
Informatica 33 (2009) 397–398 397

Run-time Manipulation of Programs in a Statically-Typed Language

Sašo Greiner
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova 17, 2000 Maribor, Slovenia
E-mail: saso.greiner@uni-mb.si,
http://labraj.uni-mb.si/disertacija.pdf

Thesis Summary

Keywords: programming languages, metaprogramming, reflection

Received: March 31, 2009

This article is an extended abstract of a doctoral dissertation on metaprogramming and programming lan-
guage design. A metaprogramming model is studied and implemented in a statically–typed pure object–
oriented programming language Zero. The object model of language is based on closures which enables
metaprogramming model to achieve a high degree of dynamic manipulation, normally only found in
dynamically–typed languages. Metaprogramming in Zero is based on safely–typed structural and be-
havioural reflection.

Povzetek: Prispevek predstavlja doktorsko disertacijo s področja načrtovanja programskih jezikov in
metaprogramiranja.

1 Introduction

Metaprogramming [6] is a key programming language fea-
ture in implementation of today’s rapidly growing enter-
prise software systems. Metaprogramming allows manipu-
lation of program behaviour and structure during program
execution. This is vital for software that requires a high
degree of availability and scalability. The concept is usu-
ally found in dynamic languages, such as Smalltalk [3],
Lisp [7, 1], and Self [8]. In the dissertation we designed a
metaprogramming model applicable for a statically–typed
language. We developed the language Zero [4] which
is a pure object–oriented programming language allow-
ing structural and behavioural manipulation of programs at
run–time.

2 The language Zero

The language Zero is built on top of language Z0 [5]. Zero
is a statically–typed language which makes execution more
efficient than with dynamic languages and less fallible in
terms of typing. Zero enables a high degree of application
manipulation at run–time as it supports both behavioural
and structural metaprogramming. In other words, chang-
ing the functionality of an application may be addressed
by modifying its behaviour and structure when applica-
tion is already running. The metaprogramming model of
language Zero is based on pure object–orientation. That
is, all values including control structures and methods in
a program, are objects. Such pure object–oriented model
enables efficient implementation of the metaprogramming

core in the language. The most important aspect of such
a representation is that all dynamic changes can be type–
checked at run–time. This is vital as maintaining a pro-
gram in a type–safe state is mandatory for statically–typed
languages. The metaprogramming model of Zero is based
on metaclasses. Metaclasses provide introspective features,
such as obtaining information about classes, methods, and
parameter types, as well as dynamic features for chang-
ing structural and behavioural properties of a running pro-
gram. There are 3 main metaclasses in Zero: Class,
Method, and Closure. Metaclass Class represents
run-time class objects. A run–time method is represented
my metaclass Method. Methods themselves are based on
metaclass Closurewhich serves as the fundamental class
of all control structures.
The metaprogramming model allows inspection of running
programs as well as their manipulation. The latter includes
decomposition of existing functionality and construction of
a new one. By allowing changes to programs at run–time
it becomes unnecessary for the programs to shut down and
recompile. Behavioural reflection in Zero is realised by
handlers, which are in fact method objects that may be at-
tached to closures. Handlers resemble aspect–oriented pro-
gramming (AOP) [2], where attached method objects may
be viewed as advices. A join–point, a spot where program
behaviour may be extended, is always a closure in Zero.
We demonstrate practical cases where manipulating pro-
gram structure and behaviour may be used to achieve
that running programs meet the new requirements. Often
enough, certain parameters only become available at run–
time. The metaprogramming model of Zero allows such
programs to be dinamically restructured and reconfigured



398 Informatica 33 (2009) 397–398 S. Greiner

taking these new parameters into account.
The Zero metaprogramming model works on instance and
class levels. This means program structure and behaviour
may address only a particular instance or a class and con-
sequently all instances of this class.
Metaprogramming in Zero is used for fine–grain manipu-
lation as well as for modifying large structures. Fine–grain
manipulation works with closures which are basic building
blocks of control structures, such as loops and selection
statements, and method bodies. Modifying large structures
such as replacing entire methods and superclasses is based
on signature compatibility.

3 Conclusion
We have designed and developed a statically–typed object–
oriented programming language Zero which allows dy-
namic changes of program structure and behaviour. Run–
time changes of running programs are addressed with a
metaprogramming model based on metaclasses which en-
sure that changes applied do not cause typing errors. Safe
method and class replacements are based on signature com-
patibility. The metaprogramming model of language Zero
allows fine–grain tuning of programs with the use of clo-
sures as building blocks of methods and all control struc-
tures. A more rigid tuning is achieved by replacing entire
methods and classes in class hierarchies. As closures are
basic blocks of programs, all parts of a program may be
modified either by changing the behaviour or their entire
structure.

Acknowledgement
The work on dissertation was supervised by prof. dr. Janez
Brest and prof. dr. Viljem Žumer.

References
[1] Stanley Jefferson and Daniel P. Friedman. A simple

reflective interpreter. Lisp and Symbolic Computation,
9(2-3):181–202, 1996.

[2] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. Lecture Notes in Computer Sci-
ence, 2072:327–355, 2001.

[3] Wilf R. LaLonde and John R. Pugh. Inside Smalltalk
Volume I. Prentice-Hall Internation, Inc., 1990.

[4] Sašo Greiner, Viljem Žumer, Janez Brest. Zero – a
blend of static typing and dynamic metaprogramming.
Comput. Lang. Syst. Struct., 35(3):241–251, 2009.

[5] Sašo Greiner, Damijan Rebernak, Janez Brest, and Vil-
jem Žumer. Z0 – a tiny experimental language. SIG-
PLAN Not., 40(8):19–28, 2005.

[6] Diomidis Spinellis. Rational metaprogramming. IEEE
Softw., 25(1):78–79, 2008.

[7] Guy Steele. Common lisp: The language. Digital
Equipment Corporation, 1984.

[8] David Ungar and Randall B. Smith. Self: The power
of simplicity. OOPSLA’87, 4(8):227–242, 1987.


