
Informatica 33 (2009) 297–308 297

Two-Way Mapping between Object-Oriented Databases and XML

Taher Naser
School of Informatics, Bradford University, Bradford, West Yorkshire, United Kingdom

Reda Alhajj
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada;
Department of Computer Science, Global University, Beirut, Lebanon

Mick J. Ridley
School of Informatics, Bradford University, Bradford, West Yorkshire, United Kingdom

Keywords: algorithms, data migration, data re-engineering, object-oriented databases, XML

Received: October 12, 2008

This paper presents a novel approach for mapping an existing object-oriented database into XML and
vice versa. The major motivation to carry out this study is the fact that it is necessary to facilitate platform
independent exchange of the content of object oriented databases and the need to store XML in a structured
database. There are more common features between the object-oriented model and XML and thus the the
two-way mapping from object-oriented databases into XML (and vice versa) should be less problematic.
To achieve the mapping, what we call the object graph is derived based on characteristics of the schema
to be mapped. For object-oriented schema, the object graph simply summarizes and includes all nesting
and inheritance links, which are the basics of the object-oriented model. Then, the inheritance is simulated
in terms of nesting to get a simulated object graph. This way, everything in a simulated object graph is
directly representable in XML format. Finally, we handle the mapping of the actual data from the object-
oriented database into corresponding XML document(s). On the other hand, the common features between
the object-oriented model and XML make it is more attractive to map from XML into object-oriented
database; such mapping preserves database specifics. To achieve the mapping, the object graph is derived
based on characteristics of the XML schema; it simply summarizes and includes all complex and simple
elements and the links, which are the basics of the XML schema. Then, the links are simulated in terms
of nesting to get a simulated object graph. This way, everything in a simulated object graph is directly
representable in object-oriented database. Finally, we handle the mapping of the actual data from XML
document(s) into the corresponding object-oriented database.

Povzetek: Prispevek predstavlja izvirno dvostransko preslikavo med objektnimi podatkovnimi bazami in
XML.

1 Introduction

XML is emerging as the standard format for data exchange
between different partners. Since most of the data nowa-
days reside in structured databases including relational and
object-oriented databases, it is important to automate the
process of generating XML documents containing informa-
tion from existing databases. Of course, one would like to
preserve as much information as possible during the trans-
formation process. The object-oriented database [12, 13]
to XML conversion involves mapping the classes and at-
tributesŠ names into XML elements and attributesŠ names,
creating XML hierarchies, and processing values in an ap-
plication specific manner. This paper addresses the map-
ping of the contents of an existing object-oriented database
into XML; the reverse process is also supported to allow
storing XML data in object-oriented database. The ma-

jor motivation to carry out this study is the fact that there
is a need for platform independent format for exchanging
data; XML is accepted as one standard for achieving such
task. We initiated this study based on our previous re-
search related to object-oriented databases and database re-
engineering as illustrated, respectively, in [3, 4, 5, 6, 7, 8]
and [9, 10].

The mapping from object-oriented data into XML has
not received considerable attention. On the other hand,
there exist several tools that enable the composition of
XML documents from relational data, such as IBM DB2
XML Extender, SilkRoute, and XPERANTO. XML Ex-
tender [15] serves as a repository for XML documents as
well as their Document type declarations (DTDs), and also
generate XML documents from existing data stored in rela-
tional database; it is used to define the mapping of DTD to
relational tables and columns. XSLT and Xpath syntax are

298 Informatica 33 (2009) 297–308 T. Naser et al.

used to specify the transformation and the location path.
SilkRoute [17] is described as a general, dynamic, and effi-
cient tool for viewing and querying relational data in XML.
XPERANTO [14] is a middleware solution for publishing
XML; object-relational data can be published as XML doc-
uments. It can be used by developers who prefer to work
in a “pure XML" environment. However, the mapping
from the relational schema to the XML schema is speci-
fied by human experts. Therefore, when a large relational
schema and corresponding data need to be translated into
XML documents, a significant investment of human effort
is required to initially design the target schema. Finally,
the work described in [20] requires knowing the catalog
contents in order to extract the relational database schema.
The conversion of Relational-to-ER-to-XML has been pro-
posed in [18]. This reconstructs the semantic model, in
the form of ER model, from the logical schema capturing
user’s knowledge, and then converts it to the XML docu-
ment. However, many-to-many (M:N) and nary relation-
ships are not considered properly. Finally, DB2XML [26]
is a tool for transforming data from relational databases
into XML documents; DTDs are generated by describing
the characteristics of the data for making the documents
self contained and usable as a data exchange format.

The conversion of Relational-to-ER-to-XML is de-
scribed in [18]. VXE-R [21] is an engine for transforming
a relational schema into equivalent XML schema. As the
mapping from XML to object-oriented databases is con-
cerned, the work described in [16] generates an object-
oriented database schema from DTDs, stores it into the
object-oriented database and processes XML queries; it
mainly concentrate on representing the semi-structural part
of XML data by inheritance. However, in this paper we dif-
ferentiate between inheritance and nesting, which is a more
natural approach for handling object-oriented databases.
The work presented in [19] focuses on the ability to wrap
an XML schema definition in an object-oriented virtual
database mediator system to help solving the integration
problems between XML documents and other applications
that are not using XML. Toth and Valenta [25] investi-
gated possibilities of reusing already known techniques
from object and object-oriented processing in XML-native
database systems.

This paper addresses the two-way mapping of the con-
tents of an existing XML and object-oriented database. The
major motivation to carry out this study is the fact that
there are more common features between XML and object-
oriented databases; thus it is more attractive to store XML
schema and Data, and more data is preserved. This is actu-
ally the backward engineering [24]; the forward engineer-
ing part extracts XML from object-oriented database [23].
The forward engineering process takes a given object-
oriented database as input and produces a corresponding
XML schema and XML document(s). The first step in
the process is to derive a summary of the object-oriented
schema. This has been realized as object graph which in-
cludes inheritance and nesting links present in the object-

oriented schema. Then, the object graph is transformed
into XML schema and the object-oriented data is mapped
into corresponding XML document(s). The process is ca-
pable of producing both nested and flat XML schemas.
However, as the transformation is from object-oriented
databases, producing the nested schema is preferred and
more emphasized. The backward engineering process, on
the other hand, takes a given XML schema as input and pro-
duces a corresponding object-oriented schema. The first
step in the process is to derive a summary of the XML
schema. This has been realized as object graph, which in-
cludes inheritance and nesting links derived from the XML
schema. Then, the object graph is mapped into object-
oriented schema. The process is capable of taking as input
both nested and flat XML schemas. However, as the map-
ping is into object-oriented schema, nested XML schema is
preferred and more emphasized.

The rest of the paper is organized as follows. Described
in Section 2 is the information related to the object-oriented
schema and the XML schema; the object graph is also de-
fined. Section 3 presents the algorithm that derives the
XML schema from the object graph. Section 4 describes
the backward engineering process. Section 5 includes a
summary and the conclusions.

2 The necessary background and
terminology

2.1 Object-Oriented Database
Characteristics

In this section, we investigate characteristics of the given
object-oriented database and as a result derive the object
graph. We start by presenting the basic terminology and
definitions required to understand the analysis.

2.1.1 The Basic Terminology and Definitions

We are mainly interested in class characteristics as present
in Definition 2.1 and illustrated in Example 2.1, given next.

Definition 2.1 (Class).
A class is defined to be a tuple, (Cp(c), Cb(c),
Lattributes(c), Lbehavior(c), Linstances(c), OIDG),
where c is class identifier, Cp(c) is a list1 of direct super-
classes of class c, Cb(c) is a set2 of direct subclasses of
class c, Lattributes(c) is the set of additional attributes lo-
cally defined in class c, Lbehavior(c) is the set of additional
methods added to the definition of class c, Linstances(c)
is the set of object identifiers of objects added locally to
class c, and OIDG is object identifier generator that holds

1A list notation is used for the superclasses because their order is im-
portant for conflict resolution due to polymorphism and overriding. Con-
flicts are resolved according to certain predefined rules discussed in [4].

2Conflict resolution is not applicable here because only objects are
concerned, hence the set notation is utilized.

TWO-WAY MAPPING BETWEEN OODB & XML Informatica 33 (2009) 297–308 299

the identifier to be granted to the next object to be added to
Linstances(c). •

Every attribute in a class has a domain. Inheritance
makes it possible for a class to utilize the attributes and
methods defined for its superclasses, without violating
polymorphism and overriding rules discussed in [4]. The
set of objects of a class includes objects in its subclasses.
All of this is formalized in the following definitions.

Definition 2.2 (Domain). Let c1, c2, ..., and cn be prim-
itive and user defined classes, where primitive classes in-
clude reals, integers, strings, etc. The following are possi-
ble domains,

1. (a1:c1, a2:c2, ..., an:cn) is a tuple domain; a possible
value is a tuple with the constituting values being ob-
ject identifiers selected from classes c1, c2, ..., and cn,
respectively.

2. ci, 1≤i≤n, is a domain; a possible value is an object
identifier from class ci.

3. {d} is a domain, where d may be any of the two do-
mains defined in 1 or 2; a possible value is a set of
values from domain d.

4. [d] is a domain, where d may be any of the two do-
mains defined in 1 or 2; a possible value is a list of
values from domain d. •

Definition 2.3 (Attributes). Given a class c; the set
of attributes that determine the state of each object in
Linstances(c) is denoted by Wattributes(c) and defined re-
cursively in terms of the attributes defined for objects of the
classes in Cp(c).
Wattributes(c) = Lattributes(c)

⋃n
i=1 Wattributes(cpi). •

Definition 2.4 (Behavior). Given a class c and let
Cp(c)=[cp1 , cp2 , ..., cpn] be the list of its direct super-
classes. The whole behavior for class c, denoted by
Wbehavior(c), is recursively defined to include the whole
behavior of the classes in Cp(c).
Wbehavior(c)=Lbehavior(c)

⋃n
i=1Wbehavior(cpi). •

Definition 2.5 (Extent). Given a class c and let
Cb(c)={cb1 , cb2 , ..., cbm} be the set of its direct sub-
classes. All objects that understand at least the behavior
in Wbehavior(c), constitute the extent of class c, denoted
by Winstances(c). This set is recursively defined in terms
of the extents of the classes in Cb(c).
Winstances(c) = Linstances(c)

⋃m
i=1 Winstances(cbi). •

Example 2.1 (Classes).
Next are characteristics of the classes in the object-oriented
schema:
Person:
Cp(Person)=[] Cb(Person)={Student, Staff, Secretary}
Lattributes(Person)={SSN:integer, name:string, age:integer,

sex:character, spouse:Person, nation:Country}
Lbehavior(Person)={SSN(), SSN(i), name(), name(t), age(),

age(i), sex(), sex(t), spouse(), spouse(p), nation(), nation(c)}

Country:
Cp(Country)=[] Cb(Country)={}
Lattributes(Country)={Name:string, area:integer, popula-

tion:integer}
Lbehavior(Country)={Name(), Name(t), area(), area(i), popu-

lation(), population(i)}
Student:

Cp(Student)=[Person]
Cb(Student)={ResearchAssistant}

Lattributes(Student)={StudentID:integer, gpa:real, stu-
dent_in:Department,Takes:{(course:Course, grade:string)}}
Lbehavior(Student)={StudentID(), StudentID(i), gpa(), gpa(i),

student_in(), student_in(d), Takes(), Takes(t)}
Staff:

Cp(Staff)=[Person]
Cb(Staff)={ResearchAssistant}

Lattributes(Staff)={StaffID:integer, salary:integer,
works_in:Department}
Lbehavior(Staff)={StaffID(), StaffID(i), salary(), salary(i),

works_in(), works_in(d)}
ResearchAssistant:

Cp(ResearchAssistant)=[Student, Staff]
Cb(ResearchAssistant)={}
Lattributes(ResearchAssistant) = {}
Lbehavior(ResearchAssistant) = {}

Course:
Cp(Course)=[] Cb(Course)={}
Lattributes(Course)={Code:integer, title:string, credits:integer,

Prerequisite:{Course}}
Lbehavior(Course)={Code(), Code(i), title(), title(t), credits(),

credits(i), Prerequisite(), Prerequisite(c)}
Department:

Cp(Department)=[] Cb(Department)={}
Lattributes(Department)={Name:string, head:Staff}
Lbehavior(Department)={Name(), Name(t), head(), head(t)}

Secretary:
Cp(Secretary) = [Person] Cb(Secretary) = {}

Lattributes(Secretary)={words/ minute:integer,
works_in:Department}
Lbehavior(Secretary)={words/ minute(), words/mimute(i),

works_in(), works_in(d)} •

It is clear from Example 2.1 that the behavior of a class
contains two methods for every attribute. These methods
are automatically generated by the system when the at-
tribute is defined. For instance, the two methods SSN(),
SSN(i) are included in Lbehavior(Person) because at-
tribute SSN belongs to Lattributes(Person). While the
first method retrieves the value of attribute SSN from the
receiving object, the second method SSN(i) sets the value
of attribute SSN within the receiving object to the value of
the argument i.

2.1.2 The Necessary Object-Oriented Schema
Information

Related to the object-oriented schema, the analysis is based
on the domain information summarized in the following
table.
ObjectAttributes(class name, attribute name, domain)

300 Informatica 33 (2009) 297–308 T. Naser et al.

Class Name Attribute Name Domain
Person ssn integer
Person name string
Person age integer
Person sex integer
Country name string
Country area integer
Country population integer
Student studentID integer
Student gpa real
Staff satffID integer
Staff salary integer
Course code integer
Course title string
Course credits integer
Department name string
Secretery word_minute integer
T1 grade string

Class Name Attribute Name Domain
Person spouse Person
Person nation Country
Student student_in Department
Student Takes T1
Staff work_in Department
Course prerequisite Course
Department head Staff
Secretery work_in Department
T1 course Course

(a) (b)

Table 1: ObjectAttributes: (a) a list of all attributes with primitive domains (b) a list of all attributes with non-primitive domains

The ObjectAttributes table includes information about
all attributes in the object-oriented schema. For each at-
tribute, it is required to know its name, class and do-
main. Attributes with primitive domains and attributes with
non-primitive domains are placed in separate occurrences
of the ObjectAttributes table, namely ObjectAttributes(a)
and ObjectAttributes(b), respectively. Table 1 includes the
ObjectAttributes information related to the object-oriented
schema introduced in Example 2.1. Each domain of the
tuple type is assigned a short name that consists of the let-
ter ′T ′ suffixed with a consecutive non-decreasing number,
starting with 1. For instance, as shown in the fourth row
in Table 1(b), the short name T1 has been assigned to the
domain of the attribute Takes from Linstances(Student).
This way, it becomes trivial to identify attributes that ap-
pear within a tuple domain as illustrated in the last row of
each of ObjectAttributes(a) and ObjectAttributes(b) in Ta-
ble 1.

2.2 XML Schema Characteristics
XML schema is a language for describing the structure and
constraining the content of XML documents. So, it can
be described as a set of rules to which an XML document
must conform in order to be considered well-formed and
valid document.

In our work, we will use XML Schema complex type
elements, primitive type elements and sequence indica-
tor. XML Schema allows us to define the cardinality of
an element (i.e., the number of its possible occurrences)
with some precision. This cardinality constraint can be
explicated by associating the two XML built-in attributes
minOccurs and maxOccurs, with subelements under the
“complexType” element. We can specify both minOccurs
(the minimum number of occurrences) and maxOccurs (the
maximum number of occurrences). It is possible to set
maxOccurs to unbounded, which means that there can be

as many occurrences of the character element as the au-
thor wishes. Both attributes have a default value of one.
If both minOccurs and maxOccurs are omitted, the subele-
ment must appear exactly once.

Definition 2.6 (ComplexType). A complextype element is
defined as a tuple, (Ccomplextypes(ct), Cprimitivetypes(ct),
Ckeys(ct), Ckeyrefs(ct)), where ct is the complextype
identifier, Ccomplextypes(ct) is the complextype elements
(subelements) of complextype ct, Cprimitivetypes(ct) is the
set of primitive type elements of ct, Ckeys(ct) is the set of
keys defined for ct, Ckeyrefs(ct) is the set of key references
defined for ct.

To demonstrate the complex type concept introduced in
Definition 2.6, consider Example 2.2 which starts by a de-
scription of some related entities followed by the corre-
sponding XML schema definition.

Example 2.2 (XML Schema). Consider the following set
of related entities. Each entity has a set of attributes and a
primary key; the domain of each attribute is also specified.
Drawing the corresponding entity-relationship diagram is
straightforward by considering the given summary.
Person Complex Type: Key = SSN
attributes = {ssn :integer; name:string; age :integer; sex
:character; spouse :Person; nation :Country}
Country Complex Type: KEY= Name
attributes = {name:string; area :integer; population
:integer}
Student Complex Type: Key=StudentID
attributes = {StudentID:integer; gpa :real; student in
:Department; Takes:{(course :Course; grade :string)}}
Staff Complex Type: Key=StaffID
attributes = {StaffID:integer; salary :integer; works_in
:Department}
ResearchAssistant Complex Type: links to both student
and staff; hence gets the key of either one.

TWO-WAY MAPPING BETWEEN OODB & XML Informatica 33 (2009) 297–308 301

attributes ={student:Student,staff:Staff}
Course Complex Type:Key=code
attributes = {Code :integer; title :string; credits :integer;
Prerequisite :{Course}}
Department Complex Type: Key=name
attributes = {name:string; head :Staff}
Secretary Complex Type: links to person; hence gets the
primary key of person.
attributes ={person:Person, wordsperminute :integer;
works in :Department}

The next XML Schema segment depicts part of the
nested XML Schema. It describes the PERSON and
COUNTRY complextype elements. It shows the COUN-
TRY element as a child element of the PERSON com-
plex type element. PERSON complextype includes an
empty PERSON_Object element, where PERSON_Object
element is defined as a complex type that includes all at-
tributes of PERSON element. The "sequence" indicator is
used as sequential semantic for the set of subelements. It
is a flat XML Schema, where the subelement COUNTRY
in the complex type element PERSON is defined as a string
element type. The two parts of XML schema are connected
by “key” and “keyref” constraints.

<xsd:complexType name=" PERSON">
<xsd:sequence>
<xsd:element name=" PERSON_Object"
type="PERSON_Tuple" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=" PERSON _Object">

<xsd:sequence>
<xsd:element name="SSN" type="xsd:int" />
<xsd:element name="NAME" type="xsd:string"/>
<xsd:element name="AGE" type="xsd:int" />
<xsd:element name="SEX" type="xsd:string"/>
<xsd:element name="SPOUSE" type="PERSON"/>
<xsd:element name="NATION" type="xsd:String"/>

</xsd:sequence>
</xsd:complexType> <xsd:complexType
name=" COUNTRY_Class">
<xsd:sequence>
<xsd:element name=" COUNTRY _Tuple"
type= "COUNTRY_Tuple"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType> <xsd:complexType
name="COUNTRY_Object">
<xsd:sequence>
<xsd:element name="NAME" type="xsd:string" />
<xsd:element name="AREA" type="xsd:int" />
<xsd:element name="POPULATION type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
<!-- Define Primary Keys and Keyrefs -- >
<xs:key name="PERSON_PrimaryKey">
<xs:selector xpath="db:PERSON/db:PERSON_Object"/>
<xs:field xpath="db:SSN"/>

</xs:key>

<xsd:key name="COUNTRY_PrimaryKey">
<xsd:selector
path="db:COUNTRY_Class/db:COUNTRY_Object"/>
<xs:field xpath="db:Name"/>
</xs:key>

<xs:keyref name="PERSON.nation"
refer="db:COUNTRY_PrimaryKey">
<xs:selector
xpath="db:PERSON/db:PERSON_Object"/>
<xs:field xpath="nation"/>
</xs:keyref>

A corresponding nested XML schema may be con-
structed by the same way; but “key” and “keyref” are re-
placed by the actual nested instead. In other words, a Per-
son element will have a subelement “nation”, which in-
cludes details of the Country element representing the na-
tionality of the Person element. Here it is worth mention-
ing that although a nested XML schema reflects better the
natural structure and linkage between elements, a corre-
sponding XML document would occupy much more space
and will be more difficult to handle in order to maintain
database consistency in case of a dynamic database with
frequent updates.

2.3 The Object Graph
In this section, we use the information present in the Ob-
jectAttributes(b) table and the inheritance information as
defined in Section 2.1.1, to draw what we call the Ob-
ject Graph (OG) that includes all possible relationships
between the classes present in the given object-oriented
schema. Nodes in OG are classes and representatives of
tuple type domains. Two nodes are connected by a link
to show the inheritance or a nesting relationship between
them. Nodes and links are represented by small rectan-
gles and directed arrows, respectively. Inheritance and
nesting links are assigned the scores 0 and 1, respectively.
A link is assigned the score 2 if it is connecting a node
that represents a tuple domain and the class in which it
is referenced. To illustrate this, refer to attribute Takes
in Lattributes(Student) in Example 2.1 and to the corre-
sponding link connecting the two nodes T1 and Student in
Figure 1. More formal details related to OG are included
in Definition 2.7, given next.

Definition 2.7 (Object Graph).
Every object-oriented schema has a corresponding OG
graph (V,E) such that,

1. for every class c in the object-oriented schema there is
a corresponding node c in V ,

2. for all classes c1 and c2, such that c2 ∈ Cp(c1), an
edge (c1, c2, 0) is added to E

3. for every class c
for every attribute a ∈ Lattributes(c), such that a

has a non-primitive domain,
if domain of a involves a class, say c′, then an

edge (c, c′, 1) is added to E
else if domain of a involves a tuple Ti, (i≥1)

then
a node Ti is added to V and an edge (Ti, c, 2)

302 Informatica 33 (2009) 297–308 T. Naser et al.

is added to E
for every class c′′ that appears as a domain in

tuple Ti, an edge (Ti, c
′′, 1)

is added to E •

Figure 1: The Object Graph of the object-oriented schema in
Example 2.1

As definition 2.7 is concerned, every node Ti in V , such
that there exists an edge (Ti, c

′′, 2) in E, corresponds in the
relational graph to a node that represents a relationship that
involves more that two relations, or a relationship with at-
tributes. This will become more clear later in Section ??,
when the equivalence of the two graphs RG and OG is
investigated. Shown in Figure 1 is the OG graph derived
from the information present in Table 1(b) and the inheri-
tance information in the Cp lists in Example 2.1.

3 Forward engineering:
transforming object graph into
XML schema

In this section, we first present the algorithm for transform-
ing the object graph to flat XML schema(OG2FXML); then
we present the algorithm for transforming the object graph
to nested XML schema (OG2NXML).

3.1 Object Graph to Flat XML Schema
Transformation

The OG2FXML in pseudo-code is depicted in Algo-
rithm 3.1.
Algorithm 3.1 OG2FXML (object graph to Flat XML
Conversion)
Input: The Object Graph
Output: The corresponding flat XML schema
Step:

1. Transform each node in the object graph (we call it
class hereafter) into a “complexType" in the XML
schema.

2. Map each attribute in a class transformed in Step (1)
into a subelement within the corresponding “complex-
Type".

3. Create a root element as the object-oriented database
schema name and insert each class identified in
Step (1) as a subelement with the corresponding
“complexType".

4. Define the primary key for each class identified in
Step (1) by using “key" element.

5. Map in the object graph each link between classes
identified in Step (1) by using “keyref" element.

EndAlgorithm 3.1
To understand the steps of Algorithm 3.1, we present

more details with supporting examples.

– Each class E in the object graph is translated into
an XML “complexType" of the same name E in
the XML schema. In each “complexType" E, there
is only one empty element, which includes several
subelements. For example, COUNTRY is translated
into a “complexType" named COUNTRY_Class. The
empty element is called COUNTRY_Object.

<xs:complexType name="COUNTRY_Class">
<xs:sequence>
<xs:element name="COUNTRY_Object"
type="db:COUNTRY_Object" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="COUNTRY_Object">
<xs:sequence>

.
</xs:sequence>

</xs:complexType>

The cardinality constraint can be explicated by asso-
ciating two XML built-in attributes (also called indi-
cators), namely “minOccurs" and “maxOccurs", with
subelements under the “complexType" element. The
default value for both “maxOccurs" and “minOccurs"
is 1. If specified, the value for “minOccurs" should
be either 0 or 1 and the value for “maxOccurs" should
be greater than or equal to 1. If both “minOccurs" and
“maxOccurs" are omitted, the subelement must appear
exactly once.

– Each attribute Ai in E is mapped into a subelement
of the corresponding “complexType" E. For exam-
ple, COUNTRY is mapped into a “complexType"
named COUNTRY_Object, inside which there are
several subelements such as Name, Area and Popu-
lation. They are attributes of the COUNTRY class.
The XML schema for COUNTRY is:

<xs:complexType name="COUNTRY_Object">
<xs:sequence>
<xs:element name="Name" type="xs:string" />
<xs:element name="Area" type="xs:int" />
<xs:element name="Population" type="xs:int" />

</xs:sequence>
</xs:complexType>

TWO-WAY MAPPING BETWEEN OODB & XML Informatica 33 (2009) 297–308 303

The “sequence" specification in the XML schema
captures the sequential semantics of a set of subele-
ments. For instance, in the “sequence" given above,
the subelements appear in the order: Name, Area and
Population. They must appear in instance documents
in the same order as they are declared here. The XML
schema also provides another constructor called “all",
which allows elements to appear in any order, and
each element must appear once or not at all.

– Each class in the object graph is mapped into the
XML schema. We first need to create a root ele-
ment that represents the entire given object-oriented
database. We create the root element as a “complex-
Type" in XML schema and give it the same name
as the object-oriented database schema. It then in-
serts each class as a subelement of the root ele-
ment. An example which contains the eight classes
PERSON, COUNTRY, STUDENT, STAFF, RE-
SEARCH_ASSISTANT, COURSE, DEPARTMENT,
and SECRETARY is now presented. We give the root
element the name UNIVERSITY:

<xs:element name="UNIVERSITY">
<xs:complexType>
<xs:sequence>
<xs:element name="PERSON_Class"
type="db:PERSON_Class" />
<xs:element name="COUNTRY_Class"
type="db:COUNTRY_Class" />
<xs:element name="STUDENT_Class"
type="db:TUDENT_Class" />
<xs:element name="STAFF_Class"
type="db:STAFF_Class" />
<xs:element name="RESEARCH_ASSISTANT_Class"
type="db:RESEARCH_ASSISTANT_Class" />
<xs:element name="COURSE_Class"
type="db:COURSE_Class" />
<xs:element name="DEPARTMENT_Class"
type="db:DEPARTMENT_Class" />
<xs:element name="SECRETARY_Class"
type="db:SECRETARY_Class" />

</xs:sequence>
</xs:complexType>

<!-- definition of keys and keyrefs -->
.

</xs:element>

– The elements “key" and “keyref" are used to en-
force the uniqueness and referential constraints. They
are among the key features introduced in the XML
schema. Further, we can use “key" and “keyref" to
specify the uniqueness scope and multiple attributes
in creating composite keys. Consider this example:

<xs:key name="COUNTRY_PrimaryKey">
<xs:selector
xpath="db:COUNTRY_Class/db:COUNTRY_Object"/>
<xs:field xpath="db:Name" />

</xs:key>
<xs:key name="PERSON_PrimaryKey">
<xs:selector
xpath="db:PERSON_Class/db:PERSON_Object"/>
<xs:field xpath="db:nation" />

</xs:key>
<xs:keyref name="PERSON.nation"
refer="db:COUNTRY_PrimaryKey">
<xs:selector
xpath="db:PERSON_Class/db:PERSON_Object"/>
<xs:field xpath="nation" />

</xs:keyref>

In this example, nation is like a foreign key in PER-
SON, so we use “keyref" to specify the foreign key re-
lationship between COUNTRY and PERSON. Com-
pared to DTD, the XML schema provides a more
flexible and powerful mechanism through “key" and
“keyref", which share the same syntax as “unique"
also make referential constraints possible in XML
documents.

In general, OG2FXML is a straightforward and effective
transformation algorithm, but it is only applicable when
generating a flat XML structure from an object graph of an
object-oriented database. As the name implies, OG2FXML
cannot handle the nested features provided by XML. We
remedy this problem in the OG2NXML algorithm which
will be presented in the following section.

3.2 Object Graph to Nested XML Schema
Transformation

In XML schema, we can use nested complex type elements
to define the relationship between two elements. One ad-
vantage of the nested XML structure is to store all related
information in one fragment of an XML document. This
reduces the time for data retrieval when users query on
the XML document. Algorithm 3.2 (OG2NXML) does
the transformation from the object graph to a nested XML
structure.

The OG2NXML depends on the nesting sequence
specified in the object graph and generates an output of
nested XML schema. The OG2NXML in pseudo-code is
depicted in Algorithm 3.2.
Algorithm 3.2 OG2NXML (object graph to Nested
XML Conversion)
Input: The object graph
Output: The corresponding nested XML schema
Step:

For classes connected by a link labeled with 1 in the
object graph, we nest the element that correspond to
the class at the head of the arrow inside the element
that correspond to the class at the tail of the arrow.

For classes connected by a link labeled with 0 do

Extend the element that correspond to the sub-
class to include the content of the element that
correspond to the superclass.

EndAlgorithm 3.2
To illustrate the nesting process, consider the UNIVER-

SITY database; it is taken as input by OG2NXML which
generates as output the XML schema in a nested structure.
The element of COUNTRY is nested under the element of
PERSON. The nested element then included separately in-
side the elements of STAFF and STUDENT because PER-
SON is a superclass of each of the two latter classes. This
way, inheritance is resolved by extending the content of

304 Informatica 33 (2009) 297–308 T. Naser et al.

the subclass to include the attributes defined in the super-
classes. Handling the inheritance relationship in this way
is more natural because it is not supported in XML.

3.2.1 Generating XML Documents

After the XML schema is obtained, the next step is to
generate XML document(s) from the considered object-
oriented database. Algorithm 3.3 (GenXMLDoc) checks
top-down through the list of selected objects and generates
an element for each object.
Algorithm 3.3 GenXMLDoc (Generating XML Docu-
ment)
Input: XML schema and object-oriented database
Output: The corresponding XML Document
Step:

Create XML document and set its namespace declaration

Create a root element of the XML document with the
same name as the root name of the XML schema

For each class R in the object-oriented database do

If R is selected and does not contain any nested
classes

Create R_Class element for R
Let queryString = “select * from R"
ResultSet = execute(queryString)
For each object T in ResultSet do

Create R_Object element for object T
Create an element for each attribute in R

and insert it into R_Object element

else if R is selected and contains a nested class Rc

then

Create R_Class element for R and Rc_Class
for Rc

Let queryString = “select selectedAttrs from R,
Rc"

ResultSet = execute(queryString)
For each object T in ResultSet do

Create R_Object element for the tuple of
R, and Rc_Object element for the ob-
ject of Rc

Create an element for each selected at-
tribute in R and insert it to R_Object
element, and do same for Rc

EndAlgorithm 3.3
Algorithm 3.3 can generate flat XML documents as well

as nested XML documents, depending on the processed
XML schema. In Algorithm 3.3, a query is executed to ob-
tain all objects that satisfy the constraints so one element is
created to store data of each object in the result set.

4 Backward engineering: from
XML schema to object-oriented
database

4.1 XML Schema Information

Related to the nested XML schema, the analysis is based on
the domain information summarized in the following table:

XMLAttributesNE(complextype, element name, domain)
To understand better the content and purpose of this table,
XMLAttributesNE shown in Table 2 includes information
about all elements and attributes in the XML schema given
in Example 2.2. For each element, it is required to know its
complextype name, element name, and the domain. El-
ements with primitive domains and elements with non-
primitive domains are placed in separate occurrences of the
XMLattributes table, namely XMLElementsNE(a) and XM-
LElementsNE(b), respectively.

Concerning the information in Table 2(b), user involve-
ment is required to suggest which element is inherited -
representing a superclass in the object-oriented Database
-, the element that can represent the nested non primitive
domain attributes and the element that can represent a tu-
ple type domain attribute. In Table 2(b), an “Inheritance
Flag” is assigned to each element. The score 0 is given
for the candidate superclass elements (inherited element),
score 1 is given for the nested non- primitive domain el-
ements and score 2 is assigned for the tuple domain ele-
ments. Subclasses are not included in the attributes of the
class because they could be inspired by considering the su-
perclasses list of subclasses. For instance, the “nation” el-
ement is given the value 1 for the “Inheritance Flag” be-
cause it is a nested non-primitive domain. The inheritance
flag in row 3 is given the value 1 because student_in of
type DEPARTMENT is a nested type, while it is given the
value 0 in row 5 because PERSON is candidate superclass
for STUDENT (inheritance). Also, row seven is give the
value 0 as ResearchAssistant is a subclass of STUDENT
and STAFF; that means STUDENT and STAFF are super-
classes for ResearchAssistant. This way, it becomes triv-
ial to identify superclasses, subclasses and non-primitive
domain attributes using XMLElementsNE(a) and XMLEle-
mentsNE(b) as given in Table 2.

Related to the flat XML schema, the analysis is based on
the domain information summarized in the following table:
XMLAttributesFL (complextype, element name, domain,
expected domain ,inheritanceflag, keys information, key
ref information) The need for the information depicted in
XMLAttributesFL is better understood by considering the
XML schema in Example 2.2; the corresponding XMLAt-
tributesFL shown in Table 3 includes information about
all elements and attributes in the flat XML schema. This
information is described in 3 tables named “a”, “b", and
“c". For each element, it is required to know its com-
plextype name, element name, domain, expected domain
name and the inheritance status (inherited or not). Also,

TWO-WAY MAPPING BETWEEN OODB & XML Informatica 33 (2009) 297–308 305

Complex Type
Name

Element Name Domain

Person ssn integer
Person name string
Person age integer
Person sex integer
Country name string
Country area integer
Country population integer
Student studentID integer
Student gpa real
Staff satffID integer
Staff salary integer
Course code integer
Course title string
Course credits integer
Department name string
Secretery word_minute integer
T1 grade string

Complex Type
Name

Element Name Domain Inheritance
Flag

Person spouse Person 1
Person nation Country 1
Student student_in Department 1
Student Takes T1 2
Student person Person 0
Staff work_in Department 1
ResearchAssistant student Student 0
ResearchAssistant staff Staff 0
Course prerequisite Course 1
Secretery work_in Department 1
T1 course course 1

(a) (b)

Table 2: XMLAttributesNE: (a) a list of all elements attributes with primitive domain
(b) a list of all elements attributes with non-primitive domains

Complex Type Name Element Name Domain Expected Domain Inheritance Flag
Person ssn integer integer 9
Person name string string 9
Person age integer integer 9
Person sex integer integer 9
Person spouse string Person 1
Person nation string Country 1
Country name string string 9
Country area integer integer 9
Country population integer integer 9
Student studentID integer integer 9
Student gpa real real 9
Student student_in string Department 1
Student Takes T1 T1 2
Student person integer Person 0
Staff satffID integer integer 9
Staff salary integer integer 9
Staff work_in integer Department 1
ResearchAssistant student integer Student 0
ResearchAssistant staff integer Staff 0
Course code integer integer 9
Course title string string 9
Course credits integer integer 9
Course prerequisite string Course 1
Department name string string 9
Secretery word_minute integer integer 9
Secretary work_in string Department 1
T1 Course string Course 1
T1 grade string string 9

(a)

Key Name Complex Type
Name

Element
Name

Person_pk Person ssn
Country_pk Country name
Student_pk Student studentid
Staff_pk Staff staffid
Course_pk Course code
Department_pk Department name

(b)

Key Reference Name Ref. Com-
plex type

Ref. element Refer to Element

Person.nation Person nation country_pk
student.Student_in Student Student_in Department_pk
Secretery.work_in Secretery work_in Department_pk

(c)

Table 3: XMLAttributesFL: (a) a list of all elements attributes with primitive and non primitive domains (b) a list of
all keys for the complex type elements (c) a list of key references of the complex type elements

306 Informatica 33 (2009) 297–308 T. Naser et al.

it is required to know the complex type elements "keys"
and “keyrefs”. Information about the elements is placed
in XMLElementsFL Table 3(a), Keys information is placed
in XMLKeys Table 3(b), while key reference information is
replaced in XMLKeyRef Table 3(c) .

In Table 3(a), user involvement is required to suggest
which element is inherited (a candidate superclass in the
object-oriented database), the element that can represent
the nested non-primitive domain attributes and the element
that can represents the tuple type domain attributes. A
value is assigned to “Inheritance Flag" for each element.
The score 0 is given for the inherited element (candidate
superclass elements), score 1 is given for the nested non-
primitive domain elements, score 2 is assigned for the tu-
ple domain elements, and score 9 is assigned to the primi-
tive domain elements. User involvement and the informa-
tion available in XMLKeys Table 3(b) and in XMLKeyRef
Table 3(c) can define the expected non-primitive domain
for flat XML primitive domain elements. For instance, the
“nation" element is given the value 1 for the “Inheritance
Flag" and an expected domain COUNTRY. This is because
by analyzing and connecting the information in XMLKeys
Table 3(b) and in XMLKeyRef Table 3(c), it can be shown
that there is a reference link between the nation element
and the country_pk in COUNTRY complex type. Row 1
is given the score 9 because it is a primitive domain ele-
ment. In STUDENT complex type element, “person" ele-
ment of primitive type element is given the score 0 because
the user involvement can decide that this is an inherited
element, and thus it could be mapped as a superclass for
STUDENT. As a result, itt becomes easy to construct Ta-
ble 2 from information in Table 2. Explicitly, primitive do-
mains can be mapped into XMLElementsNE Table 2(a), and
expected non-primitive domains can be mapped into XM-
LElementsNE Table 1(b). This way, it becomes trivial to
identify superclasses, subclasses and non-primitive domain
attributes using XMLElementsNE (a) and (b) in Table 2.

To sum up, the information needed to map into the
object-oriented database is summarized in table XMLEle-
mentsNE. This table is derived directly derivable from a
nested XML schema. However, for flat XML schema, the
process involves like a preprocessing step to derive the in-
formation in table XMLElementsFL, which is used to con-
struct XMLElementsNE. This open the door for a new rela-
tional to object-oriented database conversion by converting
a relational database directly into a flat XML schema and
then map the latter into object-oriented schema.

As Example 2.2 is concerned, shown in Figure 2.1 is
the object graph derived from the information present in
Table 2(b) and the inheritance information provided by an
expert based on the content of Table 2.

4.2 Transferring Object Graph into
Object-Oriented Schema

In this section, we present an algorithm for transforming
the object graph to object-oriented Schema (OG2OODB).

Algorithm 4.1 OG2OODB (OG to object-oriented
Schema conversion)
Input: The Object Graph
Output: The corresponding object-oriented Schema

1. Transfer each node in the object graph (we call it com-
plextype hereafter) into a class in the object-oriented
schema. Exclude nodes like Ti, (i ≥ 1).

2. Map each subelement of primitive type in table XM-
LElementsNE(a) into a primitive attributes in the cor-
responding class. Exclude subelements like Ti, (i ≥
1).

3. Map each subelement of non primitive domain with
score 1 defined in table XMLElementsNE(b) into the
non primitive attributes in the corresponding class.
Exclude subelements like Ti, (i ≥ 1).

4. Map each subelement of non-primitive domain with
score 2 defined in table XMLElementsNE(b) as a tu-
ple non-primitive attributes in the corresponding class.
Add to this tuple non-primitive attributes all elements
of complex type name equivalent to its domain.

5. Add each subelement of non-primitive domain with
score 0 defined in table XMLElementsNE(b) into the
superclasses list of the corresponding class.

EndAlgorithm 4.1
To understand the steps of Algorithm 4.1, we present

more details with supporting examples.
Each complextype E in the object graph is translated

into a class of the same name E in the object-oriented
schema. In each “complexType” E, there is only one empty
element, which includes several subelements. Those prim-
itive and non-primitive subelements and their domains are
mapped into class attributes with the same domains. Also,
superclasses of the class are added to its superclasses list.
Information related to three example classes is given next;
only attributes, superclasses and subclasses are shown;
functions are excluded for space limitation and because
they are trivial. Each attribute satisfies encapsulation by
have two corresponding functions, one to set its value and
one to return its value.

PERSON class can be depicted as
PERSONattributes = {ssn :integer; name:string; age :in-
teger; sex :character; spouse :Person; nation Country}
PERSONsuperclasses = []
PERSONsubclasses ={Student, Staff, Secretary}
COUNTRY class can be depicted as
COUNTRYattributes = {name:string; area :integer; pop-
ulation :integer}
COUNTRYsuperclasses = []
COUNTRYsubclasses = []
STUDENT class can be depicted as
STUDENTattributes = {StudentID:integer; gpa :real;
student in :Department; Takes:{(course :Course; grade

TWO-WAY MAPPING BETWEEN OODB & XML Informatica 33 (2009) 297–308 307

:string)}}
STUDENTsuperclasses = [PERSON]
STUDENTsubclasses =ResearchAssistant

5 Summary and conclusions

In this paper, we considered the mapping between object-
oriented database and XML. This turns into forward and
backward mappings. For the forward mapping from object-
oriented into XML, we first analyze the object-oriented
database to construct the object graph, which is equiva-
lent to the class hierarchy with all inheritance and nesting
links indicated. Different scores are assigned to links in
both graphs in order to differentiate inheritance from nest-
ing links. Then we developed two algorithms to produce
for the object graph a corresponding flat or nested XML
schema. Here, it is worth noting that the inheritance is han-
dled differently by the two algorithms. While the former
resolves the inheritance using key and keyref, the latter ex-
pands the subclass element to include the content of the
superclass element; the latter is a more natural way, but
the former is easier to deal with if we need to transform
the XML into the relational model, which does not sup-
port nesting. Finally, we handle the mapping of the object-
oriented data into XML document(s). For the backward
mapping from XML into object-oriented database, we first
analyze flat and nested XML Schema to construct the ob-
ject graph, which is equivalent to the class hierarchy with
all inheritance and nesting links indicated. Nested XML
schema complex types are directly mapped to the proposed
candidate classes. User involvement is required to differ-
entiate between the nested complex types and the inheri-
tance ones that will be mapped as superclasses. Flat XML
schema depends on key and keyref data to resolve the in-
heritance and the nesting. User involvement is required to
decide for those complex types that do not have enough in-
formation in key and keyref data. Flat XML data is mapped
into the same tables used for the nested XML data, so one
algorithm was sufficient to handle both types of nested and
flat XML schemas.

References

[1] U. Ahmad, et al., “An Integrated Approach for Ex-
traction of Objects from XML and Transformation to
Heterogeneous Object Oriented Databases," Proc. of
ICEIS, pp.445-449, 2003.

[2] R. Alhajj, F. Polat and C. Yilmaz, “Views as First-
Class Citizens in Object-Oriented Databases,” VLDB
Journal, Vol.14, No.2, pp.155-169, 2005.

[3] R. Alhajj and A. Elnagar, “Incremental Materializa-
tion of Object-Oriented Views,” Data & Knowledge
Engineering, Vol.29, No.2, pp.121-145, Nov. 1998.

[4] R. Alhajj and F. Polat, “Reusability and Schema Evo-
lution in an Object-Oriented Query Model,” Proc. of
the ASME European Conference on Systems Design
and Applications, France, pp.21-29, Jul. 1996.

[5] R. Alhajj and F. Polat, “Proper Handling of Query
Results Towards Maximizing Reusability in Object-
Oriented Databases,” Information Sciences: An Inter-
national Journal, 107/1-4, pp.247-272, Jun. 1998.

[6] R. Alhajj and M.E. Arkun, “A Formal Data Model
and Object Algebra for Object-Oriented Databases,”
Applied Mathematics and Computer Science, Vol. 2,
No. 1, pp. 49-63, 1992.

[7] R. Alhajj and F. Polat, “Closure Maintenance in an
Object-Oriented Query Model,” Proc. of the ACM In-
ternational Conference on Information and Knowl-
edge Management, Maryland, pp.72-79, Nov. 1994.

[8] R. Alhajj and M.E. Arkun, “A Query Model for
Object-Oriented Database Systems,” Proc. of the 9th

IEEE International Conference on Data Engineering,
Vienna, pp.163-172, Apr. 1993.

[9] R. Alhajj and F. Polat, “Database Reverse Engineer-
ing,” Proc. of the 14th International Symposium on
Computer and Information Sciences, Kusadasi, Oct.
1999.

[10] R. Alhajj, “Documenting Legacy Relational
Databases,” Proc. of the International Workshop
on Reverse Engineering of Information Systems, in
conjunction with the International Conference on
Conceptual Modeling, Lecture Notes in Computer
Science, Springer-Verlag, Paris, pp.161-172, Nov.
1999.

[11] M. Andersson, “Extracting an Entity-Relationship
Schema from a Relational Database through Reverse
Engineering,” Proc. of the 13th International Confer-
ence on Entity-Relationship Approach, Manchester,
pp.403-419, Dec. 1994.

[12] R.G.G. Cattel, et al., The Object Database Standard:
ODMG-93, Morgan Kaufmann, 1994.

[13] R.G.G. Cattel, Object Data Management: Object-
Oriented and Extended Relational Database Systems,
Addison-Wesley, 1994.

[14] M. Carey, et al, “XPERATO: Publishing Object-
Relational Data as XML," Proc. of the International
Workshop on Web and Databases, May 2000.

[15] J. Cheng and J. Xu, IBM DB2 XML Extender, IBM
Silcom Valley, February, 2000.

[16] T.-S. Chung, S. Park, S.-Y. Han, and H.-J. Kim.
“Extracting Object-Oriented Database Schemas from
XML DTDs Using Inheritance,” Proc. of the Interna-
tional Conference on Electronic Commerce and Web
Technologies, pp.49-59, 2001.

308 Informatica 33 (2009) 297–308 T. Naser et al.

[17] M.F. Fernandez, W.C. Tan, and D. Suciu, “SilkRoute:
Trading between Relational and XML,” Proc. of the
International Conference on World Wide Web, May
2000.

[18] J. Fong, F. Pang, and C. Bloor, “Converting Relational
Database into XML Document,” Proc. of the Interna-
tional Workshop on Electronic Business Hubs, pp61-
65, Sep. 2001.

[19] T. Johansson and R. Heggbrenna. “Importing XML
Schema into an Object-Oriented Database Mediator
System,” In Uppsala Master’s Theses in Computing
Science no. 260 Examensarbete DV3 20 p, 2004-01-
12, ISSN 1100-1836, 2003.

[20] D. Lee, et al, “Nesting based Relational-to-XML
Schema Translation,” Proc. of the International Work-
shop on Web and Databases, May 2001.

[21] C. Liu, M. W. Vincent, J. Liu, and M. Guo, A Vir-
tual XML Database Engine for Relational Databases,
Springer-Verlag, 2003.

[22] A. Lo, R. Alhajj and K. Barker, “VIREX: Visual Re-
lational to XML Conversion Tool,” Visual Languages
and Computing, Vol.17, No.1, pp.25-45, 2006.

[23] T. Naser, K. Kianmehr, R. Alhajj and M. J. Ridley,
“Transforming Object-Oriented Database into XML,”
Proc. of IEEE IRI, pp.600-605, Aug. 2007.

[24] T. Naser, R. Alhajj and M. J. Ridley, “Reengineering
XML into Object-Oriented Database,” Proc. of IEEE
IRI, Jul. 2008.

[25] D. Toth and M. Valenta, “Using Object and Object-
Oriented Technologies for XML-native Database
Systems,” Proc. of the Dateso Annual International
Workshop on DAtabases, TExts, Specifications and
Objects, 2006.

[26] V. Turau, “Making Legacy Data Accessible for
XML applications," 1999, http://www.informatik.fh-
wiesbaden.de/ turau/ps/legacy.pdf.

[27] C. Wang, A. Lo, R. Alhajj, and K. Barker, “Convert-
ing Legacy Relational Database into XML Database
through Reverse Engineering,” Proc. of ICEIS, 2004.

[28] “Extensible Markup Language (XML) 1.0 (Fourth
Edition).” W3C Recommendation 16 August 2006,
edited in place 29 Sept 2006

