
Informatica 33 (2009) 363–373 363

Improving HTML Compression

Przemysław Skibiński
University of Wrocław, Institute of Computer Science,
Joliot-Curie 15, 50-383 Wrocław, Poland
E-mail: inikep@ii.uni.wroc.pl

Keywords: hypertext markup language, HTML compression, HTML transform

Received: March 6, 2008

The verbosity of the Hypertext Markup Language (HTML) remains one of its main weaknesses. This
problem can be solved with the aid of HTML specialized compression algorithms. In this work, we
describe a lossless HTML transform which, combined with generally used compression algorithms,
allows to attain high compression ratios. Its core is a fully reversible transform featuring substitution of
words in an HTML document using a static English dictionary or a semi-static dictionary of the most
frequent words in the document, effective encoding of dictionary indexes, numbers, and specific
patterns.
The experimental results show that the proposed transform improves the HTML compression efficiency
of general purpose compressors on average by 15% in case of gzip achieving comparable processing
speed. Moreover, we show that the compression ratio of gzip can be improved by up to 28% for the
price of higher memory requirements and much slower processing.

Povzetek: Opisan je izvirni algoritem za izboljšavo zgoščevanja HTML.

1 Introduction1

Since the origin of World Wide Web, the Hypertext
Markup Language (HTML) is a standard for Internet web
pages. HTML has many advantages. One of its main
advantages is that it is a textual format, what means that
HTML is human-readable and can be edited by any text
editor. The textual format of HTML is also one of its
main disadvantages as it introduces verbosity.
Nevertheless verbosity can be coped with by applying
data compression.

Currently HTML files are usually compressed with
common LZ77-based compression algorithms [23] like
gzip or deflate [7]. LZ77-based algorithms can be
substituted with more powerful, but slower and much
more memory-demanding BWT-based [3] and PPM-
based [5] algorithms. All these algorithms, however, are
general-purpose and much better results can be achieved
with a compression algorithm specialized for dealing
with HTML documents.

In recent years there is slow progress in general-
purpose compression thus many researchers and
practitioners have directed towards specialized
compression. Specialized compression algorithms can be
divided into two groups: completely novel algorithms
and preprocessors coupled with general-purpose
algorithms. A good example for the first group is DNA
compression, where many specialized algorithms exist.
The second group of algorithms transforms the input data

1 This is an extended version of the poster: Skibiński,

P.: Improving HTML Compression. Proceedings of the
IEEE Data Compression Conference, Snowbird, UT,
USA, (2008), pp. 545.

and then passes the transform’s output to a general-
purpose compressor. The transform removes
redundancies and correlations not exploited by a general-
purpose algorithm, what makes output data more
compressible.

In our previous work we have presented algorithms
specialized for text [18] and XML compression [19]. The
biggest gain from our algorithms was achieved by
creating dictionary of frequent words and replacing the
words with shorter codewords. We have observed over
27% improvement with an LZ77-based algorithm on
English texts using a fixed English dictionary. Using a
fixed dictionary for XML documents was problematic
because of the hardness to select a proper set of words,
relevant across a wide range of real-world XML
documents. Therefore we achieved the best results (over
35% improvement with an LZ77-based algorithm) with a
semi-dynamic dictionary obtained in a preliminary pass
over the input data. About 20% of this improvement was
achieved by effective encoding of numbers, dates and
times found in XML documents.

HTML format is similar to XML as both are SGML-
based. On the other side, XML is mainly used as a
standard for storage and interchange of structured
information and HTML is mainly used to publish text-
based information. In this usage HTML is more similar
to texts.

The primary objective of our research was to design
an efficient way of compressing HTML documents,
which will reduce Internet traffic or will reduce storage
requirements of HTML data. In this work we will present
our two specialized algorithms for HTML compression.
One uses a fixed English dictionary and the second one
uses a semi-dynamic dictionary obtained in a preliminary

364 Informatica 33 (2009) 363–373 P. Skibiński

pass over the input data. Both algorithms are designed in
four variants for proper general-purpose algorithms.

The map of the paper is as follows. Section 2
contains a short review of HTML format and existing
HTML compression methods thus putting our work in a
proper context. We also describe related word-based and
XML compressors. In Section 3 we describe step-by-step
our HTML transform, its main ideas, and its most
significant details. The next section presents back-end
compression algorithms used with our transform and
details about optimizations for these algorithms. Section
5 contains implementation details, description of files
used for experiments, and experimental results. Section 6
gives our conclusions and points out several issues for
further study.

2 Related work

2.1 HTML description
HTML is a language that describes a structure of text-
based information in a document. It denotes certain text
as links, headings, paragraphs, and lists. It also
supplements text with embedded images and other
objects. XHTML is a new, XML-based version of
HTML.

An HTML document consists of elements. An
HTML element always has a start tag (e.g. <element-
name>) and may have an end tag (e.g. </element-
name>) in opposite to XML or XHTML, where the end
tag is required. Elements may have two basic properties:
attributes, contained in the start tag (e.g. <element-
name attribute="value">), and content, located
between the tags (e.g. <element-
name>Content</element-name>). If there is no
content a start tag and an end tag can be presented in
short form that is <element-name/>. Comments in
HTML are delimited by <!-- and --> sequences. Some
HTML elements, for example
, do not have any
content and must not have a closing tag.

The following example [10] contains document title
(<title> element), heading (<h1> element),
paragraphs (<p> elements) and links (<a> elements):
<html>
<head><title>About the Test Data</title></head>
<body>
<h1 align="center">About the Test Data</h1>
<p align="center">Matt Mahoney

Last update: Dec. 17, 2006.
History
<p>The test data for the Large Text Compression
Benchmark is the first 10⁹ bytes
of the English Wikipedia dump on Mar. 3, 2006.

2.2 HTTP protocol
Hypertext Transfer Protocol (HTTP) is a
communications protocol used to transfer information on
World Wide Web. HTTP is a request/response protocol
between a client and a server. The client is making an

HTTP request to the server, which delivers HTML files,
images and other.

HTTP compression [13] is the technology used to
compress contents from a web server (an HTTP server)
and to decompress them in an user’s browser. HTTP
compression is a recommendation of the HTTP 1.1
protocol specification as it reduces network traffic and
improves page download time on slow networks [15]. It
is especially useful when size of the web pages is large.

The experiments conducted by Wan [21] showed
that HTTP compression can be improved utilizing the
previously requested files in a browsing session as a
dictionary, but this idea was not embedded in HTTP
protocol until today.

The popular LZ77-based gzip was intended to be the
HTTP compression algorithm. Currently, HTTP servers
and clients supports also LZ77-based deflate format.
Lighttpd server supports also BWT-based bzip2
compression, but this format is only supported by lynx
and some other console text-browsers. Deflate, gzip, and
bzip2, however, are general-purpose compression
algorithms and much better results can be achieved with
a compression algorithm specialized for dealing with
HTML documents.

2.3 Word-based compression
StarNT [20] is a dictionary-based scheme, which
replaces natural language words with references to an
external dictionary. A word in StarNT dictionary is a
sequence of symbols over the alphabet [a..z]. There is no
need to use uppercase letters in the dictionary, as there
are two one-byte flags (reserved symbols), fcl and fuw, in
the output alphabet to indicate that either a given word
starts with a capital letter while the following letters are
all lowercase, or a given word consists of capitals only.
Another introduced flag, for, prepends an unknown word.
Finally, there is yet a collision-handling flag, fesc, used
for encoding occurrences of flags fcl, fuw, for, and fesc in
the text.

The ordering of words in the dictionary D, as well as
mapping the words to unique codewords, are important
for the compression effectiveness. StarNT uses the
following rules:
• The most popular words are stored at the beginning of
the dictionary. This group has 312 words.
• The remaining words are stored in D according to their
increasing lengths. Words of same length are sorted
according to their frequency of occurrence in some
training corpus.
• Only letters [a..zA..Z] are used to represent the
codeword (with the intention to achieve better
compression performance with the backend compressor).
Each word in D has assigned a corresponding codeword.
Codewords’ length varies from one to three bytes. As
only the range [a..zA..Z] for codeword bytes is used,
there can be up to 52 + 52 × 52 + 52 × 52 × 52 = 143,
364 entries in the dictionary. The first 52 words have
codewords: a, b, . . . , z, A, B, . . . , Z. Words from the
53rd to the 2756th have codewords of length 2: aa, ab,
…, ZY, ZZ; and so on.

IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 365

WRT [18] is an English text preprocessor, a
successor of StarNT. WRT replaces words in input text
file with shorter codewords and uses several other
techniques to improve performance of latter compression

The dictionary is sorted according to the frequency
of words as more frequent messages should be
represented with shorter codes than less frequent
messages. WRT English dictionary have 80,000 words.
Each word in D has assigned a corresponding codeword.
Codewords’ length is variable and span from one to four
symbols. Ordinary text files, at least English ones,
consist solely of ASCII symbols not exceeding 127, so
codewords’ alphabet has 128 symbols (ASCII values
from 128 to 255). If there is a symbol from codewords’
alphabet in the input file, then WRT outputs token tesc

and this symbol. Codewords’ alphabet (128 symbols) is
divided into four separate parts. WRT uses the mapping
<101, 9, 9, 9> for codewords, and thus there are 101 +
101·9 + 101·9·9 + 101·9·9·9 = 82,820 distinct codewords
available. It is enough for 80,000 words WRT dictionary.
The codeword bytes are emitted in the reverse order, i.e.,
the range for the last codeword byte has always 101
values.

WRT uses several additional techniques to improve
the compression performance. First is q-gram
replacement, which is based on substituting frequent
sequences of q consecutive characters, i.e., q-grams, with
single symbols. The next technique that improves the
compression performance is End-of-Line (EOL) coding.
The general idea is to replace EOL symbols with spaces
and to encode information enabling the reverse operation
in a separate stream. The last technique used by WRT is
surrounding words with spaces, which converts all words
to be surrounded by space characters. This technique
gives gain only if there are at least a few occurrences of
the word, because it joins similar contexts in PPM
compressor (helps in better prediction of the word’s first
symbol as well as the next symbol just after the word).

mPPM [1] is a text compressor, which is based on
Shkarin’s PPMd [16]. mPPM splits text into alternating
sequences of words and non-words. Words and non-
words use a common dynamic dictionary.

Each item has assigned a codeword, which always
consists of two bytes. Therefore the dictionary may
include up to 216 items. If the dictionary is bigger least
recently used (LRU) words are removed. Two codewords
are reserved. The first is the End-Of-File flag and the
second signals occerence of a new item.

mPPM uses two separate PPM models. The first
encodes only codewords. The second, auxilary model
encodes new items with a standard character-based PPM.

HufSyl [9] and LZWL [9] are the first text
compressors that use syllables as units, instead of
characters or words. Syllables are obtained by one of
algorithms of decomposition into syllables. These
algorithms use syllable-based compression in
combination with respectively, adaptive Huffman and
LZW coding.

These methods have their counterpart variants for
whole words, which gave better results in our

experiments. We decided to include only results of word-
based versions in our Table 2.

2.4 XML compression
Cheney’s XMLPPM [4] is a streaming compressor

which uses a technique named multiplexed hierarchical
modeling (MHM). It switches between four models: one
for element and attribute names, one for element
structure, one for attributes, one for strings, and encodes
them in one stream using PPMD+ or, in newer
implementations, Shkarin’s PPMd [16]. The tag and
attribute names are replaced with shorter codes. An
important idea in Cheney’s algorithm is injecting the
previous symbol from another model into the current
symbol’s context. Injecting means that both the encoder
and decoder assume there is such a symbol in the context
of the current symbol but do not explicitly encode nor
decode it. The idea of symbol injection is to preserve (at
least to some degree) contextual dependencies across
different structural models.

SCMPPM [2] can be seen as an extreme case of
XMLPPM. Instead of using only few models, it
maintains a separate model for each element class. Every
class contains elements having the same name and the
same path from the document root. This technique, called
Structure Context Modeling (SCM), wins over
XMLPPM on large documents (tens of megabytes), but
loses on smaller files. Also, SCMPPM requires lots of
memory for maintaining multiple statistical models and
under limited memory scenarios it may lose significantly,
even compared to pure PPMd.

3 HTML Transform
In this section we present our two algorithms: Semi-
Dynamic HTML Transform (SDHT) and Static HTML
Transform (SHT). We introduce subsequent parts of our
algorithms step by step.

3.1 End tag encoding
In the previous section we have described structure of
HTML documents. In a well-formed HTML document,
every end tag must match a corresponding start tag. This
can hardly be exploited by general-purpose compression
algorithms, as they maintain a linear, not stack-alike data
model. The compression ratio can then be increased by
replacing every matching end tag with merely an element
closing flag.

Our transform puts elements on a stack when a start
tag has appeared. The last inserted element is removed
from a stack when an end tag has appeared. The problem
with HTML is that not all elements must have a closing
tag. It can be solved by ignoring elements that allow an
end tag omission. The second problem with HTML is
that some tags (e.g. <p>) should have corresponding end
tags, but human editors skip these closing tags.
Moreover, web browsers do not report errors on
documents of this kind. Therefore our transform allows

366 Informatica 33 (2009) 363–373 P. Skibiński

non-valid HTML documents. The above-mentioned
problems do not occur in XHTML.

3.2 Quotes modeling
Attributes of HTML elements usually contain
neighboring equal and quotation mark characters (e.g.
attribute="value"). Sometimes attributes are
encoded using equal and apostrophe characters (e.g.
attribute='value'). We have found that replacing
these two characters with a flag improves compression
performance. We made the same with quotation mark
and angle right bracket (greater) characters that closing
start tags with attribute(s) (e.g. <element-name
attribute="value">).

3.3 Spaces modeling
Layout of an HTML document (e.g., trailing spaces,
tabulators, end of line symbols) is not relevant for web
browsers, but it may be useful for human editors of a
document. This kind of redundancy, typical to HTML
documents created with editors caring about the output
format, cannot be well exploited by general-purpose
compression algorithms.

Our transform makes use of structural indentation by
efficiently encoding the leading spaces in lines. For every
line our transform counts number of occurrences for
leading spaces with length from 1 up to 256 symbols. If
number of occurrences for the certain length is higher
than a predefined threshold our transform assigns a
special codeword for leading spaces of this length.

3.4 Number encoding
Numbers appear very often in HTML documents. We
found that storing numbers as text is ineffective.
Numbers can be encoded more efficiently using a
numerical system with base higher than 10.

In our transform every decimal integer number n is
replaced with a single byte whose value is
log256(n+1)+48. The actual value of n is then encoded
as a base-256 number. A special case is made for
sequences of zeroes preceding a number – these are left
intact.

Our transform encodes in a special way also other
numerical data that represent specific information types.
Currently our transform recognizes the following
formats:
 dates between 1977-01-01 and 2153-02-26 in YYYY-

MM-DD (e.g. “2007-03-31”, Y for year, M for
month, D for day) and DD-MMM-YYYY (e.g. “31-
MAR-2007”) formats;

 years from 1900 to 2155 (e.g. “1999”, “2008”)
 times in 24-hour (e.g., “22:15”) and 12-hour (e.g.,

“10:15pm”) formats;
 value ranges (e.g., “115-132”);
 decimal fractional numbers with one (e.g., “1.2”) or

two (e.g., “1.22”) digits after decimal point.
Dates are replaced with a flag and encoded as a two bytes
long integer whose value is the difference in days from

1977-01-01. To simplify the calculations we assume each
month to have 31 days. If the difference with the
previous date is smaller than 256, another flag is used
and the date is encoded as a single byte whose value is
the difference in days from the previous date.

Years are replaced with a sequence of two bytes
representing respectively: the year flag and the difference
between the actual year and 1900.

 Times are replaced with a sequence of three bytes
representing respectively: a flag signaling a time pattern
(conforming to the presented notation), the hour in 24-
hour convention, and minutes.

 Value ranges in the format x–y where x < 65536
and 0 < y – x < 256 are encoded in four bytes: one for the
range flag, two for the value of x, and one for the
difference y – x.

 Decimal fractional numbers with one digit after
decimal point and value from 0.0 to 24.9 are replaced by
two bytes: a flag and their value stored as fixed point
integer. In case of those with two digits after decimal
point, only their suffix, starting from the decimal point, is
replaced with two bytes: a flag and the number’s
fractional part stored as an integer.

3.5 Semi-dynamic dictionary
The backbone of the proposed transform is to replace

the most frequent words with references to a dictionary.
A semi-dynamic version of our transform constructs a
separate dictionary for every processed document, but,
once constructed, the dictionary is not changed during an
HTML transform. The transform works in two passes.
The dictionary is obtained in a preliminary pass over the
data, and contains sequences of length at least lmin

characters that appear at least fmin times in the document.
The dictionary is sorted by word frequency and stored
within the compressed file, thus making the reverse
operation faster. Dictionary references are encoded using
a byte-oriented prefix code, where the more frequent
words have assigned shorter codewords (length varies
from one to four bytes). The prefix code and the
variables fmin and lmin depend on a back-end compression
algorithm described in the next section. We have also
tried a fully dynamic (one-pass) transform variant, but it
gives much worse compression ratio as the same word
can have assigned different codewords.

In the second pass of a semi-dynamic transform, the
parsed data items are encoded in a byte-oriented manner
(words, spaces and flags with a prefix code; numbers,
dates, years, times, value ranges, and decimal fractional
numbers with respective coding schemes), and then
compressed with a compression algorithm and written to
disk. We chose four algorithms of this kind: LZ77-based,
LZMA/BWT-based, PPM-based, and PAQ-based, which
are described in detail in the following section.

Our notion of a “word” is broader than its common
meaning. Namely, semi-dynamic dictionary contains
items from the following classes:
 ordinary words – sequences of lowercase and

uppercase letters (a-z, A-Z) and 128-255 (which

IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 367

supports, e.g., all languages with a Latin-based
alphabet);

 start tags – sequences of characters that start with <,
contain letters, digits, underscores, colons, dashes, or
dots, and end with >. Start tags can also include one
or more preceding spaces as HTML documents
sometimes have regular arrangements of the lines in
which individual tags very often begin in the same
column, preceded with the same number of spaces,

 URL address prefixes – sequences of the form
http://domain/, where domain is any
combination of letters, digits, dots, and dashes,

 e-mails – patterns of the form login@domain,
where login and domain are any combination of
letters, digits, dots, and dashes,

 words in form "&data;", where data is any
combination of letters, representing HTML entities.

3.6 Matching shorter words
Our transform uses separate output alphabets for original
words (not replaced with a reference to a dictionary) and
codewords. Therefore it is easy to encode a part of a
word, if the prefix matches some word in a dictionary but
the whole word does not. Still, the gain we achieve in
this way is insubstantial. Our algorithm with all above-
mentioned ideas is called Semi-Dynamic HTML
Transform (SDHT).

3.7 Static dictionary
Static HTML Transform (SHT) is similar to Semi-
Dynamic HTML Transform (SDHT). The main
difference is that a semi-dynamic dictionary is replaced
with a static dictionary, which is embedded in the
compressor and the decompressor.

There are two advantages of a static dictionary over
a semi-dynamic dictionary: there is no need to make the
first pass over the input data to create the semi-dynamic
dictionary and there is no need to store the semi-dynamic
dictionary within processed data to make decompression
possible.

On the other hand a static dictionary is limited to
some class of documents e.g. English language. The
dictionary must be spread with the compressor and the
decompressor. Moreover, a semi-dynamic dictionary
contains words that are actually frequent in the
document, not words that could potentially be frequent,
as it is in the case of a static dictionary. Nevertheless for
HTML documents a static English dictionary usually
gives a better compression ratio than a semi-dynamic
dictionary.

4 Back-end compression
Succinct word encoding appears to be the most important
idea in Static HTML Transform (SHT) and Semi-
Dynamic HTML Transform (SDHT). The dictionary
references are encoded using symbols which are not
existent in the input HTML document. If, however, one
of reserved symbols occurs in the document, and is not a

part of an encoded word, the coder prepends it with a
special escape symbol.

There are four modes of encoding, chosen depending
on the attached back-end compression algorithm: LZ77-
based [23], LZMA/BWT-based [3], PPM-based [5], and
PAQ-based [11]. The encoding scheme, however, is the
same for SHT and SDHT. In all cases, dictionary
references are encoded using a byte-oriented prefix code,
where the length varies from one to four bytes. Although
it produces slightly longer output than, for instance,
Huffman coding [8], the resulting data can be easily
compressed further, which is not the case with the latter.
Obviously, more frequent words have assigned shorter
codewords.

4.1 LZ77-based compression
The LZ77 algorithm [23] finds duplicated sequences of
bytes in the input data. The next occurrences of a
sequence are replaced by a pointer to the previous
occurrence. The pointer is encoded as a distance to the
previous occurrence in a limited past buffer and a match
length. Literals are encoded directly. Most LZ77 variants
use Huffman coding for literals, match offsets, and match
lengths. LZ77-based methods are the most widely-used
compression algorithms. They are known for fast
compression and very fast decompression, but limited
effectiveness.

Gzip is a common LZ77-based compression
algorithm. It uses a buffer (sliding window) for finding
matches that has only 32 KB, which is mostly
responsible for both very high compression speed and
mediocre compression ratios. When a sequence of bytes
does not occur anywhere in the previous 32 KB, it is
emitted as a sequence of literal bytes. Match lengths are
limited to 258 bytes. We used gzip 1.2.4 with default
values in our experiments.

4.2 LZ77 optimized transform
In comparison to modern algorithms LZ77-based
compressors are not complicated. For example, they do
not predict characters on the basis of their context. The
strength of LZ77 lies in succinct encoding of long
matching sequences. In consequence, a transform
optimized for LZ77 compression should attempt to:
 reduce the number of characters to encode;
 decrease the offset (in bytes) of the matching

sequences;
 decrease the length (in bytes) of the matching

sequence;
 virtually increase the sliding window, i.e., the past

buffer in which matching sequences are looked for.
It appears that in case of LZ77 (but not necessarily
LZMA, BWT, PPM, or PAQ), shortening the output of
the transform improves the compression ratio. In
accordance with this observation, we chose the biggest
possible alphabet for codewords: byte values from 128
up to 255 and most values in range 0–31, plus a few
more. These symbols are very rarely used in most HTML
documents. If, however, one of these symbols occurs in

368 Informatica 33 (2009) 363–373 P. Skibiński

the document, and is not part of an encoded word, the
coder marks it with a special escape symbol.

HTML elements contain usually textual content.
Another important idea in LZ77 optimized transform is
elimination of most spaces between words. Since usually
a word is preceded by a single space, only exceptions
from this rule require special treatment: only the
positions where spaces should not be inserted are marked
with a respective flag. Such an assumption is known as
the spaceless word model [12].

Still, without spaces between words, there must be a
way to detect codeword boundaries. In a LZ77 optimized
transform dictionary references are encoded using a byte-
oriented prefix code, where the length varies from one to
three bytes. The first byte of the codeword can belong to
one of three disjoint ranges:
 C1 if it is a one-byte long codeword; there are |C1|

such codewords available,
 C2 if it is a prefix of two-bytes long codeword,

followed by a single byte in the full possible value
range; there are |C2| * 256 such codewords available,

 C3 if it is a prefix of three-bytes long codeword,
followed by two bytes in the full possible value
range; there are |C3| * 256 * 256 such codewords
available.

In this way, we obtain |C1| + |C2| * 256 + |C3| * 256 * 256
codewords in total. As this is a kind of prefix code, all
the codewords are immediately decodeable. The size of
ranges C1, C2, and C3 are set according to the size of the
document to compress and the resulting dictionary size.

For SDHT a semi-dynamic dictionary contains
sequences of length at least lmin = 2 characters that appear
at least fmin = 12 times in the document. These values
gave good results for most files used in the experiments.

4.3 LZMA-based compression
LZMA is a modern compression algorithm based on
ideas from a LZ77 compression family. It also finds
duplicated sequences of bytes in the input data, but it
contains many improvements. Some of the major
features of LZMA are sophisticated match parsing,
working with large buffers (up to 1 GB), and low order
contextual encoding of literals.

LZMA significantly improves compression ratio in
comparison to LZ77-based algorithms at the cost of
much slower compression (decompression speed is not
much affected). LZMA is implemented in the well-
known 7-zip [14] compression utility. We used LZMA
4.43 with default 8 MB dictionary in our experiments.

4.4 LZMA and BWT optimized transform
We found experimentally that a transform optimized for
LZMA and BWT-based [3] (e.g. bzip2) compression
should have similar characteristic and there is no need to
create separate versions.

In the LZMA/BWT optimized transform the
codeword alphabet consists of fewer symbols than LZ77
optimized transform. It uses only 128 symbols with byte
values from 128 up to 255.

In the LZMA/BWT optimized transform dictionary
references are encoded using a less dense variant of a
byte-oriented prefix code, with non-intersecting ranges
for different codeword bytes. We use only two disjoint
ranges of bytes, C1 and C2, but the codeword lengths still
span from 1 to 3 bytes. Any codeword byte from the
range C1 is unambiguously recognized as the suffix byte.
In this way, we have |C1| one-byte codewords, |C2| * |C1|
two-byte codewords, and |C2| * |C2| * |C1| three-byte
codewords. Such a reversed byte order was found to
improve a compression ratio.

As well as the LZ77 optimized transform the
LZMA/BWT optimized transform uses spaceless word
model. For SDHT a semi-dynamic dictionary contains
sequences of length at least lmin = 2 characters that appear
at least fmin = 12 times in the document. These values
were found experimentally.

4.5 PPM-based compression
PPM [5] is an adaptive statistical compression method. A
statistical model accumulates counts of symbols (usually
1-byte characters) seen so far in a given context. Thanks
to that, an encoder can predict probability distribution for
new symbols from the input data. The more skewed the
probability distribution in contexts, the higher
compression will result. Increasing the context length is
beneficial for encoding symbols known in a given
context, but amplifies the problem of efficient encoding
of the symbols yet unseen in a given context (generally
speaking, they are handled via an escape to a lower order
model, but how to estimate the escape probability is a
gross research topic).

HTML data might contain long repeated strings.
These data are compressed with most PPM variants in a
way far from optimal, as the highest order used by e.g.
Shkarin’s PPMd [16] is only 16. Skibiński and
Grabowski [17] presented the PPMVC algorithm (PPM
with variable-length contexts), a variant of PPM* [6]
adapted to cooperate with modern PPM mechanisms.
PPMVC extends the character-based PPM with string
matching similar to the one used by the LZ77 algorithm.

The PPMVC mechanism works on maximum order
contexts only; in shorter contexts the current symbol is
encoded with an ordinary PPM model (namely, Sharkin’s
PPMd model was used).

In PPMVC (called PPMVC2 in [17]) each maximum
order context holds a pointer to reference context (the
previous occurrence of the context) and the minimum left
match length. The left match length (LML) is the length
of the common part of the active context and the
reference context. LML, by definition, is always at least
as large as the maximum PPM order. The right match
length (RML) is defined as the length of the matching
sequence between symbols to encode and symbols
followed by the reference context.

When a character is encoded from the maximum
order context, the longest LML is evaluated, using the
last context’s appearance. If it is below the minimal left
match length (minLML), then the encoder uses ordinary
PPM encoding (without emitting any escape symbol). In

IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 369

the other case, the encoder uses this context to find the
RML (zero or more) and encodes it using an additional
global RML model.

There are two more ideas in PPMVC that improve
the compression effectiveness. First is the minimum right
match length (minRML). If the current right match length
is below the minRML threshold, then PPMVC sets RML
to 0. This assures that short matches are not used.

The second idea is to encode sequences of length
being a multiple of the parameter d. For example, if there
is a match of length 14, and d is 3, then only the first 12
characters of the match are encoded (the truncated
characters might however be part of the next RML). In
this way, matches are somewhat shorter than they could
be, but their lengths are cheaper to encode. In the original
PPMVC [17], RML was bounded by a constant, while in
the current variant the maximum RML is automatically
increased if very long matches are encountered.

PPMVC offers compression ratio higher than
LZMA, and faster compression time. The PPMVC’s
drawback is that its decompression time is very close to
its compression time, which means it is several times
longer than gzip’s or LZMA’s decompression times. In
our experiments we used PPMVC 1.2 with prediction
model order 8 and 64 MB of model size.

4.6 PPM optimized transform
In the PPM optimized transform the codeword alphabet
consists of the biggest possible alphabet for codewords:
byte values from 128 up to 255 and most values in range
0–31, plus a few more.

 In the PPM-friendly mode dictionary references are
encoded using a prefix code, where the length varies
from one to four bytes. The four disjoint ranges are of
size |C1|, |C2|, |C3| and |C4|, respectively. Namely, we
have |C1| one-byte codewords, |C2| * |C1| two-byte
codewords, |C3| * |C2| * |C1| three-byte codewords, and
|C4| * |C3| * |C2| * |C1| four-byte codewords. The first byte
of a codeword unambiguously defines its length. For
instance, when encoding a two byte long codeword, a
byte from the range of size |C2| will be followed by a
byte from the range of size |C1|. The parameters C1, C2,
C3, C4 are selected according to the size of the created
dictionary, with the principle of maximizing the number
of short codewords.

The PPM optimized transform does not use spaceless
word model. For SDHT a semi-dynamic dictionary
contains sequences of length at least lmin = 2 characters
that appear at least fmin = 64 times in the document. These
values gave good results for most files used in the
experiments.

4.7 PAQ-based compression
PAQ [11] is a family of compressors, originally
developed by Matthew Mahoney, based on context
modeling. As opposed to most PPM variants, which use a
character-based alphabet PAQ works on the bit level. In
PPM a new symbol in a context must be encoded in
lower orders using an escape mechanism. PAQ does not

use the escape symbol at all as in each step it must
encode only 0 or 1.

The binary alphabet allows a new character in a
context to be distinguished after first unseen bit, what is
not possible in the case of PPM. This is the next
improvement to the PPM algorithm. In the PAQ’s coding
stage a binary symbol is encoded with a predicted
probability by an arithmetic encoder, like in the PPM
algorithm.

Bit level coding in PAQ allows easy introduction of
additional predicting models. PAQ8 uses several
predicting models e.g., order-n models (n to 16), similar
to the one used in PPM; a string matching model, similar
to one used the LZ77 algorithm; and a number of text,
multimedia, tabular, or binary data oriented models (e.g.,
for x86 executables or BMP images).

Mixing the prediction of individual models in PAQ8
is performed with several neural networks. The outputs
of these networks are combined using a second-level
neural network. Before submitted to an arithmetic coder,
the outputs go through two stages of adaptive probability
maps (APM). The APM mechanism is related to the
secondary symbol probability estimation (SSE), known
from the PPMII algorithm [16]. It updates the probability
considering previous experience and the current context.

The main disadvantage of the PAQ8 algorithm are
high memory requirements and low compression speed.
It makes this algorithm unattractive from a practical
point of view. This is why we prepared FastPAQ,
stripped-down version of PAQ8, intended to improve
compression and decompression speed. From PAQ8 we
have left only the order-n models, and we have also
simplified APM stages, in overall making it more similar
to PPM. FastPAQ is still much slower than fast PPM
variants, but achieves better compression ratios.

In our experiments we used FastPAQ8 with model
size 140 MB.

4.8 PAQ optimized transform
In the PAQ optimized transform the codeword alphabet
consists of fewer symbols than PPM optimized
transform. It uses only 128 symbols with byte values
from 128 up to 255.

In the PAQ-friendly mode dictionary references are
encoded using the same prefix code as in the PPM
optimized transform, where the length varies from one to
four bytes. The four disjoint ranges are of size |C1|, |C2|,
|C3| and |C4|, respectively. Namely, we have |C1| one-byte
codewords, |C2| * |C1| two-byte codewords, |C3| * |C2| *
|C1| three-byte codewords, and |C4| * |C3| * |C2| * |C1|
four-byte codewords. In the PAQ optimized transform,
however, the parameters C1, C2, C3, C4 are fixed and
equal 64, 32, 16, and 16, respectively, what makes them
better suitable for PAQ’s bit-level predictors.

The PAQ optimized transform does not use spaceless
word model. For SDHT a semi-dynamic dictionary
contains sequences of length at least lmin = 2 characters
that appear at least fmin = 64 times in the document. These
values were found experimentally.

370 Informatica 33 (2009) 363–373 P. Skibiński

5 Experimental results
This section presents implementation details of the
SDHT and SHT algorithms. It also contains description
of files used for experiments and discussion on
experimental results of the SDHT and SHT algorithms
with four different back-end compression methods.

5.1 Implementation details
The SDHT and SHT implementation contains a fast and
simple HTML parser built as a finite state automaton
(FSA), which accepts proper words and numerical
(including date and time) expressions. The parser does
not build any trees, but treats an input HTML document
as one-dimensional data. It has small memory
requirements, as it only uses a stack to trace opening and
closing tags. The parser supports the HTML 4.01
specification (e.g. allowed an end tag omission for some
tags).

The SHT implementation uses a static English
dictionary with about 80.000 words. In this dictionary,
words are sorted with the relation to their frequency in a
training corpus of more than 3 GB English text taken
from the Project Gutenberg library. The words are stored
in lower case as SHT implements the capital conversion
method to convert the capital letter starting a word to its
lowercase equivalent and denote the change with a flag.
Additionally, SHT uses another flag to mark a
conversion of a full uppercase word to its lowercase
form.

SHT requires only one pass over the input data while
SDHT works in two passes over the input data. In the
first pass, a dictionary is formed and the frequency of
each of its items is computed. For the semi-dynamic
dictionary, we allocate 8 MB of memory. If the
dictionary reaches that limit, it is frozen, i.e., the counters
of already included words can be incremented but no
new word can be added. Still, in practice we rarely get
close to the assumed limit (which can also be changed
with a program switch). The complete dictionary is
stored within the compressed file, so this pass is
unnecessary during decompression, making the reverse
operation faster. The words selected for the dictionary
are written explicitly, with separators, at the beginning of
the output file. In the second pass, the actual transform
takes place, data are parsed into proper words and
numerical expressions and respectively encoded.

The crucial operation in the encoding is dictionary
search. In SDHT a search function is called twice for
each word in the document: first time during the semi-
dynamic dictionary buildup, second time during the
actual parsing and word encoding. The choice of a
dictionary data structure can seriously affect the overall
transform performance. We have decided to use a fixed-
size (4 MB) array with chained hashing for search, which
we previously tested in our work on a text transform
[18]. Its advantages are simplicity, moderate memory
usage, and O(1) search time (assuming that a single word
is read in constant time).

The reverse SDHT and SHT are simpler. Again we
use an FSA, which now recognizes flags and codewords,
and transforms them to the original form. Obviously,
there is no real search in the dictionary, only lookups in
O(1) time per codeword.

Our implementation of SDHT and SHT has
embedded four back-end compression algorithms: gzip,
LZMA, PPMVC, and FastPAQ8. Of these, gzip is the
fastest, but provides the lowest compression ratio.
FastPAQ8 is the slowest, but gives the best compression
effectiveness.

SDHT and SHT are truly lossless, i.e., they do not
ignore the document layout (e.g., trailing spaces) and the
decoded file is an exact copy of the encoded one. The
transforms can handle any HTML documents with 8-bit
(ISO-8859 and UTF-8) or 16-bit (Unicode) encodings.
SDHT and SHT was implemented in C++ and compiled
with MS Visual C++ 2008.

5.2 HTML corpus
In compression benchmarking, proper selection of
documents used in experiments is essential. To the best
of our knowledge, there is no publicly available and
widely respected HTML corpus to this date. Therefore,
we have based our test suite on entire common Internet
web sites downloaded (without images, etc.) using
WinHTTrack Website Copier. The resulting corpus
represents a wide range of real-world HTML documents.

Detailed information for each group of the
documents is presented in Table 1; it includes: URL
address, number of files and total size of files. The size
of a single file spans from 1 up to 296 KB.

Name URL address
no.
files

Total
size

Hillman hillmanwonders.com 781
34421

KB

Informatica www.informatica.si 12 122 KB

Mahoney
www.cs.fit.edu/~mmaho

ney/
11 596 KB

MaxComp maximumcompression.com 61 2557 KB

STL www.sgi.com/tech/stl/ 237 2551 KB

TightVNC tightvnc.com 21 289 KB

Tortoise tortoisesvn.net 393 5342 KB

Travel travelindependent.info 69 3841 KB

Table 1: Basic characteristics for the HTML corpus used
in the experiments

5.3 Compression ratio
The primary objective of experiments was to measure the
performance of our implementation of the SDHT and
SHT algorithms. For comparison purposes, we included
in the tests general-purpose compression tools: gzip
1.2.4, LZMA 4.43, PPMVC 1.2, and FastPAQ8,

IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 371

employing the same algorithms at the final stage of
SDHT and SHT, to demonstrate the improvement from
applying the HTML transform.

As we are not aware of any specialized algorithms
for HTML compression we have compared our
algorithms to well-know word-based text compression
techniques: StarNT [20], WRT [18], HufSyl [9], LZWL
[9], mPPM [1] and StarWE [22]. StarWE is based on
WRT and gives almost identical results therefore its
results were omitted. We have also tried to use
XMLPPM [4] and SCMPPM [2], which work well with
XHTML files, but it do not support HTML files. These
algorithms are described in details in Section 2.

The first part of Table 2 contains results of word-
based text compression algorithms. For each program
and group of HTML documents a bitrate is given in
output bits per input character, hence the smaller the
values, the better. The last but one column includes an
average bitrate computed for all the eight groups of
documents. The last column presents the average
improvement of preprocessors for all documents
compared to the general purpose algorithms result.

The next parts of Table 2 contain compression
results of the introduced HTML corpus using gzip,
LZMA, PPMVC, FastPAQ, and our implementation of
the SDHT and SHT algorithms combined with gzip,
LZMA, PPMVC, and FastPAQ.

SHT with gzip achieves compression results better
than all word-based text compression algorithms,
including a PPM-based mPPM. Compared to the general-
purpose compression tools, SDHT improves compression
of the introduced HTML corpus on average by 4% in
case of gzip, 0% for LZMA, almost 2% in case of
PPMVC and about 1% for FastPAQ. SDHT is very fast
and almost does not influence on compression and
decompression speed of general-purpose compression
algorithms. Moreover, it speeds up FastPAQ, because
preprocessed data is smaller than original.

In the first section we were wondering if HTML is
more similar to XML or to texts. Our experiments show
that HTML is more similar to texts as Static HTML
Transform (SHT) with a fixed English dictionary gives
much better results than SDHT. SHT improves
compression of the introduced HTML corpus on average
by about 15% in case of gzip, 12% for LZMA, almost
8% in case of PPMVC and 10% for FastPAQ.
Compression and decompression speed in comparison to
SDHT is a little bit lower as there is a need to read a
fixed English dictionary. SHT, however, allows to read
the dictionary only once and processes all HTML
documents in one run.

Concluding, SHT with gzip gives 15% improvement
over gzip achieving comparable processing speed.
Moreover, SHT with FastPAQ gives the best

compression effectiveness, which is 28% better than gzip
without any transform.

To ease the comparison, Figure 1 shows size of
compressed HTML corpus with all tested transforms and
back-end compression algorithms.

6 Conclusions
HTML has many advantages, but its main disadvantage
is verbosity, which can be coped with by applying data
compression. HTML is usually used in combination with
gzip compression, but gzip is a general-purpose
compression algorithm and much better results can be
achieved with a compression algorithm specialized for
dealing with HTML documents.

In this paper we have presented the SDHT and SHT
transform aiming to improve lossless HTML
compression in combination with existing general
purpose compressors. The main components of our
algorithms are: a static dictionary or a semi-static
dictionary of frequent alphanumerical phrases (not
limited to “words” in a conventional sense), and binary
encoding of popular patterns, like numbers and dates.

We have developed two versions of our transform:
semi-dynamic (SDHT) and static (SHT). Both algorithms
have some disadvantages. SDHT does not support
streams as input (offline compression) as it requires two
passes over an input file. SHT uses a fixed English
dictionary required for compression and decompression.
It might be the biggest obstacle for SHT to become
standard.

Thanks to the SHT transform, however, compression
ratio of the introduced HTML corpus was improved by
as much as 15% in case of gzip, 12% for LZMA, 8% in
case of PPMVC and almost 10% for FastPAQ.

SHT and SDHT have many nice practical properties.
The transforms are completely reversible, i.e. the
decoded document is an accurate copy of the input
document. Moreover, SHT and SDHT are implemented
as a stand-alone program, requiring no external
compression utility, no HTML parser, thus avoiding any
compatibility issues.

There is a way likely to increase the HTML
compression further. Layout of an HTML document
(e.g., trailing spaces, tabulators, end of line symbols) is
not relevant for web browsers and can be transformed to
a more compressible form. We expect that a lossy
version of the SHT transform could produce a few
percent better results for the price of further complication
of the transform.

Acknowledgement
The author would like to thank Szymon Grabowski and
Jakub Swacha for suggestions of possible improvements.

372 Informatica 33 (2009) 363–373 P. Skibiński

Figure 1: Size of compressed HTML corpus with different back-end compression algorithms

Hillman Informatica Mahoney MaxComp STL TightVNC Tortoise Travel Average Improvement

HufSyl 2.95 3.53 3.31 3.03 3.48 3.44 3.37 2.88 3.249

LZWL 2.13 3.18 3.23 2.39 3.22 3.26 3.13 2.72 2.908

gzip 1.51 2.08 2.72 1.86 2.19 2.34 2.27 2.34 2.164

StarNT+gzip 1.42 1.94 2.54 1.79 1.97 2.17 2.08 2.06 1.996 7.74%

WRT+gzip 1.44 1.99 2.49 1.80 1.95 2.13 2.06 1.97 1.979 8.55%

mPPM 1.34 2.16 2.30 1.55 2.31 2.24 2.23 1.95 2.010

gzip 1.51 2.08 2.72 1.86 2.19 2.34 2.27 2.34 2.164

SDHT+gzip 1.40 2.13 2.45 1.56 2.20 2.39 2.31 2.19 2.079 3.93%

SHT+gzip 1.23 1.88 2.26 1.47 1.85 2.09 2.02 1.84 1.830 15.42%

LZMA 1.29 1.99 2.35 1.53 2.13 2.23 2.17 2.13 1.978

SDHT+LZMA 1.29 2.04 2.30 1.46 2.16 2.29 2.21 2.07 1.978 0.00%

SHT+LZMA 1.13 1.78 2.08 1.38 1.79 1.99 1.92 1.74 1.726 12.71%

PPMVC 1.19 1.83 2.09 1.41 1.91 1.96 1.93 1.79 1.764

SDHT+PPMVC 1.15 1.80 2.02 1.33 1.87 1.97 1.94 1.77 1.731 1.84%

SHT+PPMVC 1.06 1.71 1.92 1.30 1.71 1.86 1.83 1.60 1.624 7.94%

FPAQ 1.14 1.81 2.01 1.36 1.90 1.96 1.92 1.79 1.736

SDHT+FPAQ 1.13 1.80 1.99 1.28 1.89 1.99 1.94 1.79 1.726 0.58%

SHT+FPAQ 1.01 1.65 1.83 1.24 1.67 1.82 1.77 1.56 1.569 9.65%

Table 2: Compression results for HTML datasets in output bits per input character.

IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 373

References
[1] Adiego, J., and de la Fuente, P.: Mapping Words

into Codewords on PPM. String Processing and
Information Retrieval, SPIRE, (2006), LNCS
4209, pp. 181–192.

[2] Adiego, J., de la Fuente, P., and Navarro, G.:
Using Structural Contexts to Compress
Semistructured Text Collections. Information
Processing and Management 43, 3 (May),
(2007), pp. 769–790.

[3] Burrows, M., Wheeler, D. J.: A block-sorting
data compression algorithm. SRC Research
Report 124. Digital Equipment Corporation,
Palo Alto, CA, USA, (1994).

[4] Cheney, J.: Compressing XML with multiplexed
hierarchical PPM models. Proceedings of the
IEEE Data Compression Conference, Snowbird,
UT, USA, (2001), pp. 163–172.

[5] Cleary, J. G., and Witten, I. H.: Data
compression using adaptive coding and partial
string matching. IEEE Trans. on Comm. 32, 4
(April), (1984), pp. 396–402.

[6] Cleary, J. G., Teahan, W. J., and Witten, I. H.:
Unbounded Length Contexts for PPM.
Proceedings of the IEEE Data Compression
Conference, Snowbird, UT, USA, (1995), pp.
52–61.

[7] Deutsch, P.: DEFLATE Compressed Data
Format Specification version 1.3. RFC1951,
(1996), http://www.ietf.org/rfc/rfc1951.txt.

[8] Huffman, D. A.: A Method for the Construction
of Minimum-Redundancy Codes. Proc. IRE 40.9
(Sept.), (1952), pp. 1098-1101.

[9] Lánský, J., Žemlička, M.: Text Compression:
Syllables. Proceedings of the Dateso 2005
Annual International Workshop on DAtabases,
TExts, Specifications and Objects. CEUR-WS,
Vol. 129, pp. 32–45.

[10] Mahoney, M.: About the Test Data, 2006,
http://cs.fit.edu/~mmahoney/compression/textda
ta.html

[11] Mahoney, M.: Adaptive Weighing of Context
Models for Lossless Data Compression.
Technical Report TR-CS-2005-16, Florida
Tech., USA, 2005.

[12] Moura E.S., Navarro G., Ziviani N.: Indexing
Compressed Text. In Baeza-Yates R, editor,
Proceedings of the 4th South American
Workshop on String Processing (WSP’97),
Valparaiso, Carleton University Press, 1997;
95–111.

[13] Nielsen H.F.: HTTP Performance Overview,
2003,
http://www.w3.org/Protocols/HTTP/Performanc
e/

[14] Pavlov I.: 7-zip compression utility.
http://www.7-zip.org.

[15] Radhakrishnan S.: Speed Web delivery with
HTTP compression, 2003, http://www-

128.ibm.com/developerworks/web/library/wa-
httpcomp/

[16] Shkarin, D.: PPM: One Step to Practicality.
Proceedings of the IEEE Data Compression
Conference, Snowbird, UT, USA, (2002), pp.
202–211.

[17] Skibiński, P., and Grabowski, Sz.: Variable-
length contexts for PPM. Proceedings of the
IEEE Data Compression Conference, Snowbird,
UT, USA, (2004), pp. 409–418.

[18] Skibiński, P., Grabowski, Sz., and Deorowicz,
S.: Revisiting dictionary-based compression.
Software – Practice and Experience, 35(15),
(2005), pp. 1455–1476.

[19] Skibiński, P., Grabowski, Sz., and Swacha, J.:
Effective asymmetric XML compression,
Software – Practice and Experience, 38 (10),
(2008), pp. 1027–1047.

[20] Sun, W., Zhang, N., Mukherjee, A.: Dictionary-
based fast transform for text compression.
Proceedings of international conference on
Information Technology: Coding and
Computing, ITCC, (2003), pp. 176–182.

[21] Wan, R.: Browsing and Searching Compressed
Documents. PhD dissertation, University of
Melbourne, 2003, http://www.bic.kyoto-
u.ac.jp/proteome/rwan/docs/wan_phd_new.pdf

[22] Yang, J., Savari, S.A.: Dictionary-based English
text compression using word endings.
Proceedings of the IEEE Data Compression
Conference, Snowbird, UT, USA, (2007), pp.
410.

[23] Ziv, J., and Lempel, A.: A Universal Algorithm
for Sequential Data Compression. IEEE Trans.
Inform. Theory 23, 3 (May), (1977), pp. 337–
343.

374 Informatica 33 (2009) 363–373 P. Skibiński

