in our pro-
posed approach as it is supported by Algebraic Hierarchi-
cal Equations for Application Design (AHEAD) tool suite,
which is a composer. AHEAD tool suite is a group of tools
to work with Jak language. Other languages have their own
composers, and those composers are not a group of tools.
Jak (short for Jakarta) is a language that extends Java by in-
corporating feature-oriented mechanisms [2]. Jak-specific
tools like jampack and mixin are invoked to compose Jak
files. A Jak file is translated to its Java counterpart using
another tool called jak2java. The different features sup-
ported by Jak language are Super() references, an extension
of constructors, declaration of local identifiers, etc. The de-
tails of Jak language and its features can be found in [2].

1https://juliank.files.wordpress.com/2012/04/
jlang1.pdf

2http://www.infosun.fim.uni-passsau.de/spl/
apel/fuji

3http://www.fosd.de/fh
4http://wwwiti.cs.uni-magdeburg.de/iti\_db/

research/featureide/deploy
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Figure 1: Features supported by Calculator Product Line
(CPL)

Figure 2: Aspects captured in Calculator Product Line
(CPL)

Example 2.1. Calculator Product Line (CPL) [45]: This
program calculates the factorial, square root and logarith-
mic value with base 10 of a number. This program is re-
ferred to as Calculator Product Line (CPL).

A feature-tree depicts various features supported by a
product line in a hierarchical manner. The feature-tree for
Example 2.1 is given in Figure 1. The various aspects that
are captured for Example 2.1 are given in Figure 2. Figure
3 depicts the source code for each feature given in Figure 1
and each aspect given in Figure 2. Figure 4(a) – Figure 4(b)
show the resultant files generated after the composition of
all features.

2.2 Problems in feature-oriented
programming (FOP)

Feature-oriented programming (FOP) suffers from many
problems in modularization of crosscutting concerns [3, 4,
5]. The presence of these problems leads to degradation in
modularity of program family members and also decrease
in maintainability, customizability, and evolvability. Some
of the problems of FOP are discussed below.

1. FOP is unable to express dynamic crosscutting con-
cerns that affect the control flow of a program. It can
only express static crosscutting concerns that affect
the structure of the program. AOP languages can han-
dle dynamic crosscutting concerns in an efficient man-
ner through the use of pointcuts, advices etc.

2. FOP languages support only heterogeneous crosscut-
ting concerns where different join points are provided
with different pieces of codes. In contrast, AOP lan-
guages support homogeneous crosscutting concerns
where different join points are provided with the same
piece of code.

3. FOP suffers from excessive method extension prob-
lem when a feature crosscuts a large fraction of exist-
ing classes because of refinements. A lot of methods
are to be overridden for each method on which a cross-
cut depends. This is because FOP is unable to modu-
larize homogeneous crosscutting concerns. AOP uses
wildcards in pointcuts to deal with this problem.

2.3 AOP extensions to FOP

AOP can be used to solve the above problems of FOP by in-
tegrating AOP language features like wildcards, pointcuts,
and advices into FOP languages. The different approaches
used for integrating AOP language features into FOP lan-
guages are Multi Mixins, Aspectual Mixin Layers, Aspec-
tual Mixins. More details about these approaches can be
found in [5, 3, 4]. The Aspectual Mixin Layers approach
is a popular one amongst all the approaches since this ap-
proach overcomes all the aforementioned problems. Other
approaches overcome some of the problems. We have used
the approach of aspectual mixin layers in our work. We
have separated the aspects from mixin layers for easy un-
derstanding of our approach. Our mixin layers contain only
a set of classes. Aspects are designed as different layers.

2.4 Program slicing

Program slicing is a technique which is employed to ana-
lyze the behavior of a program on the basis of dependencies
that exist between various statements. It takes out state-
ments from a program related to a specific computation.
The extracted statements constitute a slice. Thus, a slicing
criterion is employed to compute a slice. A slicing crite-
rion consists of a statement s (or location in the program)
and a variable v (or set of variables), and it is represented
as a tuple < s, v >. Program slicing technique can be ei-
ther static or dynamic based on the input to the program.
A program slicing technique is said to be static when it ex-
tracts all the statements from a program with respect to a
slicing criterion irrespective of the input to the program.
On the other hand, a program slicing technique is said to
be dynamic when all the statements from a program are ex-
tracted with respect to a slicing criterion for a specific input
to the program.

The difference between static slicing and dynamic slic-
ing can be understood by taking an example. Let us con-
sider the example C program given in Figure 5. The static
slice with respect to slicing criterion < 11, y > is depicted
as the bold italic statements in Figure 6. It includes state-
ments 1, 2, 3, 4, 6, 7, 9, and 11. The dynamic slice with
respect to slicing criterion < {x = 10}, 11, y > is de-
picted as the bold italic statements in Figure 7. It includes
statements 1, 2, 3, 6, 9, and 11. For finding the slices of
a program, first an intermediate representation of the pro-
gram is constructed. Then, the slices are found out by
using some algorithm on the intermediate representation.
There are many slicing algorithms found in the literature
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(a) Base/calc.jak (b) Base/test.jak (c) sqrt/calc.jak

(d) sqrt/test.jak (e) log/calc.jak (f) fact/calc.jak

(g) log/test.jak (h) fact/test.jak (i) Print/test.jak

(j) error.aj (k) print.aj

Figure 3: Jak program for Calculator Product Line (CPL) along with aspect code. Figure 3(a)–Figure 3(i) represent base
code or non-aspect code written in Jak language and Figure 3(j)–Figure 3(k) represent aspect code written in AspectJ
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(a) calc.java (b) test.java

(c) error.aj (d) print.aj

Figure 4: Java codes generated (Figure 4(a)–Figure 4(b)) after the composition of all features depicted in Figure 1. Figure
4(c)–Figure 4(d) are the AspectJ codes for the aspects captured.
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Figure 5: An example C program

Figure 6: Static slice with respect to slicing criterion <
11, y >

Figure 7: Dynamic slice with respect to slicing criterion
< {x = 10}, 11, y >

[10, 11, 12, 14, 15, 16, 17, 19, 21, 25, 26, 37, 38, 42].
For the details of the intermediate program representations
and different slicing algorithms, the readers may refer to
[10, 11, 12, 14, 15, 16, 17, 19, 21, 25, 26, 37, 38, 42].
In the next section, we propose an intermediate program
representation for feature-oriented programs, on which our
slicing algorithm can be applied.

3 Composite feature-aspect
dependence graph (CFADG): an
intermediate representation for
feature-oriented programs

We have proposed an intermediate representation for
feature-oriented programs, called Composite Feature-
Aspect Dependence Graph (CFADG). CFADG is an arc-
classified digraph, G = (N,E), where N is the set of ver-
tices depicting the statements andE is the set of edges sym-
bolizing the dependence relationships between the state-
ments. The set E captures various dependencies that ex-
ist between the statements in various mixin layers and as-
pects in a feature-oriented program. CFADG is constructed
based on the composition of different features and aspects
captured. Thus, there will be different types of CFADGs
according to the features composed and aspects captured.
Figure 8 shows the CFADG for the composition given in
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Figure 3. The square box with a1_in: n_in=n etc. speci-
fies the actual and formal parameters. For example: a1_in:
n_in=n specifies that n is an actual-in parameter. Simi-
larly, a2_in: b_in=b specifies that b is an actual-in param-
eter, f1_in: x=n_in specifies that x is a formal-in parame-
ter, f2_in: b=b_in specifies that b is a formal-in parameter.
These notations are adopted from Horwitz et al. [47]. The
construction of CFADG consists of the following steps:

– Constructing Procedure Dependence Graph (PDG) for
each method in a mixin.

– Constructing Mixin Dependence Graph (MxDG) for
each mixin.

– Constructing System Dependence Graph (SDG) for
each mixin layer.

– Constructing Advice Dependence Graph (ADG) for
each advice.

– Constructing Introduction Dependence Graph (IDG)
for each introduction.

– Constructing Pointcut Dependence Graph (PtDG) for
each pointcut.

– Constructing Aspect Dependence Graph (AsDG) for
each aspect.

– Constructing Composite Feature Aspect Dependence
Graph (CFADG) by combining all the SDGs and As-
DGs.

Below, we briefly explain the steps for constructing the
CFADG and the pseudocode.

(1) Construction of Procedure Dependence Graph
(PDG)

A procedure dependence graph (PDG) depicts the
control and data dependence relationships that exist
between the statements in a program with only one
function/method/procedure. The nodes in the graph
correspond to the program statements and edges cor-
respond to the dependence relationships between the
statements.

(2) Construction of Mixin Dependence Graph
(MxDG)

A mixin dependence graph (MxDG) is used to cap-
ture all dependencies within a mixin. A MxDG has
a mixin entry vertex that connects the method entry
vertex of each method in the mixin by a mixin mem-
bership edge. Each method entry in the MxDG is
associated with formal-in and formal-out parameter
nodes. The interactions among methods in a mixin
occur by calling each other. This effect of method
calls is symbolized by a call node in a MxDG. Actual-
in and actual-out parameter nodes are created at each
call node corresponding to formal-in and formal-out

parameter nodes. The effect of return statements in
a MxDG is represented by joining each return node
to its corresponding call node through a return depen-
dence edge.

(3) Construction of System Dependence Graph (SDG)
for each Mixin Layer
A single mixin layer may contain more than one
mixin. A mixin may derive another mixin through
inheritance. The MxDG for the derived class is con-
structed. The mixin membership edges connect the
mixin entry vertex of derived class to the method en-
try vertices of all those methods that are defined and
inherited in the derived class. The SDG for a mixin
layer is constructed by joining all the mixin depen-
dence graphs for that mixin layer through parameter
edges, call edges and summary edges.

(4) Construction of Advice Dependence Graph (ADG)
An advice dependence graph (ADG) represents an ad-
vice in an aspect. The statements or predicates in
the advice are represented as vertices and dependen-
cies amongst statements are represented as edges in
an ADG. Each ADG is associated with a unique ver-
tex called advice start vertex to signify entry into the
advice.

(5) Construction of Introduction Dependence Graph
(IDG)
An introduction dependence graph (IDG) represents
an introduction in an aspect. If an introduction is a
method or constructor, then its IDG is similar to PDG
of a method. A unique vertex, called introduction start
vertex, is used in IDG to signify the entry into the in-
troduction.

(6) Construction of Pointcut Dependence Graph
(PtDG)
Pointcuts in an aspect contain no body. Therefore, to
represent pointcuts, only a pointcut start vertex is cre-
ated to denote the entry into the pointcut.

(7) Construction of Aspect Dependence Graph
(AsDG)
An aspect dependence graph (AsDG) is used to rep-
resent a single aspect. It consists of a collection of
ADGs, IDGs, PtDGs that are connected by some spe-
cial kinds of edges. Each AsDG is associated with
a unique vertex called aspect start vertex, to repre-
sent entry into the aspect. An aspect membership edge
is used to represent the membership relationships be-
tween an aspect and its members. This edge connects
the aspect start vertex to each start vertex of an ADG,
IDG or PtDG. Each pointcut start vertex is connected
to its corresponding advice start vertex by call edges.

(8) Construction of Composite Feature-Aspect Depen-
dence Graph (CFADG)
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The CFADG is constructed by combining the SDGs
for all mixin layers present in the composition and the
AsDGs through special kinds of edges. The SDGs for
all mixin layers in a composition are connected us-
ing refinement edges, mixin call edges, mixin data de-
pendence edges, and mixin return dependence edges.
The AsDGs are connected to all the SDGs through
weaving edges and aspect data dependence edges.
The mixin membership edges and aspect membership
edges along with mixin start vertices and aspect start
vertices are removed during construction of CFADG.
The CFADG for the program given in Figure 3 is
shown in Figure 8. A CFADG contains the following
types of edges:

(a) Control dependence edge: A control depen-
dence edge in a CFADG from a node n1 to a
node n2 indicates that either node n2 is under
the scope of node n1 or node n1 controls the ex-
ecution of node n2 where node n1 is a predicate
node.
In Figure 8, edge (m20, s21) is a control depen-
dence edge.

(b) Data dependence edge: A data dependence
edge in a CFADG from a node n1 to a node n2

indicates that node n2 uses a variable that is as-
signed a value at node n1 or n1 creates an object
o and o is used at n2.
In Figure 8, edges (s21, s22), (s39, s41),
(p72, a73) are data dependence edges.

(c) Mixin data dependence edge: A mixin data de-
pendence edge in a CFADG from a node n1 to a
node n2 indicates that node n2 in a mixin layer
defines a variable which is used at node n1 in an-
other mixin layer.
In Figure 8, edges (s5, s16) and (s39, s54) are
mixin data dependence edges.

(d) Aspect data dependence edge: An aspect data
dependence edge in a CFADG from a node n1

to a node n2 indicates that node n2 in an aspect
uses the value of a variable and that variable is
defined at node n1 in a mixin.
In Figure 8, edge (s5, a1_in) is an aspect data
dependence edge.

(e) Call edge: A call edge in CFADG from a node
n1 to a node n2 indicates that node n1 calls a
method defined at node n2. Both the nodes n1

and n2 are in same mixin layer.
In Figure 8, edge (s41,m2) is a call edge.

(f) Mixin call edge: A mixin call edge in CFADG
from a node n1 to a node n2 indicates that node
n1 in a mixin layer calls a method that is defined
in a different mixin layer at node n2.
In Figure 8, edge (s28,m7) is a mixin call edge.

(g) Return dependence edge: A return dependence
edge in a CFADG from node n1 to node n2 in-
dicates that node n1 in a mixin layer returns a

value to node n2 in the same mixin layer and
node n2 calls a method where node n1 is present.
In Figure 8, edge (s18, s46) is a return depen-
dence edge.

(h) Mixin return dependence edge: A mixin re-
turn dependence edge in a CFADG from node n1

to node n2 indicates that node n1 in one mixin
layer returns a value to node n2 in another mixin
layer and node n2 calls a method where node n1

is present.
In Figure 8, edge (s11, s21) is a mixin return de-
pendence edge.

(i) Parameter-in edge: Parameter-in edge in
CFADG is added from actual-in parameters to
corresponding formal-in parameters to indicate
the receipt of values from the calling method to
the called method.
In Figure 8, edges (s14 → a1_in,m7 →
f1_in), (s21 → a1_in,m7 → f1_in), and
(s28 → a1_in,m7 → f1_in) are parameter-
in edges.

(j) Parameter-out edge: Parameter-out edge is
added from formal-out parameters to corre-
sponding actual-out parameters to indicate the
return of values from the called method to the
calling method. If an actual parameter is mod-
ified inside a method, then the modified value
becomes an actual-out parameter and the origi-
nal value becomes an actual-in parameter. The
parameter used to hold the value of actual-in pa-
rameter in method definition becomes a formal-
in parameter and the parameter used to hold the
modified value becomes a formal-out parameter.
In Figure 8, there are no parameter-out edges,
since, in our example, no parameter is modified
inside a method.

(k) Summary edge: The summary edge is used to
represent the transitive flow of dependence be-
tween an actual-in parameter node and an actual-
out parameter node if the value of the actual-in
parameter node affects the value of the corre-
sponding actual-out vertex.
In Figure 8, edges (s14→ a1_in, s14), (s21→
a1_in, s21), and (s28 → a1_in, s28) are sum-
mary edges.

(l) Message dependence edge: A message depen-
dence edge from a node n1 to another node n2 in
a dependency graph signifies that node n1 repre-
sents a statement outputting some message with-
out using any variable and node n2 represents
an input statement, a computation statement, a
method call statement, or a predicate statement.
In Figure 8, there exists a message dependence
edge (s3, s4). Similarly, edges (s45, s46),
(s53, s54), and (s61, s62) are message depen-
dence edges.
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(m) Refinement edge: A refinement edge in a
CFADG from a node n1 to a node n2 indicates
that node n1 in child mixin layer calls a method
k() by prefacing Super() call and k() is defined
at node n2 in parent mixin layer.
In Figure 8, the edge (s44,m40) is a refinement
edge. Similarly, edges (s68,m59), (s60,m51),
and (s52,m43) are refinement edges.

(n) Weaving edge: A weaving edge from a node n1

to node n2 indicates that

– node n1 is a method call node and node
n2 is a before advice node capturing the
method called at n1 and node n2 executes
before the method called by n1 executes.
OR

– node n1 is the last statement in before ad-
vice and node n2 is the method entry node
of the method captured by the advice and
node n2 executes after node n1 executes.
OR

– node n2 is an after advice node and node n1

is the last statement in the method captured
by node n2 and node n2 executes after node
n1 executes. OR

– node n1 is the last statement in an after ad-
vice and node n2 is the statement followed
by method call node and the method is cap-
tured by the advice and node n1 executes
before node n2 executes.

In Figure 8, edge (s14, a73) is a weaving edge.

The brief pseudocode for constructing the CFADG for a
feature-oriented program is given below, and the complete
algorithm is given in Algorithm 8 in Appendix A.
CFADG construction Algorithm

(1) For each mixin layer

(a) For each mixin

i. Create mixin entry vertex
ii. For each method

A. Compute control and data dependences.
B. Construct PDG using control & data dependence

edges.
iii. For each method call

A. Create actual parameter vertices.
iv. For each method definition

A. Create method entry vertex.
B. Create formal parameter vertices.

v. Construct MxDG by connecting all PDGs through
method call edges, parameter edges and summary
edges and connecting each method vertex to mixin
start vertex through mixin membership edges.

(b) Construct SDG by connecting all MxDGs through method
call edges, parameter edges.

(2) For each aspect

(a) Create aspect entry vertex.

(b) For each advice

i. Create advice start vertex.
ii. Compute control and data dependences.

iii. Construct ADG using control & data dependence
edges.

(c) For each introduction

i. Create introduction start vertex.
ii. If introduction is a field then

Do not create any dependence graph.
Else if introduction is a method then
Construct IDG using control and data dependence
edges.

(d) For each pointcut

i. Create pointcut start vertex.
ii. Construct PtDG.

(e) Construct AsDG by connecting advice start vertices, intro-
duction start vertices, pointcut start vertices to aspect start
vertex through aspect membership edges.

(3) Remove mixin membership edges, aspect membership edges, mixin
start vertices, and aspect start vertices.

(4) Connect all SDGs through refinement edges, mixin call edges,
mixin data dependence edges, and mixin return dependence edges.

(5) Connect all AsDGs to all SDGs through weaving and aspect data
dependence edges.

4 Feature-aspect node-marking
dynamic slicing (FANMDS)
algorithm

In this section, we present our proposed algorithm for com-
puting dynamic slices of feature-oriented programs using
CFADG. We have named our algorithm Feature-Aspect
Node-Marking Dynamic Slicing (FANMDS) algorithm as it
is based on marking and unmarking the nodes of CFADG.
Before presenting our FANMDS algorithm, we first intro-
duce some definitions which will be used in our algorithm.

4.1 Definitions
Definition 1: Defn(v): Let v be a variable or an object in
program P . A node u in the CFADG is said to beDefn(v)
node if u corresponds to a definition statement that defines
a value to variable v or u represents a statement that creates
object v.
In the CFADG given in Figure 8, nodes s23, and s24 rep-
resent Defn(answer) nodes in the method logten() in mixin
calc in log mixin layer.
Definition 2: DefnSet(v): The set of all Defn(v) nodes is
referred to as DefnSet(v).
In the CFADG given in Figure 8, DefnSet(answer) =
{s23, s24} in the method logten() in mixin calc in log
mixin layer.
Definition 3: RecDefn(v): For each variable v,
RecDefn(v) represents the node corresponding to the
most recent definition of v with respect to some point s
in an execution.
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Figure 8: Composite Feature-Aspect Dependence Graph (CFADG) for the program given in Figure 4



Computing Dynamic Slices of Feature-Oriented Programs with. . . Informatica 44 (2020) 199–224 209

In the CFADG of Figure 8, RecDefn(i) is at statement
s32 before while loop and it is at statement s35 during ex-
ecution of while loop.
Definition 4: Usage(v): Let v be a variable or an object in
program P . A node u in the CFADG is said to beUsage(v)
node if u represents a statement that uses the variable v
or u represents a statement that uses the object v to call a
method on that object or to assign the object v with another
object.
In the CFADG given in Figure 8, nodes s47, and s49 rep-
resent Usage(r) nodes. Similarly, node s77, and s78 are
Usage(n) nodes.
Definition 5: UsageSet(v): The set of all Use(v) nodes is
referred to as UsageSet(v).
In the CFADG given in Figure 8, and UsageSet(r) =
{s47, s49}, UsageSet(n) = {s77, s78}.

4.2 Overview of FANMDS algorithm

Before execution of a feature-oriented program FP , the
features required for composition and the aspects to be cap-
tured are selected. Then, the selected features are com-
posed and selected aspects are weaved. The CFADG is
constructed statically only once based on the composition
of selected features and weaving of selected aspects. The
program is executed for a specified input. The executed
nodes in CFADG are marked and unmarked during pro-
gram execution depending upon the arise and cease of de-
pendences respectively. When a statement executes a Su-
per() node, it is marked by the algorithm. Also the cor-
responding method entry node, the associated actual and
formal parameter nodes are marked. When there is an invo-
cation of a method, the corresponding call node, the corre-
sponding method entry node, the associated actual and for-
mal parameter nodes are also marked. Whenever a pointcut
is executed, the corresponding advice nodes are marked.
When an advice is executed, the corresponding formal pa-
rameter nodes are marked. During execution, the dynamic
slice of each executed statement is computed. After execu-
tion of each node and computation of dynamic slice at that
node, the algorithm unmarks it.

Let dyn_slice(u) denote the dynamic slice with respect
to the most recent execution of node u. Let (e1, u),
(e2, u), . . . , (ek, u) be all the marked predecessor nodes of
u in the CFADG after execution of node u. The dynamic
slice with respect to the present execution of node u is com-
puted as
dyn_slice(u) = {u, e1, e2, . . . , ek} ∪ dyn_slice(e1) ∪
dyn_slice(e2) ∪ . . . ∪ dyn_slice(ek).

Our FANMDS algorithm computes the dynamic slice
with respect to the specified slicing criterion by simply
looking up the corresponding dyn_slice computed dur-
ing run-time. Below, we present the pseudocode of our
FANMDS algorithm in brief. Algorithm 9 in Appendix B
presents our FANMDS algorithm in detail.
Feature-Aspect Node-Marking Dynamic Slicing (FAN-
MDS) Algorithm

(1) CFADG Construction: Construct the CFADG for the given
feature-oriented program with aspect-oriented extensions, statically
only once.

(2) Initialization: Do the followings before each execution of FP .

(a) Unmark all nodes of CFADG.

(b) Set dyn_slice(u) = φ for every node u.

(c) Set RecDefn(v) = NULL for every variable v of the
program FP .

(3) Run time updations: Execute the program for the given set of in-
put values and carry out the followings after each statement s of the
program FP is executed. Let node u in CFADG corresponds to the
statement s in the program FP .

(a) For every variable v used at node u,
Update dyn_slice(u) = {u, e1, e2, . . . , ek} ∪
dyn_slice(e1) ∪ dyn_slice(e2) ∪ . . . ∪ dyn_slice(xk)
where e1, e2, . . . , ek are the marked predecessor nodes of u
in CFADG.

(b) If u is defn(v) node, then

i. Unmark the node RecDefn(v).
ii. Update RecDefn(v) = u.

(c) Mark node u.

(d) If u is a method call node or new operator node or polymor-
phic node or mixin call node, then

i. Mark node u.
ii. Mark the associated actual-in and actual-out nodes

corresponding to the present execution of u.
iii. Mark the corresponding method entry node for the

present execution of u.
iv. Mark the associated formal-in and formal-out parame-

ter nodes.

(e) If u is a Super() method node

i. Mark node u.
ii. Mark the associated actual-in and actual-out nodes

corresponding to the present execution of u.
iii. Mark the corresponding method entry node present in

the parent mixin layer for the present execution of u.
iv. Mark the formal-in and formal-out parameter nodes as-

sociated with the method entry node.

(f) If u is a pointcut node

i. Mark node u.
ii. Mark the corresponding advice nodes for present exe-

cution of u.

(g) If u is an advice node

i. Mark node u.
ii. Mark the formal-in and formal-out parameter nodes as-

sociated with the advice node.

(h) If u is an introduction node such that u is a method

i. Mark node u.
ii. Mark the formal-in and formal-out parameter nodes.

(i) If u is an introduction node such that u is a field

i. Mark node u.
ii. Mark the node that defines a value to u for the current

execution of u.
iii. Mark the node that uses the value of u for the current

execution of u.

(4) Slice Look Up

(a) For a given slicing command
< u, v >, do
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i. Look up dyn_slice(u) for variable v for the content
of the slice.

ii. Map the Java statements included in the computed dy-
namic slice to the corresponding composed Jak state-
ments to get the final dynamic slice

iii. Display the resulting slice.

(b) If the program has not terminated, go to Step 3.

Working of the Algorithm
The working of FANMDS algorithm is illustrated

through an example. Consider the feature-oriented pro-
gram given in Figure 3 and the selected features for com-
position and aspects given in Figure 1 and Figure 2 respec-
tively. After the composition of the selected features, the
files that are generated are depicted in Figure 4. The corre-
sponding CFADG is shown in Figure 8. During the initial-
ization step, our algorithm first unmarks all the nodes of the
CFADG and sets dyn_slice(u) = φ for every node u of the
CFADG. Now, for the input data n = 5, the program will
execute the statements m69, s70, p81, a82, s83, m67, s68,
a82, s83, m59, s60, a82, s83, m51, s52, a82, s83, m43,
s44, a82, s83, s39, m40, s41, m2, s3, s4, s5, s6, a84,
s85, s45, s46, m13, s14, p72, a73, s74, m7, s8, s10, s11,
a75, s76, a78, s79, s15, s16, s18, s47, s49, a84, s85, s53,
s54, m20, s21, a73, s74, m7, s8, s10, s11, a75, s76, s78,
s79, s22, s23, s25, s55, s57, a84, s85, s61, s62,m27, s28,
a73, s74, m7, s8, s10, s11, a75, s76, s78, s79, s29, s30,
s31, s32, s33, s34, s35, s37, s63, s65, a84, s85, a84, s85
in order. So, our FANMDS algorithm marks these nodes.
Our algorithm also marks the associated actual parameter
vertices at the calling method and the formal parameter ver-
tices at the called method.

Now, the dynamic slice is to be computed with respect
to variable n at statement s78, i.e., with respect to slicing
criterion< {n = 5}, s78, n > by traversing the CFADG in
backward manner. According to the FANMDS algorithm,
the dynamic slice with respect to variable n at statement
s78 is given by the expression
dyn_slice(s78) = {s78, s76, a75 → f1_in} ∪
dyn_slice(s76)
∪ dyn_slice(a75→ f1_in).
By evaluating the above expression in a recursive manner,
we get the final dynamic slice consisting of the statements
corresponding to the nodes m2, s3, s4, s5, m7, s8, s10,
s11, m13, s14, m20, s21, m27, s28, s39, m40, s41, m43,
s44, s45, s46, s47, s49, m51, s52, s53, s54, s55, s57,
m59, s60, s61, s62, m67, s68, m69, s70, p72, a73, s74,
a75, s76, s78, p81, a82, s83, a84, s85. These are indi-
cated as bold vertices in Figure 9 and the corresponding
statements are indicated in rectangular boxes in Figure 10.
Similarly, dynamic slice with respect to any slicing crite-
rion can be computed using FANMDS algorithm.

5 Implementation
This section briefly describes the implementation of FAN-
MDS algorithm. A dynamic slicing tool has been devel-
oped to implement the algorithm which has been named

feature-aspect dynamic slicing tool (FADST). Figure 11
depicts the architectural design of the slicing tool FADST.
The working of our slicing tool is depicted in Figure 12,
through a flow chart.

In Figure 11, the executable components are depicted
in rectangular boxes and the passive components are de-
picted in ellipses. First, the features required to compose
and aspects to be captured are selected. The selected fea-
tures, the selected aspects, and the slicing criterion con-
sisting of input, line number, and variable are provided to
FADST through the Graphical User Interface (GUI) com-
ponent. The Dynamic Slicer component interacts with the
GUI component and produces the required result as output
back to GUI. The AHEAD composer [2] composes the se-
lected features to generate a set of Java programs. These
Java programs and the selected aspects are fed to AspectJ
composer. AspectJ composer weaves the aspects at the ap-
propriate join points, and the result is a composed AspectJ
program. The lexical analyzer component reads the com-
posed AspectJ program and generates tokens from these
programs. Upon encountering a useful token, the lexical
analyzer component returns the token along with its type to
the parser and semantic analyzer component. The parser
and semantic analyzer component takes the token and ana-
lyzes it using the grammatical rules designed for the input
programs.

The code instrumentor component instruments the com-
posed AspectJ programs. The classes are instrumented
with line numbers prefixed with c, the aspects are instru-
mented with line numbers prefixed with as, the methods
are instrumented with line numbers prefixed with m, the
pointcuts are instrumented with line numbers prefixed with
p, the advices are instrumented with line numbers prefixed
with a, and the statements containing assignments, com-
putations, predicates are instrumented with line numbers
prefixed with s.

The CFADG constructor component constructs the
CFADG using the required program analysis information
such as type of statement, sets of variables defined or used
at a statement etc. The dynamic slicer component imple-
ments the FANMDS algorithm. We have used Java lan-
guage for our implementation. A compiler writing tool,
ANTLR (Another Tool for Language Recognition)5, has
been used for lexical analyzer, parser and semantic ana-
lyzer components of FADST.

An adjacency matrix adj[][] has been used for stor-
ing the CFADG with respect to a selected composition of
features of the given feature-oriented program.

Arrays are used to store the sets Defn(v), Usage(v),
RecDefn(v), and dyn_slice(u).

5www.antlr.org
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Figure 9: CFADG showing statements included in dynamic slice as bold nodes
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(a) calc.jak (b) test.jak

(c) error.aj (d) print.aj

Figure 10: Dynamic slice with respect to slicing criterion < {n = 5}, s78, n > depicted as statements in rectangular
boxes
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Figure 11: Architecture of the slicing tool

Figure 12: Flowchart for working of the slicing tool given
in Figure 11

Figure 13: CFADG generation time and Average slice com-
putation time for Calculator Product Line

5.1 Case studies and experimental results

We have applied our algorithm to some product lines 6,7.
We have also taken some open-source Java programs8 9 10.
We have developed few product lines by identifying vari-
ous features and converting these available Java programs
into corresponding Jak programs. It may be noted that Jak
is one of the feature-oriented programming languages. We
have also taken the models of few product lines (such as
calculator product line, stack product line, graph product
line) from the work of different researchers [45, 44, 43, 46]
and developed the corresponding Jak programs. These may
be considered as representative feature-oriented programs
with aspect-oriented extensions. In all the product lines,
we have identified the aspects that are scattered through-
out the program. The product lines we have taken as our
case studies have various features and aspects which can
be used for composing a variety of software product lines.
We have taken fifteen product lines as our case studies. The
characteristics of our software product lines are depicted in
Table 1. These programs are executed for different compo-
sitions of features with different aspects weaved for differ-
ent inputs. Also, the algorithm has been tested for different
slicing criteria for different compositions of features and
different inputs.

The CFADG generation time and average slice compu-
tation time for various compositions of features in different
product lines are depicted in Figures 13–27.

It can be inferred from Figures 13–27 that different com-
positions of features result in different slice computation
times. The aspects weaved at more number of join points
take more time than the aspects weaved at less number
of join points. For example, in Calculator Product Line
(CPL), the number of join points where the aspect Print is
weaved is more than that of aspect Error. That’s why the
slice computation time for the program where Print aspect

6http://spl2go.cs.ovgu.de/projects
7http://www.infosun.fim.uni-passau.de/spl/

apel/fh
8http://www.sanfoundry.com/

java-program-implement-avl-tree/
9http://www.geeksforgeeks.org/

avl-tree-set-2-deletion/
10https://ankurm.com/implementing-singly-linked-list-in-java/
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Figure 14: CFADG generation time and Average slice com-
putation time for Stack Product Line

Figure 15: CFADG generation time and Average slice com-
putation time for Graph Product Line

Figure 16: CFADG generation time and Average slice com-
putation time for AVL Tree Product Line
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Figure 18: CFADG generation time and Average slice com-
putation time for DesktopSearcher

Figure 19: CFADG generation time and Average slice com-
putation time for TankWar

Figure 20: CFADG generation time and Average slice com-
putation time for GPL

Figure 21: CFADG generation time and Average slice com-
putation time for MobileMedia

Figure 22: CFADG generation time and Average slice com-
putation time for Digraph

Figure 23: CFADG generation time and Average slice com-
putation time for Elevator

Figure 24: CFADG generation time and Average slice com-
putation time for Vistex

Figure 25: CFADG generation time and Average slice com-
putation time for Violet
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Figure 26: CFADG generation time and Average slice com-
putation time for Notepad

Figure 27: CFADG generation time and Average slice com-
putation time for PkJab

is weaved is more than that of the program where Error as-
pect is weaved. The features containing more number of
loops take more time. The composed features containing
less number of executable statements take less time com-
pared to those containing more number of executable state-
ments.

6 Comparison with related work
Several works have been carried out on slicing of
procedure-oriented programs [34, 32, 33, 30, 47], object-
oriented programs [11, 21, 39, 22, 15], aspect-oriented pro-
grams [37, 9, 10, 16, 18, 23]. But very, few work have been
carried out on slicing of feature-oriented programs [35].

Zhao [9] was the first to develop a two-phase slicing
algorithm to compute static slices of aspect-oriented pro-
grams. Later, Zhao et al. [10] developed an efficient algo-
rithm for constructing system dependence graph for aspect-
oriented programs. Ray et al. [16] developed an algo-
rithm to compute dynamic slices of aspect-oriented pro-
grams by constructing Aspect System Dependence Graph
(AOSG). They had introduced a new logical node called C-
node to capture communication dependencies among the
non-aspect code and aspect code. They had also intro-
duced a new arc called aspect-membership arc to connect
the dependence graphs of the non-aspect code and aspect
code. They had not shown the actual parameters in the
pointcuts. Singh et al. [18] proposed a method to com-
pute slices depending upon the slice point location in the
program. Their computed slice was an executable slice.
Munjal et al. [23] automated the generation of system de-
pendence graphs (SDG) for aspect-oriented programs by

analysing the bytecode of aspect-oriented programs. Then,
they proposed a three-phase slicing algorithm to compute
static slices using the intermediate graph for a given aspect-
oriented program. All the above works [9, 15, 16, 18, 23]
have not considered feature-oriented programs.

Apel et al. [3] presented a novel language for FOP in
C++ namely FeatureC++. They also mentioned few prob-
lems of FOP languages. Apel et al. [4] demonstrated
FeatureC++ along with its adaptation to Aspect-Oriented
Programming (AOP) concepts. They discussed the use of
FeatureC++ in solving various problems related to incre-
mental software development using AOP concepts. They
also discussed the weaknesses of FOP for modularization
of crosscutting concerns. Apel et al. [5] discussed the lim-
itations of crosscutting modularity and the missing support
of C++. They also focused on solutions for ease evolv-
ability of software. Batory [2] presented basic concepts
of FOP and a subset of the tools of the Algebraic Hier-
archical Equations for Application Design (AHEAD) tool
suite. Apel et al. [7] presented an overview of feature-
oriented software development (FOSD) process. They had
identified various key issues in different phases of FOSD.
Thum et al. [6] developed an open source framework
for FOSD namely FeatureIDE that supported all phases
of FOSD along with support for feature-oriented pro-
gramming languages, and delta-oriented programming lan-
guages, aspect-oriented programming languages. Pereira
et al. [20] discussed the findings of SPL management tools
from a Systematic Literature Review (SLR). These works
[7, 5, 3, 4, 2, 20, 6] discussed only the programming and
development aspects of FOP and did not consider the slic-
ing aspects. We have presented a technique for dynamic
slicing of feature-oriented programs with aspect-oriented
extensions using Jak as the FOP language.

Very few work have been carried out on slicing of
feature-oriented programs [35]. Sahu et al. [35] suggested
a technique to compute dynamic slices of feature-oriented
programs. Their technique first composed the selected fea-
tures of feature-oriented programs. Then, they used an exe-
cution trace file and a dependence-based program represen-
tation namely dynamic feature-oriented dependence graph
(DFDG). The dynamic slice was computed by traversing
DFDG in breadth-first or depth-first manner and mapping
the traversed vertices to the program statements. They had
missed some of the dependences such as mixn call edge, re-
finement edge, and mixin return dependence edge, etc. that
might arise in feature-oriented programs. The drawback of
their approach is the use of execution trace file which may
lead to more slice computation time. They had not consid-
ered the aspect-oriented extensions of feature-oriented pro-
grams. In our approach, we have not used any execution
trace file. Usually, the execution trace file is used to store
the execution history of each executed statement for a given
input. Much time is required to store and retrieve the exe-
cuted statements. The statements are then used for calcula-
tion of dynamic slice for each statement. Thus, extra time
is required to perform I/O operations on an execution trace
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file. We do not use any execution trace file. During exe-
cution of the program for a given input, the dynamic slice
for each statement is computed by marking and unmarking
process. Thus, there is no requirement of any execution
trace file for storing the executed statements. So, our pro-
posed approach does not take any extra time to read from
or write into the execution trace file, thereby reducing the
slice extraction time. Also, we have considered the aspects
that are scattered throughout the code. Our algorithm does
not create any new node in the intermediate representation
CFADG during runtime. This results in faster computation
of slices.

7 Conclusion and future work

We have presented an approach to compute dynamic slices
of feature-oriented programs with aspect-oriented exten-
sions. The features required for composition are first se-
lected and composed using Algebraic Hierarchical Equa-
tions for Application Design (AHEAD) composer. Then,
the aspects are weaved into the generated composed Java
program using AspectJ composer to produce the resultant
AspectJ program. The intermediate dependence based rep-
resentation of the program containing Jak code and AspectJ
code is constructed and it is called Composite Feature-
Aspect Dependence Graph (CFADG). The program is exe-
cuted for an input. During execution, the nodes of CFADG
are marked and unmarked according to our feature-aspect
node marking dynamic slicing (FANMDS) algorithm. We
have developed a tool to implement our FANMDS algo-
rithm and named it FADST. Our tool FADST computes the
dynamic slices and the average slice extraction times for
various compositions of features and aspects weaved for
various product lines. Currently, our tool is able to han-
dle various compositions for few product lines with few
aspects captured. Also, current evaluation only uses prim-
itive feature-oriented programs. In future, we will extend
our tool to handle more number of product lines with more
number of compositions.

Our algorithm may easily be extended to compute dy-
namic slices of other feature-oriented languages like Fea-
tureC++, FeatureRuby, FeatureHouse, Fuji, etc. Also, the
extension of the algorithm can be used to compute con-
ditioned slices, amorphous slices for feature-oriented pro-
grams with various aspects captured. We will also find out
the differences in the performance of different aspects.
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8 Appendices

A Construction of CFADG

Algorithm 8 Construction of CFADG
Input: The feature-oriented program containing aspects with selected
required features and weaved aspects.
Output: The composite feature-aspect dependence graph (CFADG).

1: procedure CONSTRUCTPDG()
2: for start of a method do
3: Create method entry node.
4: for each executable statement in the program do
5: Create a node.
6: for all nodes created do
7: if node n2 is under the scope of node n1 then
8: Add control dependence edge from n1 to n2, n1 → n2.
9: if node n1 controls the execution of node n2 then

10: Add control dependence edge from n1 to n2, n1 → n2.
11: if node n2 uses the value of a variable that is defined at node

n1 then
12: Add data dependence edge from n1 to n2, n1 → n2.
13: procedure CONSTRUCTMXDG()
14: for all methods in a mixin do
15: Call ConstructPDG().
16: for entry of a mixin do
17: Create mixin entry node.
18: for each parameter present in the method call do
19: Create an actual-in parameter node.
20: for each parameter present in the method definition do
21: Create a formal-in parameter node.
22: for each parameter in the method call that is modified inside the

method do
23: Create an actual-out parameter node.

24: for each actual-out parameter node do
25: Create corresponding formal-out parameter node.
26: for all nodes created do
27: if node x corresponds to mixin entry node and node y is a

method entry node then
28: Add mixin membership edge from x to y, x→ y.
29: if node n1 returns a value to the calling method at node n2

within a mixin layer then
30: Add return dependence edge from n1 to n2, n1 → n2.
31: if node n1 calls a method that is defined at node n2 within a

mixin layer then
32: Add call edge from n1 to n2, n1 → n2.
33: if node n1 calls a method that is defined at node n2 within a

mixin layer by passing parameters then
34: Add call edge from n1 to n2, n1 → n2.
35: Add parameter-in edge from actual-in parameter node to

corresponding formal-in parameter node.
36: Add parameter-out edge from formal-out parameter node

to corresponding actual-out parameter node.
37: if node n1 is an actual-in parameter node and node n2 is an

actual-out parameter node such that the value at node n1 affects the
value at node n2 then

38: Add summary edge from n1 to n2, n1 → n2.
39: procedure CONSTRUCTSDG()
40: for all mixins within a mixin layer do
41: Call ConstructMxDG.
42: for all nodes created do
43: if node x is a polymorphic method call then
44: Create polymorphic choice vertex.
45: if node y is a polymorphic choice vertex then
46: Add a call edge from x to y, x→ y

47: if node x is a new operator node and node y is the correspond-
ing constructor node then

48: Add call edge from n1 to n2, n1 → n2.
49: Add parameter-in edge from actual-in parameter node to

corresponding formal-in parameter node.
50: Add parameter-out edge from formal-out parameter node

to corresponding actual-out parameter node.
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51: Remove mixin membership edges.
52: Remove mixin entry nodes.
53: procedure CONSTRUCTADG()
54: for start of an advice do
55: Create advice start vertex.
56: if advice contains parameters then
57: Create formal-in and formal-out parameter nodes.
58: for all nodes created do
59: if node n2 is under the scope of node n1 then
60: Add control dependence edge from n1 to n2, n1 → n2.
61: if node n1 controls the execution of node n2 then
62: Add control dependence edge from n1 to n2, n1 → n2.
63: if node n2 uses the value of a variable that is defined at node

n1 then
64: Add data dependence edge from n1 to n2, n1 → n2.
65: procedure CONSTRUCTIDG()
66: for entry of introduction do
67: Create introduction start vertex.
68: if introduction is a method or constructor then
69: Call ConstructPDG.
70: if introduction is a field then
71: Do nothing.
72: procedure CONSTRUCTPTDG()
73: for entry of pointcut do
74: Create pointcut start vertex.
75: if pointcut contains parameters then
76: Create actual-in and actual-out parameter nodes.
77: procedure CONSTRUCTASDG()
78: for entry of an aspect do
79: Create aspect start vertex.
80: for all advices in an aspect do
81: Call ConstructADG().

82: for all pointcuts in an aspect do
83: Call ConstructPtDG().
84: for all introductions in an aspect do
85: Call ConstructIDG().
86: for all nodes created do
87: if node x is aspect start vertex then
88: if node y is advice start vertex then
89: Create aspect membership edge from x to y, x→ y.
90: if node y is pointcut start vertex then
91: Create aspect membership edge from x to y, x→ y.
92: if node y is introduction start vertex then
93: Create aspect membership edge from x to y, x→ y.
94: if node x is pointcut start node and node y is advice start node

then
95: Create data dependence edge from x to y, x→ y.
96: Add parameter-in edge from actual-in parameter node to

corresponding formal-in parameter node.
97: Add parameter-out edge from formal-out parameter node

to corresponding actual-out parameter node.
98: procedure CONSTRUCTCFADG()
99: for each mixin layer do
100: Call ConstructSDG().
101: for each aspect do
102: Call ConstructAsDG.
103: for all nodes created do
104: if node n2 in one mixin layer uses the value of a variable that

is defined at node n1 in different mixin layer then
105: Add mixin data dependence edge from n1 to n2, n1 →

n2.
106: if node n2 in an aspect uses the value of a variable that is

defined at node n1 in a mixin then
107: Add aspect data dependence edge from n1 to n2, n1 →

n2.

108: if node n1 in one mixin layer returns a value to the calling
method at node n2 in different mixin layer then

109: Add mixin return dependence edge fromn1 ton2, n1 →
n2.

110: if node n1 in one mixin layer calls a method that is defined
at node n2 in different mixin layer then

111: Add mixin call edge from n1 to n2, n1 → n2.
112: Add parameter-in and parameter-out edges.
113: if node n1 calls a method that is defined at node n2 using

Super() method then
114: Add refinement edge from n1 to n2, n1 → n2.
115: if node n1 is an output statement followed by node n2 and

node n2 is an input, a computation, a predicate, or a method call
statement then

116: Add message dependence edge from n1 to n2, n1 →
n2.

117: if node n1 is a method call node and node n2 is a before
advice node capturing the method called at n1 then

118: Add weaving edge from n1 to n2, n1 → n2.
119: if node n1 is the last statement in a before advice and node

n2 is the method entry node of the method captured by the advice
then

120: Add weaving edge from n1 to n2, n1 → n2.
121: if node y is an after advice node and node n1 is the last

statement in the method captured by node n2 then
122: Add weaving edge from n1 to n2, n1 → n2.
123: if node n1 is the last statement in an after advice and node

n2 is the statement followed by method call node and the method is
captured by the advice then

124: Add weaving edge from n1 to n2, n1 → n2.
125: Remove aspect membership edges.
126: Remove aspect entry vertices.
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B Feature-aspect node-marking
dynamic slicing (FANMDS)
algorithm

Algorithm 9 Feature-Aspect Node Marking Dynamic Slic-
ing (FANMDS) Algorithm

INPUT: Composite Feature-Aspect Dependence Graph (CFADG) of
the program FP , Slicing criterion < i, s, v >.
OUTPUT: List of nodes contained in required dynamic slice.

1: Marked = φ . Initially, unmark all nodes of CFADG.
2: Set dyn_slice(u) = φ . u is a node in CFADG.
3: Set RecDefn(v) = NULL . v is a variable.
4: Execute the program FP for input i.
5: while FP does not terminate do
6: Update dyn_slice(u) = {u, e1, e2, . . . , ek}∪dyn_slice(e1)∪
dyn_slice(e2) ∪ . . . ∪ dyn_slice(ek)

7: Marked = Marked ∪ {u}. . Mark node u.
8: if u is a Defn(v) node then
9: Marked = Marked \ {RecDefn(v)}. . Unmark the

node RecDefn(v).
10: RecDefn(v) = u. . Update RecDefn(v).
11: if u is a method call node for a method M then
12: panodeM = f(M,panode).
13: MeM = g(M,Me).
14: pfnodeM = h(M,pfnode).
15: Marked = Marked ∪ {u}. . Mark node u.
16: Marked = Marked ∪ panodeM . . Mark associated

actual parameter nodes.
17: Marked = Marked ∪ {MeM}. . Mark corresponding

method entry node.
18: Marked = Marked ∪ pfnodeM . . Mark associated

formal parameter nodes.
19: if u is a new operator node for a constructor M then
20: panodeM = f(M,panode).
21: MeM = g(M,Me).
22: pfnodeM = h(M,pfnode).
23: Marked = Marked ∪ {u}. . Mark node u.
24: Marked = Marked ∪ panodeM . . Mark associated

actual parameter nodes.
25: Marked = Marked ∪ {MeM}. . Mark corresponding

method entry node.
26: Marked = Marked ∪ pfnodeM . . Mark associated

formal parameter nodes.

27: if u is a polymorphic node for a virtual method M then
28: panodeM = f(M,panode).
29: MeM = g(M,Me).
30: pfnodeM = h(M,pfnode).
31: Marked = Marked ∪ {u}. . Mark node u.
32: Marked = Marked ∪ panodeM . . Mark associated

actual parameter nodes.
33: Marked = Marked ∪ {MeM}. . Mark corresponding

method entry node.
34: Marked = Marked ∪ pfnodeM . . Mark associated

formal parameter nodes.
35: if u is a mixin call node for a method M then
36: panodeM = f(M,panode).
37: MeM = g(M,Me).
38: pfnodeM = h(M,pfnode).
39: Marked = Marked ∪ {u}. . Mark node u.
40: Marked = Marked ∪ panodeM . . Mark associated

actual parameter nodes.
41: Marked = Marked ∪ {MeM}. . Mark corresponding

method entry node.
42: Marked = Marked ∪ pfnodeM . . Mark associated

formal parameter nodes.
43: if u is a Super() method call node for a method M then
44: MeM = h(M,Me).
45: Marked = Marked ∪ {u}. . Mark node u.
46: Marked = Marked ∪ {MeM}. . Mark corresponding

method entry node.
47: if u is a pointcut node then
48: badvP = x(P, badv).
49: aadvP = y(P, aadv).
50: panodeP = f(P, panode).
51: pfnodeM = g(M,pfnode).
52: Marked = Marked ∪ {u}. . Mark node u.
53: Marked = Marked ∪ panodeM . . Mark corresponding

actual parameter nodes.
54: Marked = Marked ∪ pfnodeM . . Mark corresponding

formal parameter nodes.
55: Marked = Marked ∪ badvP . . Mark the corresponding

before advice entry node.
56: Marked = Marked ∪ aadvP . . Mark the corresponding

after advice entry node.
57: if u is an advice entry node for an advice A corresponding to

pointcut P then
58: bbadvA = z(A, badvP ).
59: baadvA = z(A, aadvP ).
60: Marked = Marked \ bbadvA.
61: Marked = Marked \ baadvA. . Unmark all nodes in

body of advice corresponding to previous execution of u.
62: pfnodeM = g(M,pfnode).
63: Marked = Marked \ pfnodeM . . Unmark all the

formal parameter nodes associated with u corresponding to previous
execution of u.
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64: if u is an introduction node such that u is a method then
65: MbM = k(M,Mb).
66: Marked = Marked \MbM . . Unmark all the nodes in

the method body corresponding to previous execution of u.
67: pfnodeM = g(M,pfnode).
68: Marked = Marked \ pfnodeM . . Unmark all the

formal parameter nodes associated with u corresponding to previous
execution of u.

69: if v is method call node corresponding to previous execution
of u then

70: Marked = Marked \ v. . Unmark the method call
node corresponding to previous execution of u.

71: panodev = f(v, panode).
72: Marked = Marked \ panodev . . Unmark the asso-

ciated actual parameter nodes for a method call node corresponding
to previous execution of u.

73: pfnodeM = h(M,pfnode).
74: Marked = Marked ∪ {u}. . Mark node u.
75: Marked = Marked ∪ pfnodeM . . Mark associated

formal parameter nodes.
76: if u is an introduction node such that u is a field then
77: Marked = Marked ∪ {Defn(v)}. . Mark Defn(v) node.
78: Marked = Marked ∪ {Usage(v)}. . Mark Usage(v)

node.
79: if u is a method entry node for a method M then
80: MbM = k(M,Mb).
81: Marked = Marked \MbM . . Unmark all the nodes in

the method body corresponding to previous execution of u.
82: pfnodeM = g(M,pfnode).
83: Marked = Marked \ pfnodeM . . Unmark all the

formal parameter nodes associated with u corresponding to previous
execution of u.

84: if v is method call node corresponding to previous execution
of u then

85: Marked = Marked \ v. . Unmark the method call
node corresponding to previous execution of u.

86: panodev = f(v, panode).
87: Marked = Marked \ panodev . . Unmark the asso-

ciated actual parameter nodes for a method call node corresponding
to previous execution of u.

88: if u is a mixin entry node for a method M then
89: MbM = k(M,Mb).
90: Marked = Marked \MbM . . Unmark all the nodes in

the method body corresponding to previous execution of u.

91: pfnodeM = g(M,pfnode).
92: Marked = Marked \ pfnodeM . . Unmark all the

formal parameter nodes associated with u corresponding to previous
execution of u.

93: if v is method call node corresponding to previous execution
of u then

94: Marked = Marked \ v. . Unmark the method call
node corresponding to previous execution of u.

95: panodev = f(v, panode).
96: Marked = Marked \ panodev . . Unmark the asso-

ciated actual parameter nodes for a method call node corresponding
to previous execution of u.

97: if u is new operator entry node for a constructor M then
98: MbM = k(M,Mb).
99: Marked = Marked \MbM . . Unmark all the nodes in

the method body corresponding to previous execution of u.
100: pfnodeM = g(M,pfnode).
101: Marked = Marked \ pfnodeM . . Unmark all the

formal parameter nodes associated with u corresponding to previous
execution of u.

102: if v is method call node corresponding to previous execution
of u then

103: Marked = Marked \ v. . Unmark the method call
node corresponding to previous execution of u.

104: panodev = f(v, panode).
105: Marked = Marked \ panodev . . Unmark the asso-

ciated actual parameter nodes for a method call node corresponding
to previous execution of u.

106: for a given slicing command < i, s, v > do
107: Look up dyn_slice(u) for variable v.
108: Display dyn_slice(u).
109: Map nodes in dyn_slice(u) to corresponding statements in

composed Java program.
110: Map statements included in dyn_slice(u) in composed Java

program to corresponding statements in composed Jak program.
111: Display statements included in dyn_slice(u) from com-

posed Jak program.


