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This study describes a novel simulation model (OrgSwarm) of the process of strategic adaptation. Strate-
gic adaptation is conceptualized as a process of adaptation (search), on a landscape of strategic possibilities,
by a population of profit-seeking organizations. Unfortunately, the characteristics that make organizations
coherent and viable such as organizational structure and shared organizational culture, also create strate-
gic inertia, potentially limiting the ability of organizations to adapt. This study examines the impact of
strategic inertia on the adaptive potential of organizations. The simulation results suggest that a degree
of strategic inertia can assist rather than hamper adaptive efforts in static and slowly changing strategic
environments.

Povzetek: Predstavljen je OrgSwarm, nov model procesa strateškega prilagajanja.

1 Introduction

There are parallels between biological and social systems.
In both, individuals within a larger population are attempt-
ing to appropriate scarce resources, or to earn a living, in
a dynamic environment. Entities in these systems typically
alter their ‘strategies’ over time in an attempt to improve
their success. In an organizational setting, a strategy con-
sists of a choice of what activities the organization will per-
form, and choices as to how these activities will be per-
formed [36]. These choices define the strategic configu-
ration of the organization. Recent work by [28] and [38]
has recognized that strategic configurations consist of in-
terlinked individual elements (decisions), and have applied
general models of interconnected systems such as Kauff-
man’s NK model to examine the implications of this for
processes of organizational adaptation.

Following a long-established metaphor of adaptation as
search [46], strategic adaptation is considered in this study
as an attempt to uncover peaks on a high-dimensional
strategic landscape. Some strategic configurations produce
high profits, others produce poor results. The search for
good strategic configurations is difficult due to the vast
(combinatorial) number of configurations, uncertainty as to
the nature of topology of the strategic landscape faced by

an organization, and changes in the topology of this land-
scape over time. Despite these uncertainties, the search
process for good strategies is not blind. Decision-makers
receive feedback on the success of their current and his-
toric strategies, and can assess the payoffs received by the
strategies of their competitors [26]. Hence, certain areas of
the strategic landscape are illuminated.

Organizations do not exist in isolation, but interact with,
and receive feedback from, their environment. Their ef-
forts at strategic adaption are guided by social as well as
individual learning. Good ideas discovered by one organi-
zation disseminate over time. One model combining both
individual and social learning which has attracted signifi-
cant interest in recent years is that of Particle Swarm Op-
timization (PSO) [21], [25]. Particle swarm research has
been concentrated in two broad areas, the application and
study of PSO as an optimizing tool, and the application of
PSO as a model of social and cultural adaptation. This pa-
per adopts the second of these perspectives, and adapts the
canonical PSO to create a plausible model of the process of
strategic adaptation.

Although the particle swarm model has been applied to a
variety of problems in the fields of engineering [1], chem-
istry [34], medicine and psychology [25], as yet it has not
been applied to the domain of organizational science. This
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paper introduces the model to this domain, and utilizes it
to examine the impact of differing degrees of strategic in-
ertia on the adaptive capabilities of a population of organi-
zations.

1.1 Structure of paper
This contribution is organized as follows. Section 2 pro-
vides a short discussion of prior literature in the domain
of strategic adaptation in order to provide a number of
perspectives on strategic inertia. Section 3 incorporates
an introduction to the canonical Particle Swarm algorithm
(PSA),1 followed by a description of the simulation model
in Section 4. Section 5 outlines the results of the simula-
tions and finally, conclusions and future work are discussed
in Section 6.

2 Strategic Adaptation
Strategic adaptation and strategic inertia are closely linked.
If strategic adaptation is problematic, inertia is a possible
cause. A substantial literature has emerged on strategic
adaptation. This, along with its implications for strategic
inertia, is outlined below.

Two polar views exist concerning the ability of organiza-
tions to adapt their strategic configuration. Adaptationists
or advocates of strategic choice [35], [40], [31], broadly
consider that managers or dominant coalitions in organiza-
tions scan the environment for current and future opportu-
nities and threats, formulate strategic responses and adjust
organizational activities and structure appropriately [10].
Therefore, strategic direction and organizational form are
determined by managers, and market selection processes
act to maintain organizations which are good adaptors. Un-
der this perspective, an organization’s fate is largely in its
own hands, and hence strategic inertia is considered to rep-
resent a challenge rather than a roadblock to strategic adap-
tation efforts. The adaptationist argument presupposes that
organizations are capable of adapting at least as fast as
their environment changes [31], [30]. If firms are incapable
of responding to environmental changes in a similar time-
scale, adaptation (or learning) processes will not enhance
organizational survival [13]. The current practitioner inter-
est in ‘change management’ [16] exemplifies the belief that
even substantial strategic adaptation is possible.

In contrast, the population ecology school [12] pro-
poses an alternative view on organizational-environment
relations. This school of thought allows that organizations
have some ability to adapt to environmental change and
notes that ‘leaders of organizations do formulate strate-
gies and organizations do adapt to environmental contin-
gencies’ [12] (p. 930). However, it is argued that the abil-
ity of firms to accurately and consistently adapt in a world

1The term PSA is used in place of PSO (Particle Swarm Optimization)
in the remainder of this paper, as the object of the paper is not to develop
a tool for optimizing, but to apply the swarm metaphor as a model of
organizational adaptation.

of high uncertainty, where connections between means and
ends are unclear is doubtful [13], [9]. Although selection
processes select the most fit organizations in a given envi-
ronment for continued survival, population ecologists con-
tend that an organization’s fitness primarily arises because
of good initial strategic choices, or luck, rather than reflect-
ing post-founding adaptation [2]. Advocates of the popula-
tion ecology school suggest that the ability of organizations
to adapt is highly constrained because of their inherent iner-
tia. This inertia stems from two sources, imprinting forces,
and as a consequence of market selection forces.

2.1 Imprinting Forces

Imprinting forces [4] combine to define and solidify the
strategic configuration of a newly formed organization.
These forces include the dominant initial strategy pursued
by the organization, the skills / prior experience of the man-
agement team, and the distribution of decision-making in-
fluence in the organization at time of founding [4]. These
forces influence the initial choice of organizational strat-
egy. As consensus concerning the strategy emerges, it is
imprinted on the organization through resource allocation
decisions [42]. The imprinting leads to inertia by creating
sunk costs, internal political constraints, and a rigid orga-
nizational structure. Over time this inertia intensifies due
to the formation of an organizational history which creates
barriers to industry exit, and legitimacy issues if adapta-
tion is suggested [12]. The resulting inertia serves to cir-
cumscribe the organization’s ability to adapt its strategy
in the future. The initial imprinting determines the basin
of attraction in which the organization is located on the
strategic landscape. Imprinting also occurs as relationships
are built up with suppliers and customers [43]. The cre-
ation of a web of these relationships can serve to constrain
the range of strategic alternatives in the future, as strategic
moves which dramatically disrupt the web are less likely to
be considered.

2.2 Market-Selection Forces

The discussion of strategic inertia was extended by [13]
who posited that inertia is also created as a natural conse-
quence of the market-selection process, claiming that ‘se-
lection processes tend to favor organizations whose struc-
tures are difficult to change.’ (p. 149). The basis of this
claim is that organizations which can produce a good or ser-
vice reliably (consistently of a minimum quality standard)
are favored for trading purposes by other organizations,
and therefore by market selection processes. The routines
required to produce a product or service reliably, tend to
lead to structural inertia, as the construction of routines to
achieve this leads to an increase in the complexity of the
patterns of links between organizational subunits [13] &
[27]. Building on this point, it can be posited that more
efficient organizations are likely to exhibit inertia. As or-
ganizations seek better environment-structure congruence,
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their systems become increasingly specialized and inter-
linked, making changes to their activities become costly
and difficult. Structural inertia is rooted in the size, com-
plexity and interdependence of the firm’s structures, sys-
tems, procedures and processes [45]. Theoretical support
for these assertions, that increasing organizational com-
plexity can make adaptation difficult, is found in [19] and
[38], as the heightened degree of interconnections between
activities within the firm will increase the ‘ruggedness’ of
the strategic landscape faced by an organization.

The arguments that organizations are subject to strate-
gic inertia also finds resonance in the literature concerning
organizational learning and organizational memory. The
preference of organizations to continue to pursue activi-
ties similar to those undertaken in the past has been widely
noted [14], [32], as has the cumulative nature of organiza-
tional learning [33].

In summary, strategic inertia can arise from a variety of
sources, and the general consensus in organizational litera-
ture is that its existence poses clear difficulties for strategic
adaptation by organizations.

3 Particle Swarm Algorithm

This section provides an introduction to the Particle Swarm
algorithm (PSA). A full description of this algorithm and
the cultural model which inspired it is provided in [25].
A Swarm can be defined as ‘... a population of interact-
ing elements that is able to optimize some global objective
through collaborative search of a space.’ [25](p. xxvii).
The nature of the interacting elements (particles) depends
on the problem domain, in this study they represent orga-
nizations. These particles move (fly) in an n-dimensional
search space, in an attempt to uncover ever-better solutions
to the problem of interest.

Each of the particles has two associated properties, a
current position and a velocity. Each particle also has a
memory of the best location in the search space that it has
found so far (pbest), and knows the location of the best lo-
cation found to date by all the particles in the population
(gbest). At each step of the algorithm, particles are dis-
placed from their current position by applying a velocity
vector to them. The size and direction of this velocity is
influenced by the velocity in the previous iteration of the
algorithm (simulates momentum), and the current location
of a particle relative to its pbest and gbest. Therefore, at
each step, the size and direction of each particle’s move is
a function of its own history (experience), and the social
influence of its peer group. A number of variants of the
PSA exist. The following paragraphs provide a description
of the basic continuous version described by [25]. The al-
gorithm is initially described narratively. This is followed
by a description of the particle position-update equations.

3.1 The Algorithm
i. Initialize each particle in the population by randomly

selecting values for its location and velocity vectors

ii. Calculate the fitness value of each particle. If the cur-
rent fitness value for a particle is greater than the best
fitness value found for the particle so far, then revise
pbest

iii. Determine the location of the particle with the highest
fitness and revise gbest if necessary

iv. For each particle, calculate its velocity according to
equation (1)

v. Update the location of each particle

vi. Repeat steps ii - v until stopping criteria are met

Each particle i has an associated current position in the
search space xi, a current velocity vi, and a personal best
position in the search space yi. During each iteration of
the algorithm, the location and velocity of each particle is
updated using equations (1) - (5).

To provide intuition on the workings of the algorithm,
see figure 1. Each particle i has an associated current posi-
tion in search space x(t) = (xi1(t), . . . , xin(t)) at time t, a
current velocity of v(t) = (vi1(t), . . . , vin(t)), and a pbest
position of yi(t) = (yi1(t), . . . , yin(t)). The position of
the particle at time t+1 is a determined by x(t)+v(t+1),
and v(t + 1) is obtained by a stochastic blending of v(t),
an acceleration towards gbest (vgbest) and an acceleration
towards pbest (vpbest).

Assuming a function f is to be maximized, that the
swarm consists of m particles, and that r1, r2 are drawn
from a uniform distribution in the range (0,1), the velocity
update for particle i is as follows:

vi(t+1)=Wvi(t)+c1r1(yi−xi(t))+c2r2(ŷ−xi(t)) (1)

where ŷ is the location of the global-best solution found by
all the particles.2 In every iteration of the algorithm, each
particle’s velocity is stochastically accelerated towards its
previous best position and towards a neighborhood (global)
best position. The weight-coefficients c1 and c2 control the
relative impact of pbest and gbest locations on the velocity
of a particle. The parameters r1 and r2 ensure that the algo-
rithm is stochastic. A practical effect of the random coeffi-
cients r1 and r2, is that neither the individual nor the social
learning terms are always dominant. Sometimes one or the
other will dominate [25]. Although the velocity update has
a stochastic component, the search process is not random.
It is guided by the memory of past ‘good’ solutions cor-
responding to a psychological tendency for individuals to
repeat strategies which have worked for them in the past

2A variant on the basic algorithm is to use a local rather than a global
version of gbest. In the local version, gbest is set independently for each
particle, based on the best point found thus far within a neighborhood of
that particle’s current location.
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Figure 1: A representation of the particle position-update process.

[22], and by the global best solution found by all particles
thus far. W represents a momentum coefficient which con-
trols the impact of a particle’s prior-period velocity on its
current velocity. Each component of a velocity vector vi is
restricted to a range [−vmax, vmax] to ensure that individ-
ual particles do not leave the search space. The implemen-
tation of a vmax parameter can also be interpreted as sim-
ulating the incremental nature of most learning processes
[22]. The value of vmax is usually chosen to be k ∗ xmax,
where 0 < k < 1. Once the velocity update for particle i
is determined, its position is updated and pbest is updated
if necessary.

xi(t+1)=xi(t)+vi(t+1) (2)

yi(t+1)=yi(t) if, f(xi(t))≤f(yi(t)), (3)

yi(t+1)=xi(t) if, f(xi(t))>f(yi(t)) (4)

After all m particles have been updated, a check is made to
determine whether gbest needs to be updated.

ŷ∈(y0,y1,...,ym)|f(ŷ)= max (f(y0),f(y1),...,f(ym)) (5)

3.1.1 PSA vs the Genetic Algorithm

It is noted that the PSA bears similarity to other
biologically-inspired optimizing algorithms. Like the Ge-
netic Algorithm (GA), it is a population-based algorithm,
is typically initialized with a population (swarm) of ran-
dom solutions, and search proceeds by updating these so-
lution each generation (iteration). Unlike the GA, the move
(update) operators are not direct analogs of the genetic op-
erators of mutation and crossover,3 there is no explicit se-

3It can be argued that the velocity vector update does bear similarity
to a recombination operator, being impacted by the location of pbest and
gbest [21].

lection process, and potential solutions are referred to as
particles rather than as chromosomes.

The communication (information-sharing) mechanism
of the PSA also differs from that of the GA. In the GA, the
communication is between two solutions, in the PSA, the
communication is between the current solution, its pbest
and the gbest. Hence, candidate solutions can ‘see’ the
global best solution found by all particles thus far. The
movement of each particle through the search space is in-
fluenced by their own previous experience (history) and a
wish to move towards the global, best position found thus
far by other particles [39].

3.2 The PSA and Social Learning
Despite its simplicity, the PSA is capable of capturing a sur-
prising level of complexity, as individual particles are capa-
ble of both individual and social learning. In social settings,
individuals are not ‘...isolated information-processing enti-
ties ...’ [25] (p. xv), but also learn from the experiences
of their peers. Social behavior helps individuals to adapt to
their environment, as it ensures that they obtain access to
more information than that captured by their own senses.
Learning in social species is therefore distributed and par-
allel.

Communication (interactions) between agents (individu-
als) in a social system may be direct or indirect. An exam-
ple of the former could arise when two organizations trade
with one another. Examples of the latter include:

i. the observation of the success (or otherwise) of a strat-
egy being pursued by another organization, and

ii. stigmergy which arises when an organization modifies
the environment, which in turn causes an alteration of
the actions of another organization at a later time.

The first of these indirect learning mechanisms is included
in the canonical PSA, the second can be included through
an adaption of the basic model.
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The mechanisms of the basic Particle Swarm model bear
prima facie similarities to those of the domain of interest,
organizational adaptation. It embeds concepts of a popula-
tion of entities which are capable of individual and social
learning. However, the model requires modification be-
fore it can employed as a plausible model of organizational
adaptation. These modifications, along with a definition of
the strategic landscape used in this study are discussed in
the next section.

4 OrgSwarm Model

This section describes the simulation model (OrgSwarm)
employed in this study [7], [8]. The model can be classed
as a multi-agent system (MAS). MASs focus attention on
collective intelligence, and the emergence of behaviors
through the interactions between the agents. MAS usually
contain a world (environment), agents, relations between
the entities, a set of activities that the agents can perform,
and changes to the environment as a result of these activi-
ties [44]. The key components of the simulation model, the
landscape generator (environment), and the adaption of the
basic Particle Swarm algorithm to incorporate the activities
and interactions of the agents (organizations) are described
next.

4.1 Strategic Landscape

In this study, the strategic landscape is defined using the
NK model [18], [19]. Application of the NK model to de-
fine a strategic landscape is not atypical and has support
from existing literature in organizational science [28],[38],
[15], and related work on technological innovation [29],
[20], [41], [37]. The NK model considers the behavior of
systems which are comprised of a configuration (string) of
N individual elements. Each of these elements are in turn
interconnected to K other of the N elements (K<N). In a
general description of such systems, each of the N elements
can assume a finite number of states. If the number of states
for each element is constant (S), the space of all possible
configurations has N dimensions, and contains a total of∏N

i=1 Si possible configurations.
In Kauffman’s operationalization of this general frame-

work [19], the number of states for each element is re-
stricted to two (0 or 1). Therefore the configuration of N
elements can be represented as a binary string. The param-
eter K, determines the degree of fitness interconnectedness
of each of the N elements and can vary in value from 0
to N-1. In one limiting case where K=0, the contribution
of each of the N elements to the overall fitness value (or
worth) of the configuration are independent of each other.
As K increases, this mapping becomes more complex, un-
til at the upper limit when K=N-1, the fitness contribution
of any of the N elements depends both on its own state,
and the simultaneous states of all the other N-1 elements,
describing a fully-connected graph.

If we let si represent the state of an individual element
i, the contribution of this element (fi) to the overall fitness
(F ) of the entire configuration is given by fi(si) when K=0.
When K>0, the contribution of an individual element to
overall fitness, depends both on its state, and the states of K
other elements to which it is linked (fi(si : si1, ..., sik)). A
random fitness function (U(0,1)) is adopted, and the over-
all fitness of each configuration is calculated as the aver-
age of the fitness values of each of its individual elements.
Therefore, if the fitness values of the individual elements
are f1, ..., fN , overall fitness (F ) is:

F=
PN

i=1 fi
N (6)

Altering the value of K effects the ruggedness of the de-
scribed landscape, and consequently impacts on the diffi-
culty of search on this landscape [18], [19]. The strength
of the NK model in the context of this study is that by tun-
ing the value of K it can be used to generate strategic land-
scapes (graphs) of differing degrees of local-fitness correla-
tion (ruggedness). The strategy of an organization is char-
acterized as consisting of N attributes [28]. Each of these
attributes represents a strategic decision or policy choice,
that an organization faces. Hence, a specific strategic con-
figuration s, is represented as a vector s1, ..., sN where
each attribute can assume a value of 0 or 1 [38]. The vec-
tor of attributes represents an entire organizational form,
hence it embeds a choice of markets, products, method of
competing in a chosen market, and method of internally
structuring the organization [38]. Good consistent sets of
strategic decisions (configurations), correspond to peaks on
the strategic landscape.

The definition of an organization as a vector of strate-
gic attributes finds resonance in the work of Porter [35],
[36], where organizations are conceptualized as a series of
activities forming a value-chain.4 The choice of what ac-
tivities to perform, and subsequent decisions as to how to
perform these activities, defines the strategy of the organi-
zation. The individual attributes of an organization’s strat-
egy interact. For example, the value of an efficient manu-
facturing process is enhanced when combined with a high-
quality sales force. Differing values for K correspond to
varying degrees of payoff-interaction among elements of
the organization’s strategy [38]. As K increases, the diffi-
culty of the task facing strategic decision makers is mag-
nified. Local-search attempts to improve an organization’s
position on the strategic landscape become ensnared in a
web of conflicting constraints.

It is acknowledged that there are limitations to using the
NK model as a strategic landscape generator. The model
produces a finite graph and presupposes the existence of a
strategy space, albeit one which may be poorly understood
by strategists. This implies that it is inappropriate to apply
the NK model to examine very long run adaptive processes,
where organizational fitness is not clearly bounded, and

4This activity-based conceptualization has spread beyond studies of
strategy to encompass new methods of costing products/services [17].
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where the dimensionality of the strategy space itself could
change. It is also noted that the NK model assumes a con-
stant value of K for all elements. In reality, the value of K
is likely to differ for varying elements of a strategy vector.
In the work of [37], a distinction is drawn between generic
activities which are likely to have an optimal configuration
for many firms, for example, the possession of an account-
ing system. Generic activities (or ‘table-stakes’), whilst im-
portant for the successful operation of the firm, are usually
not strongly interconnected with the non-generic activities
of the firm [37]. In contrast, the firm-specific element of
strategy are typically highly interconnected, as they embed
choices involving trade-offs between alternative strategic
configurations [36], [37]. Hence, the NK landscape can be
considered to represent these non-generic, interconnected,
elements of the strategy vector, rendering the assumption
of a constant value of K more plausible.

4.2 The Algorithm
Five characteristics of the problem domain which impact
on the design of a simulation model are:

i. the environment is dynamic,

ii. organizations are prone to strategic inertia,

iii. organizations do not knowingly select poorer strate-
gies than the one they already have (election opera-
tor),

iv. organizations make errorful ex-ante assessments of fit-
ness, and

v. organizations co-evolve.

Each of these factors is embedded in our simulation model.
In this study we report results which consider the first three
of these factors. Future work will extend this to incorporate
the latter two. We note that this model bears passing resem-
blance to the eleMentals model of [24], which combined a
swarm algorithm and an NK landscape, to investigate the
development of culture and intelligence in a population of
hypothetical beings called eleMentals. However, the strate-
gic model developed in this study is differentiated from the
eleMental model, not just on grounds of application do-
main, but because of the inclusion of an inertia operator,
and also by the investigation of both static and dynamic
environments.

4.2.1 Dynamic environment

Organizations do not compete in a static environment.
Rather they can individually and collectively alter their en-
vironment. The environment may also be altered as a result
of exogenous events. The second of these factors is im-
plemented in this study by allowing the landscape itself to
be respecified. During the course of a simulation run, the
strategic landscape can be stochastically subject to minor

or major respecification, mimicking a regime change, such
as the emergence of a new technology, or a change in cus-
tomer preferences. These respecifications simulate a dy-
namic environment, and a change in the environment may
at least partially negate the value of past learning (adap-
tation) by organizations.5 Minor respecifications are sim-
ulated by altering the fitness values associated with one
of the N dimensions in the NK model, whereas in major
changes, the fitness of the entire NK landscape is redefined.
The probability that a minor or major respecification occurs
is controlled by the modeler.

4.2.2 Inertia

Organizations do not have complete freedom to alter their
current strategy. Their adaptive processes are subject to
conservatism arising from inertia. Inertia springs from the
organization’s culture, history, and the mental models of its
management [4]. In the simulation strategic inertia is mim-
icked by implementing a ‘strategic anchor’. The degree of
inertia can be varied in the simulations from zero to high. In
the latter case, the organization is highly constrained from
altering its strategic stance. By allowing the weight of this
anchor to vary, adaptation processes corresponding to dif-
ferent industries, each with different levels of inertia, can
be simulated. Inertia could be incorporated into the PSA
in a variety of ways. We have chosen to incorporate it into
the velocity update equation, so that the velocity and direc-
tion of the particle at each iteration is also a function of the
location of its ‘strategic anchor’. Therefore for the simula-
tions, equation 1 is altered by adding an additional inertia
term

vi(t+1)=vi(t)+R1(yi−xi(t))+R2(ŷ−xi(t)+R3(ai−xi(t)) (7)

where ai represents the value of the anchor on dimension i
(a full description of the other terms such as R1 is provided
in the pseudo-code below). This anchor can be fixed at the
initial position of the particle at the start of the algorithm,
or it can be allowed to ‘drag’, thereby being responsive to
the recent adaptive history of the particle. Both the weight
attached to the anchor parameter (relative to those attached
to pbest and gbest), and in the case of a dragging anchor,
the number of periods over which the anchor can drag, can
be altered by the modeler.

It is noted that the concept of inertia developed in this
paper is not limited to organizations, but is plausibly a gen-
eral feature of social systems. Hence, the extension of the
social swarm model to incorporate inertia may prove useful
beyond this study.

4.2.3 Election operator

Real-world organizations do not usually intentionally move
to poorer strategies. Hence, an election operator is im-

5As noted by [11] (p. xxvii), ‘the very processes and values that con-
stitute an organization’s capabilities in one context, define its disabilities
in another.’.
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plemented, whereby position updates which would worsen
an organization’s strategic fitness are discarded. In these
cases, an organization remains at its current location. One
economic interpretation of the election operator, is that
strategists carry out a mental simulation or thought exper-
iment. If the expected fitness of the proposed strategy ap-
pears unattractive, the ‘bad idea’ is discarded [6], [25]. The
simulation therefore incorporates a ‘rachet’ operator op-
tion, which if turned on, ensures that an organization only
updates (alters) its strategy if the new strategy being con-
sidered is better than its current strategy. By permitting
strategists to conduct thought experiment during each iter-
ation of the algorithm, strategists are given a look-ahead
capability. They can direct their adaptive efforts to the area
of the strategic landscape which offer potential.

4.2.4 Outline of algorithm

A number of further modifications to the basic PSA are
required. As the strategic landscape is defined using a bi-
nary representation, the canonical PSA described above is
adapted for the binary case using the BinPSO version of the
algorithm [23]. The binary version of the PSA is inspired
by the idea that an agent’s probability of making a binary
decision (yes/no, true/false) is a function of both personal
and social factors Eq. 8.

P (xi(t+1)=1)=f(xi(t),vi(t),pbest,gbest,anchor) (8)

The vector vi is now interpreted as organization i’s predis-
position to set each of the n binary strategic choices that
they face to one. The higher the value of vj

i for an indi-
vidual decision j, the more likely that organization i will
choose to set decision j = 1, with lower values of vj

i fa-
voring the choice of decision j = 0.

In order to model the tendency of organizations to re-
peat historically good strategies, values for each dimension
of xi, which match those of pbest, should become more
probable in the future, and the Prob(xj

i = 1) should be
adjusted towards pbestji on each dimension j. Adding the
difference between pbestji and xj

i for organization i to vj
i

will move the probability thresholds towards 1.0, if the dis-
tance is positive (pbestji = 1 and xj

i = 0). If the differ-
ence between pbestji and xj

i for organization i is negative
(pbestii

j = 0), and xj
i = 1, adding the difference to vj

i

will move it towards 0.0. The difference in each case is
weighted by a random number drawn from U(0,1).6

In order to ensure that the vector vi(t + 1) is mapped
into (0,1), a sigmoid transformation is performed on each
element j of vi(t + 1) (Eq. 9), and each element of
Sig(vi(t)) is mapped to either 0 or 1 by comparing it with
a vector of random numbers probi(t + 1) drawn from
U(0, 1) (Eq. 10) .

6Similarly, each organization has a tendency to match the values for
each dimension of xi to those of gbest, and its anchor. Therefore, the
resulting value of vj

i (t + 1), is influenced by vj
i (t), and the position of

gbest, pbest, and anchor.

Sig(v
j
i
(t+1))= 1

1+exp(−v
j
i
(t+1))

(9)

prob
j
i
(t+1)<Sig(v

j
i
(t+1)) then x

j
i
(t+1)=1; else x

j
i
(t+1)=0 (10)

The pseudo-code for the algorithm is as follows:

For each dimension n
v[n]=v[n]+R1*(g[n]-x[n])+R2*(p[n]-x[n])+R3*(a[n]-x[n])
If(v[n]>Max) v[n]=Vmax
If(v[n]<-Vmax) v[n]=-Vmax
If(Pr<S(v[n]))t[n]=1
Else t[n]=0

UpdateAnchor(a) //if iteratively update anchor
//option is selected

R1, R2 and R3 are random weights drawn from a uniform
distribution ranging from 0 to R1max, R2max and R3max

respectively, and they weight the importance attached to
the gbest, pbest and anchor in each iteration of the algo-
rithm. R1max, R2max and R3max are constrained to sum
up to 4.0. x is the particle’s actual position, g is the global
best position, p each particle’s personal best position and a
is the position of the particle’s anchor. Vmax is set to 4.0.
Pr is a probability value drawn from a uniform distribu-
tion ranging from 0 to 1, and S is the sigmoid function:
S(x) = 1

1+exp(−x) , which squashes v into a 0 to 1 range.
t is a temporary record which is used in order to imple-
ment conditional moving. If the new strategy is accepted,
t is copied into x, otherwise t is discarded and x remains
unchanged.

5 Results
This section provides the results from our simulation study.
As the adaptive process is stochastic, and as the initial-
ization of the position and velocity for each organization
is random, each simulation run describes a single sample-
path through time. There are many possible sample-paths,
so the results of the simulations are averaged over multiple
(30) runs in an attempt to uncover prevalent characteristics
of the sample paths which the system can give rise to. All
simulations were run for 5,000 iterations, and all reported
fitnesses are the average population fitnesses, and average
environment best fitnesses, across 30 separate simulation
runs. On each of the simulation runs, the NK landscape is
specified anew, and the positions and velocities of particles
are randomly initialized at the start of each run. A popu-
lation of 20 particles is employed, with a neighborhood of
size 18. The choice of a high value for the neighborhood,
relative to the size of the population, arises from the obser-
vation that real-world organizations know the profitability
of their competitors.

Tables (1, 2 and 3) provide the results for each of four-
teen distinct PSA variants, at the end of 5,000 iterations,
across a number of static and dynamic NK landscape sce-
narios. In each scenario, the same series of simulations
are undertaken. Initially, a basic PSA is employed, with-
out an anchor or a rachet (conditional move) operator. This
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simulates a population of organizations searching a strate-
gic landscape, where the population has no strategic iner-
tia, and where organizations do not utilize a rachet operator
in deciding whether to alter their position on the strategic
landscape.

The basic PSA is then supplemented by a series of strate-
gic anchor formulations, ranging from an anchor which
does not change position during the simulation (initial an-
chor) to one which can adapt after a time-lag (moving an-
chor). Two lag periods are examined, a 20 and a 50 iter-
ation lag. Differing weights can be attached to the iner-
tia term in the velocity equation, ranging from 0 (inertia
is turned off) to a maximum of 4. To determine whether
the weight factor has a critical impact on the results, re-
sults are reported for weight values of both 1 and 3. Next,
to isolate the effect of the rachet, the conditional move op-
erator is implemented, and inertia is turned off. Finally,
to ascertain the dual effect of both rachet and inertia when
they are combined, the inertia simulations outlined above
are repeated with the rachet operator turned on.

Real world strategy vectors consist of a large array of
strategic decisions. A value of N=96 was chosen in defin-
ing the landscapes in this simulation. It is noted that there
is no unique value of N that could have been selected, but
the selection of very large values are not feasible due to
computational limitations. However, a binary string of 96
bits provides 296, or approximately 1028, distinct choices
of strategy. It is also noted that we would expect the di-
mensionality of the strategy vector to exceed the number
of organizations in the population, hence the size of the
population is kept below 96, and a value of 20 is chosen.
A series of landscapes of differing K values (0,4 and 10),
representing differing degrees of fitness inter-connectivity,
were used in the simulations.

5.1 Static Landscape
Table 1 and figures 2 and 3, provide the results for a static
NK landscape.7 Examining these results suggests that the
basic PSA, without inertia or rachet operators, performs
poorly, even on a static landscape. The average of the aver-
age batch populational fitnesses obtained after 5,000 itera-
tions is not better than random search (the expected value
of a random point on the landscape is 0.50), suggesting
that unfettered adaptive efforts, based on communication
between organizations (gbest), and a memory of good past
strategies (pbest) is not sufficient to achieve high levels of
populational fitness. When a series of anchor mechanisms
simulating strategic inertia are added to the basic PSA, the
results are not qualitatively altered from those of the basic
PSA. This suggests that communication and inertia alone,
are not sufficient for the attainment of high levels of popu-
lational strategic fitness.

7These simulations were also undertaken with a neighborhood size of
four, to determine whether the results were sensitive to neighborhood size.
No significant differences in the results between the two neighborhood
sizes was noted. As a result, the remaining simulations were run with a
neighborhood of size 18.

When a rachet operator is added to the basic PSA, a
significant improvement in both average populational, and
average environment best fitness is obtained across land-
scapes of all K values, suggesting that the simple decision
heuristic of only abandon a current strategy for a better
one can lead to notable increases in populational fitness.
Finally, the results of a series of combination anchor and
rachet mechanisms are reported. Virtually all of these com-
binations lead to significantly (at the 5% level) enhanced
levels of populational fitness (against the rachet-only PSA),
suggesting that inertia can be beneficial, when combined
with a rachet mechanism. Examining the combined rachet
and anchor results in more detail, the best results are ob-
tained when the anchor is not fixed at the initial location
of each particle on the landscape, but when it is allowed to
‘drag’ or adapt, over time. It is also noted that the results
are not qualitatively sensitive to the weight value (1 or 3).

5.2 Dynamic Landscape
The real world is rarely static, and changes in the environ-
ment can trigger adaptive behavior by agents in a system
[3]. In this simulation, the landscape can change at a va-
riety of time scales, and the size of the relocation ‘jump’
of the optimum position on the landscape can vary. There-
fore, the environment can be changed with varying tem-
poral, and spatial severity [3]. Two specific scenarios are
examined. Table 2 and figures 4 and 5, provides the results
for the case where a single dimension of the NK landscape
is respecified in each iteration of the algorithm with a prob-
ability of P=0.00025. Table 3 and figures 6 and 7, provides
the results for the case where the entire NK landscape is re-
specified with the same probability. When the landscape is
wholly or partially respecified, the benefits of past strategic
learning by organizations is eroded.

Qualitatively, the results in both scenarios are similar to
those obtained on the static landscape. The basic PSA, even
if supplemented by an anchor mechanism, does not per-
form any better than random search. Supplementing the
basic PSA with the rachet mechanism leads to a signif-
icant improvement in populational fitness, with a further
improvement in fitness occurring when the rachet is com-
bined with an anchor. In the latter case, an adaptive or drag-
ging anchor gives better results than a fixed anchor, but the
results between differing forms of dragging anchor do not
show a clear dominance for any particular form. As for the
static landscape case, the results for the combined rachet /
anchor, are relatively insensitive to the weight value (1 or
3).

6 Conclusions
The objective of this study has been to examine the im-
pact of strategic inertia on the dynamic adaptation of a
population of organizations. A novel synthesis of a strate-
gic landscape defined using the NK model, and a Particle
Swarm metaphor to model the adaption of organizations
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Figure 2: Plot of the mean average fitness on the static landscape where k=0.

on this landscape, is used to construct a simulation model.
Adoption of the swarm metaphor allows the incorporation
of both social and individual learning mechanisms, and
the basic algorithm can be easily adapted to include other
search heuristics such as election and inertia.

The results suggest that a degree of strategic inertia, in
the presence of an election operator, can assist rather than
hamper the adaptive efforts of populations of organiza-
tions in static and slowly changing strategic environments.
The results also provide an interesting perspective on the
claim by [13] that inertia may be a consequence of market-
selection processes. The results indicate that there may be
good reasons, from a populational perspective, for market
selection processes to encourage populations of organiza-
tions which exhibit a degree of inertia. Despite the claim
for the importance of social learning in populations, the re-

sults suggest that social learning alone is of limited benefit,
unless supported by an election mechanism.

In the construction of any simulation model, aspects of
the real-world system of interest must be omitted. In this
study, we omit the cost of making a strategic adjustment,8

and we omit an explicit birth-death process for the popula-
tion of organizations.9 We note that the effect of the gbest,
pbest and inertia anchors, is to pin each organization on
the landscape. To the extent that the entire collection of
organizations have converged to a relatively small region
of the landscape, they may find it impossible to migrate

8Although we note that incorporating such costs would likely enhance
the value of inertia.

9It could be argued that although there is no explicit selection pro-
cess, the effect of including a gbest term in the model is to incorporate an
implicit form of selection, in that organizations with poor strategies are
drawn towards the location of gbest, mimicking a selection process.
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Figure 3: Plot of the mean average fitness on the static landscape where k=4 (left), and where k=10 (right).

to a new high-fitness region of the landscape if that region
moves far away from their current location. In real-world
environments, this is compensated for by the birth of new
organizations.

This study describes the OrgSwarm simulator, and re-
ports the results of initial simulations using this model. Fu-
ture work will extend the range of strategic scenarios, and
parameter settings considered. In particular we intend to
examine the process of strategic adaptation when strate-
gists make errorful assessments of the fitness of proposed
strategies. We also intend to incorporate a co-evolutionary
aspect into the model (mimicking direct competition be-
tween organizations), wherein the fitness of a strategy is
partially determined by the number of organizations which
are pursing similar strategies.
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Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4641 (0.5457) 0.5002 (0.6000) 0.4991 (0.6143)
Initial Anchor, w=1 0.4699 (0.5484) 0.4921 (0.5967) 0.4956 (0.6102)
Initial Anchor, w=3 0.4943 (0.5591) 0.4994 (0.5979) 0.4991 (0.6103)
Mov. Anchor (50,1) 0.4688 (0.5500) 0.4960 (0.6003) 0.4983 (0.6145)
Mov. Anchor (50,3) 0.4750 (0.5631) 0.4962 (0.6122) 0.5003 (0.6215)
Mov. Anchor (20,1) 0.4644 (0.5475) 0.4986 (0.6018) 0.5001 (0.6120)
Mov. Anchor (20,3) 0.4677 (0.5492) 0.4994 (0.6156) 0.4994 (0.6229)

Rachet PSA 0.5756 (0.6021) 0.6896 (0.7143) 0.6789 (0.7035)
R-Initial Anchor, w=1 0.6067 (0.6416) 0.6991 (0.7261) 0.6884 (0.7167)
R-Initial Anchor, w=3 0.5993 (0.6361) 0.6910 (0.7213) 0.6844 (0.7099)
R-Mov. Anchor (50,1) 0.6659 (0.6659) 0.7213 (0.7456) 0.6990 (0.7256)
R-Mov. Anchor (50,3) 0.6586 (0.6601) 0.7211 (0.7469) 0.6992 (0.7270)
R-Mov. Anchor (20,1) 0.6692 (0.6695) 0.7211 (0.7441) 0.6976 (0.7243)
R-Mov. Anchor (20,3) 0.6612 (0.6627) 0.7228 (0.7462) 0.6984 (0.7251)

Table 1: Average (environment best) fitnesses after 5,000 iterations, static landscape.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4667 (0.5245) 0.4987 (0.5915) 0.4955 (0.6065)
Initial Anchor, w=1 0.4658 (0.5293) 0.4908 (0.5840) 0.4957 (0.6038)
Initial Anchor, w=3 0.4922 (0.5513) 0.4992 (0.5953) 0.5001 (0.60852)
Mov. Anchor (50,1) 0.4614 (0.5200) 0.4975 (0.5927) 0.5008 (0.6044)
Mov. Anchor (50,3) 0.4691 (0.5400) 0.4975 (0.6040) 0.4987 (0.6174)
Mov. Anchor (20,1) 0.4686 (0.5315) 0.5010 (0.6002) 0.4958 (0.6099)
Mov. Anchor (20,3) 0.4661(0.5434) 0.4964(0.6084) 0.4988 (0.6137)

Rachet PSA 0.5783 (0.6056) 0.6859 (0.7096) 0.6808 (0.7066)
R-Initial Anchor, w=1 0.6207 (0.6553) 0.6994 (0.7330) 0.6895 (0.7142)
R-Initial Anchor, w=3 0.5927 (0.6239) 0.6900 (0.7182) 0.6850 (0.7140)
R-Mov. Anchor (50,1) 0.6676 (0.6688) 0.7187 (0.7438) 0.6987 (0.7241)
R-Mov. Anchor (50,3) 0.6696 (0.6696) 0.7203 (0.7462) 0.6989 (0.7264)
R-Mov. Anchor (20,1) 0.6689 (0.6694) 0.7193 (0.7426) 0.6974 (0.7251)
R-Mov. Anchor (20,3) 0.6594 (0.6622) 0.7221 (0.7450) 0.6987 (0.7280)

Table 2: Average (environment best) fitnesses after 5,000 iterations, 1 dimension respecified periodically.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4761 (0.5428) 0.4886 (0.5891) 0.4961 (0.6019)
Initial Anchor, w=1 0.4819 (0.5524) 0.4883 (0.5822) 0.4982 (0.6075)
Initial Anchor, w=3 0.5021 (0.5623) 0.4967 (0.5931) 0.4998 (0.6047)
Mov. Anchor (50,1) 0.4705 (0.5450) 0.4894 (0.5863) 0.4974 (0.6008)
Mov. Anchor (50,3) 0.4800 (0.5612) 0.4966 (0.6053) 0.5010 (0.6187)
Mov. Anchor (20,1) 0.4757 (0.5520) 0.4926 (0.5867) 0.4985 (0.6097)
Mov. Anchor (20,3) 0.4824 (0.5632) 0.4986 (0.6041) 0.5004 (0.6163)

Rachet PSA 0.5877 (0.6131) 0.6802 (0.7092) 0.6754 (0.7015)
R-Initial Anchor, w=1 0.6187 (0.6508) 0.6874 (0.7180) 0.6764 (0.7070)
R-Initial Anchor, w=3 0.6075 (0.6377) 0.6841 (0.7130) 0.6738 (0.7017)
R-Mov. Anchor (50,1) 0.6517 (0.6561) 0.7134 (0.7387) 0.6840 (0.7141)
R-Mov. Anchor (50,3) 0.6597 (0.6637) 0.7049 (0.7304) 0.6925 (0.7225)
R-Mov. Anchor (20,1) 0.6575 (0.6593) 0.7152 (0.7419) 0.6819 (0.7094)
R-Mov. Anchor (20,3) 0.6689 (0.6700) 0.7158 (0.7429) 0.6860 (0.7147)

Table 3: Average (environment best)fitnesses after 5,000 iterations, entire landscape respecified periodically.
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Figure 4: Plot of the mean average fitness on the dynamic landscape (one dimension of the landscape is respecified
periodically) where k=0.
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Figure 5: Plot of the mean average fitness on the dynamic landscape (one dimension of the landscape is respecified
periodically) where k=4 (left), and where k=10 (right).
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Figure 6: Plot of the mean average fitness on the dynamic landscape (entire landscape respecified periodically) where
k=0.
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Figure 7: Plot of the mean average fitness on the dynamic landscape (entire landscape respecified periodically) where k=4
(left), and where k=10 (right).
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