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The verbosity of the Hypertext Markup Language (HTML) remains one of its main weaknesses. This 
problem can be solved with the aid of HTML specialized compression algorithms. In this work, we 
describe a lossless HTML transform which, combined with generally used compression algorithms, 
allows to attain high compression ratios. Its core is a fully reversible transform featuring substitution of 
words in an HTML document using a static English dictionary or a semi-static dictionary of the most 
frequent words in the document, effective encoding of dictionary indexes, numbers, and specific 
patterns.
The experimental results show that the proposed transform improves the HTML compression efficiency 
of general purpose compressors on average by 15% in case of gzip achieving comparable processing 
speed. Moreover, we show that the compression ratio of gzip can be improved by up to 28% for the
price of higher memory requirements and much slower processing.

Povzetek: Opisan je izvirni algoritem za izboljšavo zgoščevanja HTML.

1 Introduction1

Since the origin of World Wide Web, the Hypertext 
Markup Language (HTML) is a standard for Internet web 
pages. HTML has many advantages. One of its main 
advantages is that it is a textual format, what means that 
HTML is human-readable and can be edited by any text 
editor. The textual format of HTML is also one of its 
main disadvantages as it introduces verbosity.
Nevertheless verbosity can be coped with by applying 
data compression. 

Currently HTML files are usually compressed with 
common LZ77-based compression algorithms [23] like 
gzip or deflate [7]. LZ77-based algorithms can be 
substituted with more powerful, but slower and much 
more memory-demanding BWT-based [3] and PPM-
based [5] algorithms. All these algorithms, however, are 
general-purpose and much better results can be achieved 
with a compression algorithm specialized for dealing 
with HTML documents.

In recent years there is slow progress in general-
purpose compression thus many researchers and 
practitioners have directed towards specialized 
compression. Specialized compression algorithms can be 
divided into two groups: completely novel algorithms 
and preprocessors coupled with general-purpose 
algorithms. A good example for the first group is DNA 
compression, where many specialized algorithms exist. 
The second group of algorithms transforms the input data 
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and then passes the transform’s output to a general-
purpose compressor. The transform removes 
redundancies and correlations not exploited by a general-
purpose algorithm, what makes output data more 
compressible.

In our previous work we have presented algorithms 
specialized for text [18] and XML compression [19]. The 
biggest gain from our algorithms was achieved by 
creating dictionary of frequent words and replacing the 
words with shorter codewords. We have observed over 
27% improvement with an LZ77-based algorithm on 
English texts using a fixed English dictionary. Using a 
fixed dictionary for XML documents was problematic 
because of the hardness to select a proper set of words, 
relevant across a wide range of real-world XML 
documents. Therefore we achieved the best results (over 
35% improvement with an LZ77-based algorithm) with a 
semi-dynamic dictionary obtained in a preliminary pass 
over the input data. About 20% of this improvement was 
achieved by effective encoding of numbers, dates and 
times found in XML documents.

HTML format is similar to XML as both are SGML-
based. On the other side, XML is mainly used as a 
standard for storage and interchange of structured 
information and HTML is mainly used to publish text-
based information. In this usage HTML is more similar 
to texts.

The primary objective of our research was to design 
an efficient way of compressing HTML documents, 
which will reduce Internet traffic or will reduce storage 
requirements of HTML data. In this work we will present 
our two specialized algorithms for HTML compression. 
One uses a fixed English dictionary and the second one 
uses a semi-dynamic dictionary obtained in a preliminary 
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pass over the input data. Both algorithms are designed in 
four variants for proper general-purpose algorithms.

The map of the paper is as follows. Section 2 
contains a short review of HTML format and existing 
HTML compression methods thus putting our work in a 
proper context. We also describe related word-based and 
XML compressors. In Section 3 we describe step-by-step 
our HTML transform, its main ideas, and its most 
significant details. The next section presents back-end 
compression algorithms used with our transform and 
details about optimizations for these algorithms. Section 
5 contains implementation details, description of files 
used for experiments, and experimental results. Section 6
gives our conclusions and points out several issues for 
further study.

2 Related work

2.1 HTML description
HTML is a language that describes a structure of text-
based information in a document. It denotes certain text 
as links, headings, paragraphs, and lists. It also
supplements text with embedded images and other 
objects. XHTML is a new, XML-based version of 
HTML.

An HTML document consists of elements. An 
HTML element always has a start tag (e.g. <element-
name>) and may have an end tag (e.g. </element-
name>) in opposite to XML or XHTML, where the end 
tag is required. Elements may have two basic properties: 
attributes, contained in the start tag (e.g. <element-
name attribute="value">), and content, located 
between the tags (e.g. <element-
name>Content</element-name>). If there is no 
content a start tag and an end tag can be presented in 
short form that is <element-name/>. Comments in 
HTML are delimited by <!-- and --> sequences. Some 
HTML elements, for example <br>, do not have any 
content and must not have a closing tag. 

The following example [10] contains document title 
(<title> element), heading (<h1> element), 
paragraphs (<p> elements) and links (<a> elements):
<html>
<head><title>About the Test Data</title></head>
<body>
<h1 align="center">About the Test Data</h1>
<p align="center">Matt Mahoney<br>
Last update: Dec. 17, 2006. 
<a href="text.html#history">History</a>
<p>The test data for the <a 
href="text.html">Large Text Compression 
Benchmark</a> is the first 10<sup>9</sup> bytes 
of the English Wikipedia dump on Mar. 3, 2006.

2.2 HTTP protocol
Hypertext Transfer Protocol (HTTP) is a 
communications protocol used to transfer information on 
World Wide Web. HTTP is a request/response protocol 
between a client and a server. The client is making an 

HTTP request to the server, which delivers HTML files, 
images and other.

HTTP compression [13] is the technology used to 
compress contents from a web server (an HTTP server) 
and to decompress them in an user’s browser. HTTP 
compression is a recommendation of the HTTP 1.1 
protocol specification as it reduces network traffic and 
improves page download time on slow networks [15]. It 
is especially useful when size of the web pages is large.

The experiments conducted by Wan [21] showed 
that HTTP compression can be improved utilizing the 
previously requested files in a browsing session as a 
dictionary, but this idea was not embedded in HTTP 
protocol until today.

The popular LZ77-based gzip was intended to be the 
HTTP compression algorithm. Currently, HTTP servers 
and clients supports also LZ77-based deflate format. 
Lighttpd server supports also BWT-based bzip2 
compression, but this format is only supported by lynx 
and some other console text-browsers. Deflate, gzip, and 
bzip2, however, are general-purpose compression 
algorithms and much better results can be achieved with 
a compression algorithm specialized for dealing with 
HTML documents.

2.3 Word-based compression
StarNT [20] is a dictionary-based scheme, which 
replaces natural language words with references to an 
external dictionary. A word in StarNT dictionary is a 
sequence of symbols over the alphabet [a..z]. There is no 
need to use uppercase letters in the dictionary, as there 
are two one-byte flags (reserved symbols), fcl and fuw, in 
the output alphabet to indicate that either a given word 
starts with a capital letter while the following letters are 
all lowercase, or a given word consists of capitals only. 
Another introduced flag, for, prepends an unknown word. 
Finally, there is yet a collision-handling flag, fesc, used 
for encoding occurrences of flags fcl, fuw, for, and fesc in 
the text.

The ordering of words in the dictionary D, as well as 
mapping the words to unique codewords, are important 
for the compression effectiveness. StarNT uses the 
following rules:
• The most popular words are stored at the beginning of 
the dictionary. This group has 312 words.
• The remaining words are stored in D according to their 
increasing lengths. Words of same length are sorted 
according to their frequency of occurrence in some 
training corpus.
• Only letters [a..zA..Z] are used to represent the 
codeword (with the intention to achieve better 
compression performance with the backend compressor).
Each word in D has assigned a corresponding codeword. 
Codewords’ length varies from one to three bytes. As 
only the range [a..zA..Z] for codeword bytes is used, 
there can be up to 52 + 52 × 52 + 52 × 52 × 52 = 143, 
364 entries in the dictionary. The first 52 words have
codewords: a, b, . . . , z, A, B, . . . , Z. Words from the 
53rd to the 2756th have codewords of length 2: aa, ab, 
…, ZY, ZZ; and so on.
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WRT [18] is an English text preprocessor, a 
successor of StarNT. WRT replaces words in input text 
file with shorter codewords and uses several other 
techniques to improve performance of latter compression 

The dictionary is sorted according to the frequency 
of words as more frequent messages should be 
represented with shorter codes than less frequent 
messages. WRT English dictionary have 80,000 words. 
Each word in D has assigned a corresponding codeword. 
Codewords’ length is variable and span from one to four 
symbols. Ordinary text files, at least English ones, 
consist solely of ASCII symbols not exceeding 127, so 
codewords’ alphabet has 128 symbols (ASCII values 
from 128 to 255). If there is a symbol from codewords’ 
alphabet in the input file, then WRT outputs token tesc

and this symbol. Codewords’ alphabet (128 symbols) is 
divided into four separate parts. WRT uses the mapping 
<101, 9, 9, 9> for codewords, and thus there are 101 + 
101·9 + 101·9·9 + 101·9·9·9 = 82,820 distinct codewords 
available. It is enough for 80,000 words WRT dictionary. 
The codeword bytes are emitted in the reverse order, i.e., 
the range for the last codeword byte has always 101 
values.

WRT uses several additional techniques to improve 
the compression performance. First is q-gram 
replacement, which is based on substituting frequent 
sequences of q consecutive characters, i.e., q-grams, with 
single symbols. The next technique that improves the 
compression performance is End-of-Line (EOL) coding. 
The general idea is to replace EOL symbols with spaces 
and to encode information enabling the reverse operation 
in a separate stream. The last technique used by WRT is 
surrounding words with spaces, which converts all words 
to be surrounded by space characters. This technique 
gives gain only if there are at least a few occurrences of 
the word, because it joins similar contexts in PPM 
compressor (helps in better prediction of the word’s first 
symbol as well as the next symbol just after the word). 

mPPM [1] is a text compressor, which is based on 
Shkarin’s PPMd [16]. mPPM splits text into alternating 
sequences of words and non-words. Words and non-
words use a common dynamic dictionary. 

Each item has assigned a codeword, which always 
consists of two bytes. Therefore the dictionary may 
include up to 216 items. If the dictionary is bigger least 
recently used (LRU) words are removed. Two codewords 
are reserved. The first is the End-Of-File flag and the 
second signals occerence of a new item.

mPPM uses two separate PPM models. The first 
encodes only codewords. The second, auxilary model 
encodes new items with a standard character-based PPM.

HufSyl [9] and LZWL [9] are the first text 
compressors that use syllables as units, instead of 
characters or words. Syllables are obtained by one of
algorithms of decomposition into syllables. These 
algorithms use syllable-based compression in 
combination with respectively, adaptive Huffman and 
LZW coding.

These methods have their counterpart variants for 
whole words, which gave better results in our 

experiments. We decided to include only results of word-
based versions in our Table 2.

2.4 XML compression
Cheney’s XMLPPM [4] is a streaming compressor 

which uses a technique named multiplexed hierarchical 
modeling (MHM). It switches between four models: one 
for element and attribute names, one for element 
structure, one for attributes, one for strings, and encodes 
them in one stream using PPMD+ or, in newer 
implementations, Shkarin’s PPMd [16]. The tag and 
attribute names are replaced with shorter codes. An 
important idea in Cheney’s algorithm is injecting the 
previous symbol from another model into the current 
symbol’s context. Injecting means that both the encoder 
and decoder assume there is such a symbol in the context 
of the current symbol but do not explicitly encode nor 
decode it. The idea of symbol injection is to preserve (at 
least to some degree) contextual dependencies across 
different structural models.

SCMPPM [2] can be seen as an extreme case of 
XMLPPM. Instead of using only few models, it 
maintains a separate model for each element class. Every 
class contains elements having the same name and the 
same path from the document root. This technique, called 
Structure Context Modeling (SCM), wins over 
XMLPPM on large documents (tens of megabytes), but 
loses on smaller files. Also, SCMPPM requires lots of 
memory for maintaining multiple statistical models and 
under limited memory scenarios it may lose significantly, 
even compared to pure PPMd.

3 HTML Transform
In this section we present our two algorithms: Semi-
Dynamic HTML Transform (SDHT) and Static HTML 
Transform (SHT). We introduce subsequent parts of our 
algorithms step by step. 

3.1 End tag encoding
In the previous section we have described structure of 
HTML documents. In a well-formed HTML document, 
every end tag must match a corresponding start tag. This 
can hardly be exploited by general-purpose compression 
algorithms, as they maintain a linear, not stack-alike data 
model. The compression ratio can then be increased by 
replacing every matching end tag with merely an element 
closing flag.

Our transform puts elements on a stack when a start 
tag has appeared. The last inserted element is removed 
from a stack when an end tag has appeared. The problem 
with HTML is that not all elements must have a closing 
tag. It can be solved by ignoring elements that allow an
end tag omission. The second problem with HTML is 
that some tags (e.g. <p>) should have corresponding end 
tags, but human editors skip these closing tags. 
Moreover, web browsers do not report errors on 
documents of this kind. Therefore our transform allows
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non-valid HTML documents. The above-mentioned 
problems do not occur in XHTML.

3.2 Quotes modeling
Attributes of HTML elements usually contain 
neighboring equal and quotation mark characters (e.g. 
attribute="value"). Sometimes attributes are 
encoded using equal and apostrophe characters (e.g. 
attribute='value'). We have found that replacing 
these two characters with a flag improves compression 
performance. We made the same with quotation mark
and angle right bracket (greater) characters that closing 
start tags with attribute(s) (e.g. <element-name 
attribute="value">). 

3.3 Spaces modeling
Layout of an HTML document (e.g., trailing spaces, 
tabulators, end of line symbols) is not relevant for web 
browsers, but it may be useful for human editors of a 
document. This kind of redundancy, typical to HTML 
documents created with editors caring about the output 
format, cannot be well exploited by general-purpose 
compression algorithms.

Our transform makes use of structural indentation by 
efficiently encoding the leading spaces in lines. For every 
line our transform counts number of occurrences for 
leading spaces with length from 1 up to 256 symbols. If 
number of occurrences for the certain length is higher 
than a predefined threshold our transform assigns a 
special codeword for leading spaces of this length.

3.4 Number encoding
Numbers appear very often in HTML documents. We 
found that storing numbers as text is ineffective.
Numbers can be encoded more efficiently using a 
numerical system with base higher than 10.

In our transform every decimal integer number n is 
replaced with a single byte whose value is 
log256(n+1)+48. The actual value of n is then encoded 
as a base-256 number. A special case is made for 
sequences of zeroes preceding a number – these are left 
intact.

Our transform encodes in a special way also other 
numerical data that represent specific information types. 
Currently our transform recognizes the following 
formats: 
 dates between 1977-01-01 and 2153-02-26 in YYYY-

MM-DD (e.g. “2007-03-31”, Y for year, M for 
month, D for day) and DD-MMM-YYYY (e.g. “31-
MAR-2007”) formats;

 years from 1900 to 2155 (e.g. “1999”, “2008”)
 times in 24-hour (e.g., “22:15”) and 12-hour (e.g., 

“10:15pm”) formats;
 value ranges (e.g., “115-132”);
 decimal fractional numbers with one (e.g., “1.2”) or 

two (e.g., “1.22”) digits after decimal point.
Dates are replaced with a flag and encoded as a two bytes 
long integer whose value is the difference in days from 

1977-01-01. To simplify the calculations we assume each 
month to have 31 days. If the difference with the 
previous date is smaller than 256, another flag is used 
and the date is encoded as a single byte whose value is 
the difference in days from the previous date.

Years are replaced with a sequence of two bytes 
representing respectively: the year flag and the difference 
between the actual year and 1900.

  Times are replaced with a sequence of three bytes 
representing respectively: a flag signaling a time pattern 
(conforming to the presented notation), the hour in 24-
hour convention, and minutes.

  Value ranges in the format x–y where x < 65536 
and 0 < y – x < 256 are encoded in four bytes: one for the 
range flag, two for the value of x, and one for the 
difference y – x. 

  Decimal fractional numbers with one digit after 
decimal point and value from 0.0 to 24.9 are replaced by 
two bytes: a flag and their value stored as fixed point 
integer. In case of those with two digits after decimal 
point, only their suffix, starting from the decimal point, is 
replaced with two bytes: a flag and the number’s 
fractional part stored as an integer.

3.5 Semi-dynamic dictionary
The backbone of the proposed transform is to replace 

the most frequent words with references to a dictionary. 
A semi-dynamic version of our transform constructs a 
separate dictionary for every processed document, but, 
once constructed, the dictionary is not changed during an 
HTML transform. The transform works in two passes. 
The dictionary is obtained in a preliminary pass over the 
data, and contains sequences of length at least lmin

characters that appear at least fmin times in the document. 
The dictionary is sorted by word frequency and stored 
within the compressed file, thus making the reverse 
operation faster. Dictionary references are encoded using 
a byte-oriented prefix code, where the more frequent 
words have assigned shorter codewords (length varies 
from one to four bytes). The prefix code and the 
variables fmin and lmin depend on a back-end compression 
algorithm described in the next section. We have also 
tried a fully dynamic (one-pass) transform variant, but it 
gives much worse compression ratio as the same word 
can have assigned different codewords.

In the second pass of a semi-dynamic transform, the 
parsed data items are encoded in a byte-oriented manner 
(words, spaces and flags with a prefix code; numbers, 
dates, years, times, value ranges, and decimal fractional 
numbers with respective coding schemes), and then 
compressed with a compression algorithm and written to 
disk. We chose four algorithms of this kind: LZ77-based, 
LZMA/BWT-based, PPM-based, and PAQ-based, which 
are described in detail in the following section.

Our notion of a “word” is broader than its common 
meaning. Namely, semi-dynamic dictionary contains 
items from the following classes:
 ordinary words – sequences of lowercase and 

uppercase letters (a-z, A-Z) and 128-255 (which 



IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 367

supports, e.g., all languages with a Latin-based 
alphabet); 

 start tags – sequences of characters that start with <, 
contain letters, digits, underscores, colons, dashes, or 
dots, and end with >. Start tags can also include one 
or more preceding spaces as HTML documents 
sometimes have regular arrangements of the lines in 
which individual tags very often begin in the same 
column, preceded with the same number of spaces,

 URL address prefixes – sequences of the form 
http://domain/, where domain is any 
combination of letters, digits, dots, and dashes,

 e-mails – patterns of the form login@domain, 
where login and domain are any combination of 
letters, digits, dots, and dashes,

 words in form "&data;", where data is any 
combination of letters, representing HTML entities.  

3.6 Matching shorter words 
Our transform uses separate output alphabets for original 
words (not replaced with a reference to a dictionary) and 
codewords. Therefore it is easy to encode a part of a 
word, if the prefix matches some word in a dictionary but 
the whole word does not. Still, the gain we achieve in 
this way is insubstantial. Our algorithm with all above-
mentioned ideas is called Semi-Dynamic HTML 
Transform (SDHT).

3.7 Static dictionary
Static HTML Transform (SHT) is similar to Semi-
Dynamic HTML Transform (SDHT). The main 
difference is that a semi-dynamic dictionary is replaced 
with a static dictionary, which is embedded in the 
compressor and the decompressor. 

There are two advantages of a static dictionary over 
a semi-dynamic dictionary: there is no need to make the 
first pass over the input data to create the semi-dynamic 
dictionary and there is no need to store the semi-dynamic 
dictionary within processed data to make decompression 
possible. 

On the other hand a static dictionary is limited to 
some class of documents e.g. English language. The 
dictionary must be spread with the compressor and the
decompressor. Moreover, a semi-dynamic dictionary 
contains words that are actually frequent in the 
document, not words that could potentially be frequent, 
as it is in the case of a static dictionary. Nevertheless for 
HTML documents a static English dictionary usually 
gives a better compression ratio than a semi-dynamic 
dictionary.

4 Back-end compression
Succinct word encoding appears to be the most important 
idea in Static HTML Transform (SHT) and Semi-
Dynamic HTML Transform (SDHT). The dictionary 
references are encoded using symbols which are not 
existent in the input HTML document. If, however, one 
of reserved symbols occurs in the document, and is not a 

part of an encoded word, the coder prepends it with a 
special escape symbol.

There are four modes of encoding, chosen depending 
on the attached back-end compression algorithm: LZ77-
based [23], LZMA/BWT-based [3], PPM-based [5], and 
PAQ-based [11]. The encoding scheme, however, is the 
same for SHT and SDHT. In all cases, dictionary 
references are encoded using a byte-oriented prefix code, 
where the length varies from one to four bytes. Although 
it produces slightly longer output than, for instance, 
Huffman coding [8], the resulting data can be easily 
compressed further, which is not the case with the latter. 
Obviously, more frequent words have assigned shorter 
codewords.

4.1 LZ77-based compression
The LZ77 algorithm [23] finds duplicated sequences of 
bytes in the input data. The next occurrences of a 
sequence are replaced by a pointer to the previous 
occurrence.  The pointer is encoded as a distance to the 
previous occurrence in a limited past buffer and a match 
length. Literals are encoded directly. Most LZ77 variants 
use Huffman coding for literals, match offsets, and match 
lengths. LZ77-based methods are the most widely-used 
compression algorithms. They are known for fast 
compression and very fast decompression, but limited 
effectiveness.

Gzip is a common LZ77-based compression 
algorithm. It uses a buffer (sliding window) for finding 
matches that has only 32 KB, which is mostly 
responsible for both very high compression speed and 
mediocre compression ratios. When a sequence of bytes 
does not occur anywhere in the previous 32 KB, it is 
emitted as a sequence of literal bytes. Match lengths are 
limited to 258 bytes. We used gzip 1.2.4 with default 
values in our experiments.

4.2 LZ77 optimized transform
In comparison to modern algorithms LZ77-based 
compressors are not complicated. For example, they do 
not predict characters on the basis of their context. The 
strength of LZ77 lies in succinct encoding of long 
matching sequences. In consequence, a transform 
optimized for LZ77 compression should attempt to:
 reduce the number of characters to encode;
 decrease the offset (in bytes) of the matching 

sequences;
 decrease the length (in bytes) of the matching 

sequence;
 virtually increase the sliding window, i.e., the past 

buffer in which matching sequences are looked for.
It appears that in case of LZ77 (but not necessarily 
LZMA, BWT, PPM, or PAQ), shortening the output of 
the transform improves the compression ratio. In 
accordance with this observation, we chose the biggest 
possible alphabet for codewords: byte values from 128
up to 255 and most values in range 0–31, plus a few 
more. These symbols are very rarely used in most HTML 
documents. If, however, one of these symbols occurs in 
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the document, and is not part of an encoded word, the 
coder marks it with a special escape symbol.

HTML elements contain usually textual content. 
Another important idea in LZ77 optimized transform is 
elimination of most spaces between words. Since usually 
a word is preceded by a single space, only exceptions 
from this rule require special treatment: only the 
positions where spaces should not be inserted are marked 
with a respective flag. Such an assumption is known as 
the spaceless word model [12].

Still, without spaces between words, there must be a 
way to detect codeword boundaries. In a LZ77 optimized 
transform dictionary references are encoded using a byte-
oriented prefix code, where the length varies from one to 
three bytes. The first byte of the codeword can belong to 
one of three disjoint ranges:
 C1 if it is a one-byte long codeword; there are |C1| 

such codewords available,
 C2 if it is a prefix of two-bytes long codeword, 

followed by a single byte in the full possible value 
range; there are |C2| * 256 such codewords available,

 C3 if it is a prefix of three-bytes long codeword, 
followed by two bytes in the full possible value 
range; there are |C3| * 256 * 256 such codewords 
available.

In this way, we obtain |C1| + |C2| * 256 + |C3| * 256 * 256 
codewords in total. As this is a kind of prefix code, all 
the codewords are immediately decodeable. The size of 
ranges C1, C2, and C3 are set according to the size of the 
document to compress and the resulting dictionary size.

For SDHT a semi-dynamic dictionary contains 
sequences of length at least lmin = 2 characters that appear 
at least fmin = 12 times in the document. These values 
gave good results for most files used in the experiments.

4.3 LZMA-based compression
LZMA is a modern compression algorithm based on 
ideas from a LZ77 compression family. It also finds 
duplicated sequences of bytes in the input data, but it 
contains many improvements. Some of the major 
features of LZMA are sophisticated match parsing, 
working with large buffers (up to 1 GB), and low order 
contextual encoding of literals. 

LZMA significantly improves compression ratio in 
comparison to LZ77-based algorithms at the cost of 
much slower compression (decompression speed is not 
much affected). LZMA is implemented in the well-
known 7-zip [14] compression utility. We used LZMA 
4.43 with default 8 MB dictionary in our experiments.

4.4 LZMA and BWT optimized transform
We found experimentally that a transform optimized for 
LZMA and BWT-based [3] (e.g. bzip2) compression 
should have similar characteristic and there is no need to 
create separate versions.

In the LZMA/BWT optimized transform the 
codeword alphabet consists of fewer symbols than LZ77 
optimized transform. It uses only 128 symbols with byte 
values from 128 up to 255.

In the LZMA/BWT optimized transform dictionary 
references are encoded using a less dense variant of a 
byte-oriented prefix code, with non-intersecting ranges 
for different codeword bytes. We use only two disjoint 
ranges of bytes, C1 and C2, but the codeword lengths still 
span from 1 to 3 bytes. Any codeword byte from the 
range C1 is unambiguously recognized as the suffix byte. 
In this way, we have |C1| one-byte codewords, |C2| * |C1| 
two-byte codewords, and |C2| * |C2| * |C1| three-byte 
codewords. Such a reversed byte order was found to 
improve a compression ratio.

As well as the LZ77 optimized transform the 
LZMA/BWT optimized transform uses spaceless word 
model. For SDHT a semi-dynamic dictionary contains 
sequences of length at least lmin = 2 characters that appear 
at least fmin = 12 times in the document. These values 
were found experimentally.

4.5 PPM-based compression
PPM [5] is an adaptive statistical compression method. A 
statistical model accumulates counts of symbols (usually 
1-byte characters) seen so far in a given context. Thanks 
to that, an encoder can predict probability distribution for 
new symbols from the input data. The more skewed the 
probability distribution in contexts, the higher 
compression will result. Increasing the context length is 
beneficial for encoding symbols known in a given 
context, but amplifies the problem of efficient encoding 
of the symbols yet unseen in a given context (generally 
speaking, they are handled via an escape to a lower order 
model, but how to estimate the escape probability is a 
gross research topic).

HTML data might contain long repeated strings.
These data are compressed with most PPM variants in a 
way far from optimal, as the highest order used by e.g. 
Shkarin’s PPMd [16] is only 16. Skibiński and 
Grabowski [17] presented the PPMVC algorithm (PPM 
with variable-length contexts), a variant of PPM* [6]
adapted to cooperate with modern PPM mechanisms. 
PPMVC extends the character-based PPM with string 
matching similar to the one used by the LZ77 algorithm.

The PPMVC mechanism works on maximum order 
contexts only; in shorter contexts the current symbol is 
encoded with an ordinary PPM model (namely, Sharkin’s 
PPMd model was used).

In PPMVC (called PPMVC2 in [17]) each maximum 
order context holds a pointer to reference context (the 
previous occurrence of the context) and the minimum left 
match length. The left match length (LML) is the length 
of the common part of the active context and the 
reference context. LML, by definition, is always at least 
as large as the maximum PPM order. The right match 
length (RML) is defined as the length of the matching 
sequence between symbols to encode and symbols 
followed by the reference context. 

When a character is encoded from the maximum 
order context, the longest LML is evaluated, using the 
last context’s appearance. If it is below the minimal left 
match length (minLML), then the encoder uses ordinary 
PPM encoding (without emitting any escape symbol). In 



IMPROVING HTML COMPRESSION Informatica 33 (2009) 363–373 369

the other case, the encoder uses this context to find the 
RML (zero or more) and encodes it using an additional 
global RML model.

There are two more ideas in PPMVC that improve 
the compression effectiveness. First is the minimum right 
match length (minRML). If the current right match length 
is below the minRML threshold, then PPMVC sets RML 
to 0. This assures that short matches are not used. 

The second idea is to encode sequences of length 
being a multiple of the parameter d. For example, if there 
is a match of length 14, and d is 3, then only the first 12 
characters of the match are encoded (the truncated 
characters might however be part of the next RML). In 
this way, matches are somewhat shorter than they could 
be, but their lengths are cheaper to encode. In the original 
PPMVC [17], RML was bounded by a constant, while in 
the current variant the maximum RML is automatically 
increased if very long matches are encountered.

PPMVC offers compression ratio higher than 
LZMA, and faster compression time. The PPMVC’s 
drawback is that its decompression time is very close to 
its compression time, which means it is several times 
longer than gzip’s or LZMA’s decompression times. In
our experiments we used PPMVC 1.2 with prediction 
model order 8 and 64 MB of model size.

4.6 PPM optimized transform
In the PPM optimized transform the codeword alphabet 
consists of the biggest possible alphabet for codewords: 
byte values from 128 up to 255 and most values in range 
0–31, plus a few more.

  In the PPM-friendly mode dictionary references are 
encoded using a prefix code, where the length varies 
from one to four bytes. The four disjoint ranges are of 
size |C1|, |C2|, |C3| and |C4|, respectively. Namely, we 
have |C1| one-byte codewords, |C2| * |C1| two-byte 
codewords, |C3| * |C2| * |C1| three-byte codewords, and 
|C4| * |C3| * |C2| * |C1| four-byte codewords. The first byte 
of a codeword unambiguously defines its length. For 
instance, when encoding a two byte long codeword, a 
byte from the range of size |C2| will be followed by a 
byte from the range of size |C1|. The parameters C1, C2, 
C3, C4 are selected according to the size of the created 
dictionary, with the principle of maximizing the number 
of short codewords.

The PPM optimized transform does not use spaceless 
word model. For SDHT a semi-dynamic dictionary 
contains sequences of length at least lmin = 2 characters 
that appear at least fmin = 64 times in the document. These 
values gave good results for most files used in the 
experiments.

4.7 PAQ-based compression
PAQ [11] is a family of compressors, originally 
developed by Matthew Mahoney, based on context 
modeling. As opposed to most PPM variants, which use a 
character-based alphabet PAQ works on the bit level. In 
PPM a new symbol in a context must be encoded in 
lower orders using an escape mechanism. PAQ does not 

use the escape symbol at all as in each step it must 
encode only 0 or 1. 

The binary alphabet allows a new character in a 
context to be distinguished after first unseen bit, what is 
not possible in the case of PPM. This is the next 
improvement to the PPM algorithm. In the PAQ’s coding 
stage a binary symbol is encoded with a predicted 
probability by an arithmetic encoder, like in the PPM 
algorithm.

Bit level coding in PAQ allows easy introduction of 
additional predicting models. PAQ8 uses several 
predicting models e.g., order-n models (n to 16), similar 
to the one used in PPM; a string matching model, similar 
to one used the LZ77 algorithm; and a number of text, 
multimedia, tabular, or binary data oriented models (e.g., 
for x86 executables or BMP images).

Mixing the prediction of individual models in PAQ8 
is performed with several neural networks. The outputs 
of these networks are combined using a second-level 
neural network. Before submitted to an arithmetic coder, 
the outputs go through two stages of adaptive probability 
maps (APM). The APM mechanism is related to the 
secondary symbol probability estimation (SSE), known 
from the PPMII algorithm [16]. It updates the probability 
considering previous experience and the current context.

The main disadvantage of the PAQ8 algorithm are 
high memory requirements and low compression speed. 
It makes this algorithm unattractive from a practical 
point of view. This is why we prepared FastPAQ, 
stripped-down version of PAQ8, intended to improve 
compression and decompression speed. From PAQ8 we 
have left only the order-n models, and we have also 
simplified APM stages, in overall making it more similar 
to PPM. FastPAQ is still much slower than fast PPM 
variants, but achieves better compression ratios.

In our experiments we used FastPAQ8 with model 
size 140 MB.

4.8 PAQ optimized transform
In the PAQ optimized transform the codeword alphabet 
consists of fewer symbols than PPM optimized 
transform. It uses only 128 symbols with byte values 
from 128 up to 255. 

In the PAQ-friendly mode dictionary references are 
encoded using the same prefix code as in the PPM 
optimized transform, where the length varies from one to 
four bytes. The four disjoint ranges are of size |C1|, |C2|, 
|C3| and |C4|, respectively. Namely, we have |C1| one-byte 
codewords, |C2| * |C1| two-byte codewords, |C3| * |C2| * 
|C1| three-byte codewords, and |C4| * |C3| * |C2| * |C1| 
four-byte codewords. In the PAQ optimized transform, 
however, the parameters C1, C2, C3, C4 are fixed and 
equal 64, 32, 16, and 16, respectively, what makes them 
better suitable for PAQ’s bit-level predictors.

The PAQ optimized transform does not use spaceless 
word model. For SDHT a semi-dynamic dictionary 
contains sequences of length at least lmin = 2 characters 
that appear at least fmin = 64 times in the document. These 
values were found experimentally.
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5 Experimental results
This section presents implementation details of the 
SDHT and SHT algorithms. It also contains description 
of files used for experiments and discussion on 
experimental results of the SDHT and SHT algorithms 
with four different back-end compression methods.

5.1 Implementation details
The SDHT and SHT implementation contains a fast and 
simple HTML parser built as a finite state automaton 
(FSA), which accepts proper words and numerical 
(including date and time) expressions. The parser does 
not build any trees, but treats an input HTML document 
as one-dimensional data. It has small memory 
requirements, as it only uses a stack to trace opening and 
closing tags. The parser supports the HTML 4.01 
specification (e.g. allowed an end tag omission for some 
tags). 

The SHT implementation uses a static English 
dictionary with about 80.000 words. In this dictionary, 
words are sorted with the relation to their frequency in a 
training corpus of more than 3 GB English text taken 
from the Project Gutenberg library. The words are stored 
in lower case as SHT implements the capital conversion 
method to convert the capital letter starting a word to its 
lowercase equivalent and denote the change with a flag. 
Additionally, SHT uses another flag to mark a 
conversion of a full uppercase word to its lowercase 
form.

SHT requires only one pass over the input data while 
SDHT works in two passes over the input data. In the 
first pass, a dictionary is formed and the frequency of 
each of its items is computed. For the semi-dynamic 
dictionary, we allocate 8 MB of memory. If the 
dictionary reaches that limit, it is frozen, i.e., the counters 
of already included words can be incremented but no 
new word can be added. Still, in practice we rarely get 
close to the assumed limit (which can also be changed 
with a program switch). The complete dictionary is 
stored within the compressed file, so this pass is 
unnecessary during decompression, making the reverse 
operation faster. The words selected for the dictionary 
are written explicitly, with separators, at the beginning of 
the output file. In the second pass, the actual transform 
takes place, data are parsed into proper words and 
numerical expressions and respectively encoded.

The crucial operation in the encoding is dictionary 
search. In SDHT a search function is called twice for 
each word in the document: first time during the semi-
dynamic dictionary buildup, second time during the 
actual parsing and word encoding. The choice of a 
dictionary data structure can seriously affect the overall 
transform performance. We have decided to use a fixed-
size (4 MB) array with chained hashing for search, which 
we previously tested in our work on a text transform
[18]. Its advantages are simplicity, moderate memory 
usage, and O(1) search time (assuming that a single word 
is read in constant time). 

The reverse SDHT and SHT are simpler. Again we 
use an FSA, which now recognizes flags and codewords, 
and transforms them to the original form. Obviously, 
there is no real search in the dictionary, only lookups in 
O(1) time per codeword.

Our implementation of SDHT and SHT has
embedded four back-end compression algorithms: gzip, 
LZMA, PPMVC, and FastPAQ8. Of these, gzip is the 
fastest, but provides the lowest compression ratio. 
FastPAQ8 is the slowest, but gives the best compression 
effectiveness.

SDHT and SHT are truly lossless, i.e., they do not 
ignore the document layout (e.g., trailing spaces) and the 
decoded file is an exact copy of the encoded one. The 
transforms can handle any HTML documents with 8-bit 
(ISO-8859 and UTF-8) or 16-bit (Unicode) encodings. 
SDHT and SHT was implemented in C++ and compiled
with MS Visual C++ 2008.

5.2 HTML corpus
In compression benchmarking, proper selection of 
documents used in experiments is essential. To the best 
of our knowledge, there is no publicly available and 
widely respected HTML corpus to this date. Therefore, 
we have based our test suite on entire common Internet 
web sites downloaded (without images, etc.) using 
WinHTTrack Website Copier. The resulting corpus 
represents a wide range of real-world HTML documents.

Detailed information for each group of the 
documents is presented in Table 1; it includes: URL 
address, number of files and total size of files. The size 
of a single file spans from 1 up to 296 KB.

Name URL address
no. 
files

Total 
size

Hillman hillmanwonders.com 781
34421 

KB

Informatica www.informatica.si 12 122 KB

Mahoney
www.cs.fit.edu/~mmaho

ney/
11 596 KB

MaxComp maximumcompression.com 61 2557 KB

STL www.sgi.com/tech/stl/ 237 2551 KB

TightVNC tightvnc.com 21 289 KB

Tortoise tortoisesvn.net 393 5342 KB

Travel travelindependent.info 69 3841 KB

Table 1: Basic characteristics for the HTML corpus used 
in the experiments

5.3 Compression ratio
The primary objective of experiments was to measure the 
performance of our implementation of the SDHT and 
SHT algorithms. For comparison purposes, we included 
in the tests general-purpose compression tools: gzip 
1.2.4, LZMA 4.43, PPMVC 1.2, and FastPAQ8, 
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employing the same algorithms at the final stage of 
SDHT and SHT, to demonstrate the improvement from 
applying the HTML transform.

As we are not aware of any specialized algorithms 
for HTML compression we have compared our 
algorithms to well-know word-based text compression 
techniques: StarNT [20], WRT [18], HufSyl [9], LZWL 
[9], mPPM [1] and StarWE [22]. StarWE is based on 
WRT and gives almost identical results therefore its 
results were omitted. We have also tried to use 
XMLPPM [4] and SCMPPM [2], which work well with 
XHTML files, but it do not support HTML files. These 
algorithms are described in details in Section 2.

The first part of Table 2 contains results of word-
based text compression algorithms. For each program 
and group of HTML documents a bitrate is given in 
output bits per input character, hence the smaller the 
values, the better. The last but one column includes an 
average bitrate computed for all the eight groups of 
documents. The last column presents the average 
improvement of preprocessors for all documents 
compared to the general purpose algorithms result.

The next parts of Table 2 contain compression
results of the introduced HTML corpus using gzip,
LZMA, PPMVC, FastPAQ, and our implementation of 
the SDHT and SHT algorithms combined with gzip,
LZMA, PPMVC, and FastPAQ.

SHT with gzip achieves compression results better 
than all word-based text compression algorithms, 
including a PPM-based mPPM. Compared to the general-
purpose compression tools, SDHT improves compression 
of the introduced HTML corpus on average by 4% in 
case of gzip, 0% for LZMA, almost 2% in case of 
PPMVC and about 1% for FastPAQ. SDHT is very fast 
and almost does not influence on compression and 
decompression speed of general-purpose compression
algorithms. Moreover, it speeds up FastPAQ, because 
preprocessed data is smaller than original.

In the first section we were wondering if HTML is 
more similar to XML or to texts. Our experiments show 
that HTML is more similar to texts as Static HTML 
Transform (SHT) with a fixed English dictionary gives 
much better results than SDHT. SHT improves 
compression of the introduced HTML corpus on average 
by about 15% in case of gzip, 12% for LZMA, almost
8% in case of PPMVC and 10% for FastPAQ. 
Compression and decompression speed in comparison to 
SDHT is a little bit lower as there is a need to read a 
fixed English dictionary. SHT, however, allows to read 
the dictionary only once and processes all HTML 
documents in one run.

Concluding, SHT with gzip gives 15% improvement 
over gzip achieving comparable processing speed.
Moreover, SHT with FastPAQ gives the best 

compression effectiveness, which is 28% better than gzip 
without any transform.

To ease the comparison, Figure 1 shows size of 
compressed HTML corpus with all tested transforms and 
back-end compression algorithms.

6 Conclusions
HTML has many advantages, but its main disadvantage 
is verbosity, which can be coped with by applying data 
compression. HTML is usually used in combination with 
gzip compression, but gzip is a general-purpose 
compression algorithm and much better results can be 
achieved with a compression algorithm specialized for 
dealing with HTML documents. 

In this paper we have presented the SDHT and SHT 
transform aiming to improve lossless HTML 
compression in combination with existing general 
purpose compressors. The main components of our 
algorithms are: a static dictionary or a semi-static 
dictionary of frequent alphanumerical phrases (not 
limited to “words” in a conventional sense), and binary 
encoding of popular patterns, like numbers and dates.

We have developed two versions of our transform: 
semi-dynamic (SDHT) and static (SHT). Both algorithms 
have some disadvantages. SDHT does not support 
streams as input (offline compression) as it requires two 
passes over an input file. SHT uses a fixed English 
dictionary required for compression and decompression.
It might be the biggest obstacle for SHT to become 
standard.

Thanks to the SHT transform, however, compression 
ratio of the introduced HTML corpus was improved by 
as much as 15% in case of gzip, 12% for LZMA, 8% in 
case of PPMVC and almost 10% for FastPAQ.

SHT and SDHT have many nice practical properties. 
The transforms are completely reversible, i.e. the 
decoded document is an accurate copy of the input 
document. Moreover, SHT and SDHT are implemented 
as a stand-alone program, requiring no external 
compression utility, no HTML parser, thus avoiding any 
compatibility issues.

There is a way likely to increase the HTML 
compression further. Layout of an HTML document 
(e.g., trailing spaces, tabulators, end of line symbols) is 
not relevant for web browsers and can be transformed to 
a more compressible form. We expect that a lossy 
version of the SHT transform could produce a few 
percent better results for the price of further complication 
of the transform. 
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Figure 1: Size of compressed HTML corpus with different back-end compression algorithms

Hillman Informatica Mahoney MaxComp STL TightVNC Tortoise Travel Average Improvement

HufSyl 2.95 3.53 3.31 3.03 3.48 3.44 3.37 2.88 3.249

LZWL 2.13 3.18 3.23 2.39 3.22 3.26 3.13 2.72 2.908

gzip 1.51 2.08 2.72 1.86 2.19 2.34 2.27 2.34 2.164

StarNT+gzip 1.42 1.94 2.54 1.79 1.97 2.17 2.08 2.06 1.996 7.74%

WRT+gzip 1.44 1.99 2.49 1.80 1.95 2.13 2.06 1.97 1.979 8.55%

mPPM 1.34 2.16 2.30 1.55 2.31 2.24 2.23 1.95 2.010

gzip 1.51 2.08 2.72 1.86 2.19 2.34 2.27 2.34 2.164

SDHT+gzip 1.40 2.13 2.45 1.56 2.20 2.39 2.31 2.19 2.079 3.93%

SHT+gzip 1.23 1.88 2.26 1.47 1.85 2.09 2.02 1.84 1.830 15.42%

LZMA 1.29 1.99 2.35 1.53 2.13 2.23 2.17 2.13 1.978

SDHT+LZMA 1.29 2.04 2.30 1.46 2.16 2.29 2.21 2.07 1.978 0.00%

SHT+LZMA 1.13 1.78 2.08 1.38 1.79 1.99 1.92 1.74 1.726 12.71%

PPMVC 1.19 1.83 2.09 1.41 1.91 1.96 1.93 1.79 1.764

SDHT+PPMVC 1.15 1.80 2.02 1.33 1.87 1.97 1.94 1.77 1.731 1.84%

SHT+PPMVC 1.06 1.71 1.92 1.30 1.71 1.86 1.83 1.60 1.624 7.94%

FPAQ 1.14 1.81 2.01 1.36 1.90 1.96 1.92 1.79 1.736

SDHT+FPAQ 1.13 1.80 1.99 1.28 1.89 1.99 1.94 1.79 1.726 0.58%

SHT+FPAQ 1.01 1.65 1.83 1.24 1.67 1.82 1.77 1.56 1.569 9.65%

Table 2: Compression results for HTML datasets in output bits per input character.
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