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Density-based spatial clustering of applications with noise (DBSCAN) is a fundamental algorithm for 

density-based clustering. It can discover clusters of arbitrary shapes and sizes from a large amount of 

data, which contains noise and outliers. However, it fails to treat large datasets, outperform when new 

objects are inserted into the existing database, remove noise points or outliers totally and handle the 

local density variation that exists within the cluster. So, a good clustering method should allow a 

significant density modification within the cluster and should learn dynamics and large databases. In 

this paper, an enhancement of the DBSCAN algorithm is proposed based on incremental clustering 

called AMF-IDBSCAN which builds incrementally the clusters of different shapes and sizes in large 

datasets and eliminates the presence of noise and outliers. The proposed AMF-IDBSCAN algorithm uses 

a canopy clustering algorithm for pre-clustering the data sets to decrease the volume of data, applies an 

incremental DBSCAN for clustering the data points and Adaptive Median Filtering (AMF) technique for 

post-clustering to reduce the number of outliers by replacing noises by chosen medians. Experiments 

with AMF-IDBSCAN are performed on the University of California Irvine (UCI) repository UCI data 

sets. The results show that our algorithm performs better than DBSCAN, IDBSCAN, and DMDBSCAN.  

Povzetek: V članku je predstavljen nov algoritem AMF-IDBSCAN, izboljšana različica DBSCAN, ki 

uporablja grozdenje krošenj za zmanjšanje obsega podatkov in tehnike AMF za odpravo hrupa. 

1 Introduction
Data mining is an interdisciplinary topic that can be 

defined in many different ways [1]. In the field of 

database management industry, data analysis is mainly 

concerned with a number of large data repositories and 

aims to identify valid, useful, novel and understandable 

patterns in the existing data.  

Clustering is a principal data finding technique in 

data mining. It separates a data set into subsets or clusters 

so that data values in the same cluster have some 

common characteristics or attributes [2]. It aims to divide 

the data into groups (clusters) of similar objects [3]. The 

objects in the same cluster are more identical to each 

other than to those in other clusters. Clustering is widely 

used in Artificial Intelligence, Pattern recognition, 

statistics, and other information processing fields.  

Many clustering algorithms have been progressed; 

they may be divided into the following major categories 

[4]: hierarchical clustering algorithms (BIRCH, 

CHAMELEON,..), partitioning algorithms (K-means, K-

medoids), density-based algorithms (DBSCAN, 

OPTICS) and grid-based algorithms (STING, CLIQUE).  

The input of a cluster analysis system is a set of 

samples and a measure of similarity (or dissimilarity) 

between two samples. The output is a set of clusters that 

form a partition, or a structure of partitions of the data 

set. Generally, finding clusters is not a simple task and 

the current clustering algorithms take much time when 

they are applied to large databases.  

In addition, most of the databases are dynamic in 

nature, data is inserted and deleted from them frequently. 

The static clustering does not process this kind of 

databases that’s why the concept of incremental 

clustering was introduced and used. 

The difference between the traditional clustering 

methods (batch mode) and those of incremental 

clustering is the ability of the latter to process new data 

included in the data collection without having to perform 

a full re-clustering. This allows a dynamic following of 

updates to the database during clustering. 

Incremental learning is a research area that received 

great attention in recent years since it allows effective 

reuse of data, fast and pragmatic learning based on 

context, augmentation of knowledge, learning in 

dynamic and large databases, exploration and smart 

decision making [5]. 

In our research, we are interested in evolving 

incremental clustering to cluster the data objects which 

the process of updating an existing set of clusters 

incrementally rather than mining them from scratch on 

each database update [6]. Evolving clustering algorithms 

allow incremental changes to be made both structurally 
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and parametrically through different data-driven 

mechanisms [7]. 

In our study, we focus on the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) 

clustering algorithm. The core idea of DBSCAN is that 

each object within a cluster must have a certain number 

of other objects in its neighborhood. Compared with 

other clustering algorithms. DBSCAN has many 

attractive benefits and was used by many researchers in 

recent years with its several extensions and applications. 

We were particularly interested in the incremental 

version of DBSCAN since (1) it is capable of discovering 

clusters of random shape; (2) it requires just two 

parameters and is most inconsiderate to the ordering of 

the points in the database; (3) it reduces the search space 

and facilitates an incremental update in the clusters; (4) it 

is more adaptive to various datasets and data space 

without some initial information [8] and (5) the 

DBSCAN with incremental concept saves a lot of time 

and effort efficiently, whereas static DBSCAN has 

already suffered from some drawbacks and these 

problems are mainly faced in dynamic large databases in 

the existing system  [9]; 

In this paper, we propose an AMF-IDBSCAN 

algorithm an enhanced version of the DBSCAN. Our 

algorithm consists of three main phases. After importing 

the original database, it preprocesses it to prepare the 

clustering step and to reduce the volume of the dataset 

using Canopy clustering. Then, the classical DBSCAN 

algorithm is applied to the results of the first step to 

produce another database. Next, the incremental 

DBSCAN algorithm is applied to the incremental dataset. 

The adaptive median filtering technique is applied to the 

results of the previous step to remove noise and outliers. 

Then, the results are compared and the performance is 

evaluated. 

The rest of the paper is organized as follows. In the 

next section, we survey in brief the literature of enhanced 

DBSCAN algorithms. In Section 3, we describe in details 

our contribution to AMF-IDBSCAN. Section 4 describes 

the experiment we conducted and the results obtained by 

our algorithm. It also compares them with top-ranked 

algorithms. Finally, we draw some conclusions and show 

ongoing research aspects in Section 5. 

2 Related work 
Several algorithms for improvements of DBSCAN exist 

in the literature. In this section, we outline the best 

known and most recent ones. We noticed that all of these 

algorithms have shown good results, in the last few 

years. However, no one of them could be said to be the 

best but all depend on the content of input parameters 

and their application domain: 

DVBSCAN (A Density-Based Algorithm for 

Discovering Density Varied Clusters in Large Spatial 

Databases) [10] is an algorithm which handles local 

density variation within the cluster. The following input 

parameters are introduced:  minimum objects (μ), radius, 

and threshold values (α, λ), to calculate the growing 

cluster density mean and the cluster density variance for 

any core object, which appears to be developed further 

by considering the density of its Neighborhood with 

respect to cluster density mean. A comparison between a 

cluster density variance for a core object and a threshold 

value is affected if the first is less than the second and is 

also satisfying the cluster similarity index, and then it 

will allow the core object for expansion. 

ST-DBSCAN (Spatial-Temporal Density-Based 

Clustering) [11] is constructed to improve the DBSCAN 

algorithm by introducing the ability to discover clusters 

with respect to spatial, non-spatial, and temporal values 

of the objects. ST-DBSCAN works in three stages: (1) It 

can cluster spatial-temporal data according to spatial, 

non- spatial, and temporal attributes. (2) To resolve the 

problem of no detection of the noise input in DBSCAN, 

ST-DBSCAN assigns density factor to each cluster.  (3) 

To solve the conflicts in border objects, it compares the 

average value of a cluster with new coming value. 

VDBSCAN (Varied Density-Based Spatial 

Clustering of Applications with Noise) [12] is a new 

improvement to DBSCAN, it detects cluster with a 

varied density as well as automatically selects several 

values of input parameter Eps for different densities. It 

has a two-step procedure. In the first step, the values of 

Eps are calculated for different densities according to a 

K-dist. plotting. These calculated values are then further 

used to analyze the clusters with different densities. In 

the second step, the DBSCAN algorithm is applied with 

the parameter Eps values calculated in the previously 

discussed step. It ensures that all of the clusters with 

corresponding densities are clustered.  

VMDBSCAN (Vibration Method DBSCAN) [13] is 

designed for modifying the DBSCAN algorithm. Unlike 

to existing density-based clustering algorithm, it detects 

the clusters of different shapes, sizes that differ in local 

density. VMDBSCAN first extracts the “core” of each 

cluster after applying DBSCAN. Then it “vibrates" 

points towards the cluster that has the maximum effect 

on these points. 

DMDBSCAN (Dynamic Method DBSCAN) [14] is 

a new enhancement of DBSCAN which has pointed out 

that in clusters, generated by DBSCAN, there is wide 

density variation. Compared to DBSCAN which uses 

global Eps. It has successfully given the method to 

compute Eps automatically for each of the different 

density levels in the dataset based on k-dist. plot. The 

major success of this technique includes (1) easy 

interpretation of generated clusters; (2) no limit on the 

shape of the generated clusters. DMDBSCAN will use 

the dynamic method to find a suitable value of Eps for 

each density level of data set. 

L-DBSCAN [15] tries to improve the DBSCAN by a 

hybrid clustering technique, where l stands for leaders. It 

works as follows: (1) it finds the suitable prototypes from 

the large dataset; (2) and then it uses the clustering 

methods on these selected prototypes. The leader 

clustering method is a fast method and it runs in linear 

time of the input dataset size. In l-DBSCAN, the first two 

prototypes are derived with the help of the leader 

clustering method. Afterwards, DBSCAN is applied to 
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perform density-based clustering on this prototype 

respectively.  

GRIDBSCAN [16] is another important variation of 

DBSCAN that addresses the issue that exists in most of 

the density-based clustering algorithms, which is the lack 

of accurate clustering in the presence of clusters with 

different densities. It has a three-level mechanism. In the 

first level, it provides appropriate grids such that density 

is similar in each grid. In the next level, it merges the 

cells having the same densities. At this level, the 

appropriate value of 𝐸𝑝𝑠 and MinPts are also identified 

in each grid. In the final step, the DBSCAN algorithm is 

applied to these identified parameters values to obtain the 

required final number of clusters.  

FDBSCAN (Fast Density-Based clustering algorithm 

for large Database) [17] is an improved version of 

DBSCAN clustering. This was developed to overcome: 

(1) its slow speed (slow in comparison due to 

neighborhood query for each object); (2) and setting the 

threshold value of the DBSCAN algorithm. The 

FDBSCAN starts by ordering the dataset object by 

certain dimensional coordinates. Then it considers a 

point having a minimal index and retrieves its 

neighborhood. If this point is demonstrated as a core 

object then a new cluster is created to label all objects in 

its neighborhood. In this way, the next unlabeled point is 

analyzed outside the core object to expand clusters. 

When all the points are analyzed for clustering then these 

objects are further passed through a Kernel function. This 

will ensure the distribution of object as uniform as 

possible.  

MR-DBSCAN [18] is a parallel version of DBSCAN 

in a MapReduce manner. It provides a method to divide a 

large dataset into several partitions based on the data 

dimensions. In the map phase, localized DBSCANs can 

be applied to each partition in parallel. During a final 

reduce phase, the results of each partition are then 

merged. For the overall cost, a partition-division phase is 

added into DBSCAN. A Cost Balanced Partition division 

method is used to generate partitions with equal 

workloads. This parallel extension meets the 

requirements of scalable execution for handling large-

scale data sets and the MapReduce approach makes it 

suitable for many popular big data analytics platforms 

like Hadoop MapReduce and ApacheSpark. 

M-DBSCAN (Multi-Level DBSCAN) [19] is an 

algorithm where neighborhood is not defined by a 

constant radius. Instead, the definition of the neighboring 

radius is performed based on the data distribution around 

the core using standard deviation and mean values. To 

obtain the clustering results, M-DBSCAN is applied on a 

set of core-mini clusters where each core-mini cluster 

defines a virtual point which lies in the center of that 

cluster. In M-DBSCAN, the value of DBSCAN is 

replaced by local density cluster which the clusters are 

extended by adding core-mini clusters that have similar 

mean values with a little difference determined by the 

standard deviation of the core. 

FI-DBSCAN [20] is a Frequent Itemset Ultrametric 

Trees with Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) on MapReduce 

framework is used in the proposed system to solve the 

evolution and efficiency problem in an existing frequent 

itemset. It incorporates the Density Based Frequent 

Itemset Ultrametric Tree by adding additional hash tables 

rather than using conventional FP trees, there are by 

achieving compressed storage and avoiding the necessity 

to build conditional pattern bases. FI-DBSCAN 

integrates three MapReduce jobs to accomplish parallel 

mining of frequent itemsets. The first MapReduce job is 

responsible for mining all frequent one- itemsets. The 

second MapReduce job applies the second round of 

analyzing the database to eliminate infrequent items from 

each transaction record. At the end of the third 

MapReduce job, all frequent K-itemsets are created.  

AnyDBC (An Efficient Anytime Density-based 

Clustering Algorithm for Very Large Complex Datasets) 

[21] is an anytime algorithm which requires very small 

initial runtime for acquiring similar results as DBSCAN. 

Thus, it not only allows user interaction but also can be 

used to obtain good approximations under arbitrary time 

constraints. 

IDBSCAN [22] proposes an enhanced version of the 

incremental DBSCAN algorithm for incrementally 

building and updating arbitrarily shaped clusters in 

extensive datasets. The proposed algorithm ameliorates 

the incremental clustering process by limiting the search 

space to partitions instead of the whole dataset, and this 

gives significant improvements in performance compared 

to relevant incremental clustering algorithms. To enhance 

this algorithm further, [23] proposes an incremental 

DBSCAN which is fused with a suitable noise removal 

and outlier detection technique inspired by the box plot 

method. It utilizes a between network measure to dense 

regions to frame the last number of clusters.  

3 The proposed AMF-IDBSCAN 

clustering algorithm 
To overcome the limitations of the high complexity and 

the non scalability of the traditional clustering 

algorithms, we have developed in this work AMF-

DBSCAN: An enhanced incremental DBSCAN using a 

canopy clustering algorithm and an adaptive median 

filtering technique. 

The proposed AMF-IDBSCAN consists of four 

phases as shown in Figure 1. The first phase is pre-

clustering employing Canopy clustering. The second 

phase is the clustering of data objects in which 

Incremental DBSCAN is used. The third phase is post-

clustering applying Adaptive Median Filtering method 

that aims to reduce the number of outliers by replacing 

them with chosen medians. The last phase is used to 

evaluate the performance of clustering algorithms using 

different evaluation metrics: 

In the next subsections, we describe in details the 

main steps of our algorithm. 
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Figure 1: The methodology of the proposed incremental AMF-IDBSCAN clustering algorithm.

 

3.1 Pre-clustering 

This step is aims to prepare the clustering. We used the 

canopy clustering algorithm which is an unsupervised 

pre-clustering algorithm introduced by [24]. We have 

chosen a canopy clustering method for pre-processing the 

data because (1) it is efficient when the problem is large 

(2) it can greatly reduce the number of distance 

computations required for clustering by first cheaply 

partitioning the data into overlapping subsets, and then 

only measuring distances among pairs of data points that 

belong to a common subset and (3) it tries to speed up 

the clustering of large data sets that are a high dimension 

by dividing the clustering process into two subprocesses, 

where using another algorithm directly may be 

impractical due to the size of the data set (see Figure 2). 

First, the data set is divided into overlapping subsets 

called canopies. This is done by choosing a distance 

metric and two thresholds, T1 and T2, where T1 > T2. 

All data points are then added to a list and one of the 

points in the list is picked at random. The remaining 

points in the list are iterated over and the distance to the 

initial point is calculated. If the distance is within T1, the 

point is added to the canopy. Further, if the distance is 

within T2, the point is removed from the list. The 

algorithm is iterated until the list is empty. 

The output of the Canopy clustering is the input of 

static DBSCAN; 

 

Figure 2: Canopy clustering description [25]. 
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3.2 Classical static DBSCAN clustering 

algorithm 

When used with canopy clustering, the DBSCAN 

algorithm can reduce the computations in the radius 

(Eps) calculation step that delimits the neighborhood area 

of a point hence improving the efficiency of the 

algorithm. The implementations of the DBSCAN 

algorithm with Canopy Clustering involves the following 

steps (see Figure 3): 

 

Figure 3: DBSCAN algorithm with Canopy Clustering. 

1. Prepare the data points: the input data needs to be 

transformed into a format suitable and utilizable for 

distance and similarity measures.  

2. Choose Canopy Centers  

3. Attribute data points to canopy centers: the canopy 

assignment step would simply assign data points to 

generated canopy centers.  

4. Associate the cluster's centroids to the canopies 

centers. The data points are now in clustered sets. 

5. Repeat the iteration until all data are clustered.  

6. Apply the DBSCAN algorithm with radius 𝜀<= 

canopy radius and iterate until clustering. The 

computation to calculate the minimum number of 

points (Minpts) is greatly reduced as we only 

calculate the distance between a clusters centroids 

and data point if they share the same canopy. 

7. DBSCAN is a widely used technique for clustering 

in spatial databases. DBSCAN needs less 

knowledge of input parameters. The major 

advantage of DBSCAN is to identify arbitrary shape 

objects and removal of noise during the clustering 

process. Besides its familiarity, it has problems with 

handling large databases and in the worst case, its 

complexity reaches to O(n2)[26]. Additionally, 

DBSCAN cannot produce a correct result on varied 

densities. That's why we used canopy clustering in 

our case to reduce its complexity: 

In the AMF-IDBSCAN algorithm, we partition the 

data (n is the number of data) into canopies C by canopy 

clustering, each containing about (n / C) points. Then the 

complexity will decrease to (n2 /C) for the AMF-

IDBSCAN algorithm.  

In the sub-section, we describe the static DBSCAN:  

The static DBSCAN algorithm was first introduced 

by [27]. It uses a density-based notion of clustering of 

arbitrary shapes, which is designed to discover clusters of 

arbitrary shape and also has the ability to handle noise. It 

relies on the density-based notion of clusters. Clusters are 

identified by looking at the density of points. 

Regions with a high density of points depict the 

existence of clusters, whereas regions with a low density 

of points indicate clusters of noise or clusters of outliers.  

The key idea of the DBSCAN algorithm [28] is that, 

for each point of a cluster, the neighborhood of a given 

radius has to contain at least a minimum number of 

points, that is, the density in the neighborhood has to 

exceed some predefined threshold. This algorithm needs 

two input parameters: 

Eps, the radius that delimits the neighborhood area 

of a point (Eps-neighborhood); 

MinPts, the minimum number of points that must 

exist in the Eps-neighborhood. 

The clustering process is based on the classification 

of the points in the dataset as core points, border points, 

and noise points, and on the use of density relations 

between points (directly density-reachable, density-

reachable, density-connected) to form the clusters (see 

Figure 4). 

Core point: lies in the interior of density based 

clusters and should lie within Eps (radius or threshold 

value), MinPts (minimum number of points) which are 

user-specified parameters. 

Border point: lies within the neighborhood of core 

point and many core points may share the same border 

point. 

Noise point: is a point which is neither a core point 

nor a border point. 

Directly Density-Reachable: a point P is directly 

density-reachable from a point Q with respect to (w.r.t) 

Eps, MinPts if P belongs to NEps(Q) |NEps (Q)| >= 

MinPts 

Density-Reachable: a point P is density-reachable 

from a point Q w.r.t Eps, MinPts if there is a chain of 

points P1, …, Pn, P1 = Q, Pn = P such that Pi+1 is directly 

density-reachable from Pi 

Density-Connected: a point P is density-connected 

to a point Q w.r.t Eps, MinPts if there is a point O such 

that both, P and Q are dense-reachable from O w.r.t Eps 

and MinPts. 

The steps of the DBSCAN algorithm are as follows 

[27]: 
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Figure 4: DBSCAN working. 

3.3 Incremental DBSCAN clustering 

The static DBSCAN approach is not suitable for a large 

multidimensional database which is frequently updated. 

In that case, the incremental clustering approach is much 

finer. In our study, we use incremental DBSCAN to 

enhance the clustering process by incrementally 

partitioning the dataset to reduce the search space of the 

neighborhood to one partition rather than the whole data 

set. Also, it has embedded flexibility regarding the level 

of granularity and is robust to noisy data.  

We have chosen as a foundation of our incremental 

DBSCAN clustering algorithm, the algorithm of [29] 

which works in two steps: 

Step 1. Compute the means between every core 

object of the clusters and the new data. Insert the new 

data into a specific cluster based on the minimum mean 

distance. Sign the data as noise or border if it cannot be 

inserted into any clusters. 

Step 2. Form new core points or clusters when noise 

points or border points fulfill the Minpts (the minimum 

number of points) and radius criteria. 

Sometimes DBSCAN may be applied on a dynamic 

database which is frequently updated by the insertion or 

deletion of data. After insertions and deletions to the 

database, the clustering located by DBSCAN has to be 

updated. Incremental clustering could enhance the 

chances of finding the global optimum. In this approach, 

first, it will form clusters based on the initial objects and 

a given radius (eps) and Minpts. Thus the algorithm 

finally gets some clusters fulfilling the conditions and 

some outliers. When new data is inserted into the 

existing database, we have to update the existing clusters 

using DBSCAN. At first, the algorithm computes the 

means between every core object of clusters and the new 

coming data and insert it into a particular cluster based 

on the minimum mean distance. The new data which is 

not inserted into any clusters, is treated as noise or 

outlier. Sometimes outliers which fulfill the Minpts & 

Eps criteria, combined can form clusters using 

DBSCAN. 

We have used the Euclidean distance because it is 

currently the most frequently used metric space for the 

established clustering algorithms [30].  

The steps of incremental DBSCAN clustering 

algorithm are as follows: 

 

Pseudo-code of incremental DBSCAN 

Input 
D: a dataset containing n objects {X1,X2, X3 …, Xn}; 

n: number of data items; 

Minpts: Minimum number of data objects ; 

eps: radius of the cluster. 

Output 
K: a Set of clusters.  

Procedure 
Let, Ci (where i=1, 2, 3 …) is the new data item.  

1. Run the actual DBSCAN algorithm and clustered the 

new data item Ci properly based on the radius(eps) and 

the Minpts criteria. Repeat till all data items are 

clustered.  

Incremental DBSCAN Pseudo-code:  

Start:  

2. a> Let, K represents the already existing clusters.  

b>When new data is coming into the database, the new 

data will be directly clustered by calculating the 

minimum mean(M) between that data and the core 

objects of existing clusters.  

for i = 1 to n do  

find some mean M in some cluster Kp in  

K such that dis ( Ci, M ) is the smallest;  

If (dis ( Ci, M ) is minimum) && (Ci<=eps) && 

(size(Kp)>=Minpts) then  

Kp = Kp U Ci ;  

Else  

If dis (Ci != min) || (Ci>eps) ||(size(Kp)<Minpts) then  

Ci Outlier(Oi) .  

Else  

If Count(Oi) Minpts then Oi Form new cluster(Mi).  

C > Repeat step b till all the data samples are clustered.  

End.  

3.4 Post-clustering 

We illustrate the clusters and the outliers points by a 

rectangular window 𝑊on a hyperplane of n dimensions 

equivalent to the data dimensions. We apply the 

Adaptive Median Filtering (AMF) to reduce the noise 
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data. We have taken the key idea of this method and we 

have applied it to our proposition. This is an important 

advantage of our approach. 

We have selected Adaptive Median Filtering (AMF) 

among various filtering techniques because it removes 

noise while preserving shape details [31]. AMF 

technique is used to replace the outliers generated by 

incremental DBSCAN by a cluster contains an object. 
The adaptive median filtering [32] has been widely 

applied as an advanced method compared with standard 

median filtering. The adaptive filter works on a 

rectangular region 𝑊 (illustration of the set of clusters 

and outliers generated by the previous stage on a 

hyperplane). It changes the size of W during the filtering 

operation depending on certain criteria as listed below. 

The output of the filter is a single value which replaces 

the current noise data value at (x, y,....), the point on 

which 𝑊 is centered at the time.  

Let Ix,y,.....be the selected noise data according to the 

dimensions, Imin be the minimum noise value and Imax be 

the maximum noise value in the window, W be the 

current window size applied, Wmax be the maximum 

window size that can be achieved and Imed be the median 

of the window designated. The algorithm of this filtering 

technique completes in two levels as described in [33]: 

Level A: 

a) If Imin< Imed< Imax then the median value is not an 

impulse, so the algorithm goes to Level B to check if the 

current noise is an impulse. 

b) Else the size of the window is increased and Level 

A is repeated until the median value is not a stimulus so 

the algorithm goes to Level B; or the maximum window 

size is reached, in which case the median value is 

assigned as the filtered selected noise value. 

Level B: 

a) If Imin < Ix,y,.... < Imax, then the current noise value is 

not a stimulus, so the filtered selected noise is unchanged 

b) Else the selected noise data is either equal to Imax 

or Imin, then the filtered selected noise data is assigned the 

median value from Level A. 

These types of median filters are widely used in 

filtering data that has been denoised with noise density 

greater than 20%.  

This technique has three main purposes: 

• To remove noise; 

• To smoothen any non-stimulus noise; 

• To reduce excessive shapes of clusters 

3.5 Performance evaluation 

To evaluate the performance of our approach, the 

canopies are applied to the original dataset and store the 

result into another database, and then the actual 

DBSCAN algorithm is applied to the results to this 

database. The incremental DBSCAN algorithm is applied 

to the incremental dataset. The results of these two 

algorithms are compared and their performances are 

evaluated. 

The proposed algorithm AMF-IDBSCAN is shown 

as pseudo-code in Algorithm 2: 

 

Pseudo-code of AMF-IDBSCAN 

Input 
D: a dataset containing n objects {X1,X2, X3 …, Xn}; 

n: number of data items; 

Minpts: Minimum number of data objects ; 

eps: radius of the cluster.  

CN: canopies centers 

Output  
K: a Set of clusters.  

A single value: Ix,y,.... or Imed 

Procedure 
1. Run Canopy clustering : 

1.1. Put all data into a List, and initialize two distance 

radius about the loose threshold T1 and the tight 

threshold T2 (T1> T2). 

1.2. Randomly select a point as the first initial center 

of the Canopy cluster, and delete this object from the 

List. 

1.3. Get a point from the List, and calculate the 

distance d to each Canopy clusters.  

        If d < T2, the point belongs to this cluster; if 

T2≤d≤T1, this point will be marked with a weak label;  

        If the distance d to all Canopy center is greater 

than T1, then the point will be classed as a new 

Canopy cluster center. Finally, this point should be 

eliminated from the List; 

1.4. Run the step1.3 repeatedly until the list is empty, 

and recalculate the canopy centers CN. 

 

2. Run the actual DBSCAN algorithm and clustered 

the new data item Ci properly based on the radius(eps) 

and the Minpts criteria. Repeat till all data items are 

clustered: 

2.1. Choosing Canopy Centers CN 

2.2. Attribute data points  D to canopy centers CN; 

2.3. Apply the DBSCAN algorithm with radius 𝜀 <= 

canopy radius with dist(CN, Ci)<Minpts 

2.4. Repeat the iteration until all data are clustered. 

 

3. Run the incremental DBSCAN:  

3.1. a> Let, K represents the already existing clusters.  

3.2. When new data is coming into the database, the 

new data will be directly clustered by calculating the 

minimum mean(M) between that data and the core 

objects of existing clusters.  

For i = 1 to n do  

find some mean M in some cluster Kp in  

K such that dis ( Ci, M ) is the smallest;  

If (dis ( Ci, M ) is minimum) && (Ci<=eps) && 

(size(Kp)>=Minpts) then  

Kp = Kp U Ci ;  

Else  

If dis (Ci != min) || (Ci>eps) ||(size(Kp)<Minpts) then  

Ci Outlier(Oi).  

3.3. Elimination of noise objects Oi: 

The new dataset contains Oi and the clusters closest to 

it.  

3.4. Adaptive Median Filtering Technique: 

For i=1 to m do {where m is the number of outliers} 

Illustrate a new rectangle on a hyperplane; 
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Let: 

Ix,y....be the selected noise data (Oi) at the coordinates 

(x,y,...);  % corresponding the data dimensions; 

Imin be the minimum noise value; 

Imax be the maximum noise value in the window; 

W be the current window size applied; % It contains K 

clusters and Oi 

Wmax be the maximum window size that can be 

reached; 

Imed be the median of the window assigned 

Algorithm 

Level A: A1= Imed - Imin 

 A2= Imed - Imax 

 If A1 > 0 AND A2 < 0, Go to level B 

Else increase the window size 

If window size W<= Imax repeat level A 

Else output Ix,y... 

 

   Level B:  B1 = Ix,y,.. – Imin 

  B2 = Ix,y,..– Imin 

  If B1 > 0 And B2 < 0 output  Ix,y,.. 

  Else output Imed. 

 

3.5. Repeat step b till all the data samples are 

clustered.  

4. Evaluate performance.  

4 Experiments and results 
This section presents a detailed experimental analysis 

carried out to prove our proposed clustering technique 

AMF-IDBSCAN is better than other state of art methods 

used for high dimensional clustering.  We have taken 

five high dimensional data sets (Adult, Wine, Glass 

identification, Ionosphere, and Fisher's Iris) from UC 

Irvine repository (refer Table 1) to test the performance 

in terms of F-measure, number of clusters, error rate, 

number of uncluttered instances and time is taken to 

build the model. F-measure is defined in equation (1), it 

is the harmonic average of precision and recall. It is a 

one only summary statistic that does not credit an 

algorithm for correctly placing the very large number of 

pairs into different clusters [34]. F-Measure is commonly 

used in evaluating the efficiency and the reliability of 

clustering and classification algorithms. 

Our proposed noise removal and outlier labeling 

method are compared with static DBSCAN, an 

incremental density based clustering algorithm 

(IDBSCAN) [22], DMDBSCAN [14] presented below is 

the brief related work,  about evaluation metrics used for 

evaluating clustering results: 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (1) 

 

𝑊ℎ𝑒𝑟𝑒 ∶  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (3) 

 

Where   TP: True positive, FP: False positive, FN: 

False negative 

 

DBSCAN: 

We apply the DBSCAN algorithm on wine dataset 

with Eps = 0.9 and MinPts = 6, F-measure= 0.175 and 

obtain an average error index of 26.18%, number of 

clusters = 3. While applying DBSCAN on Iris data set, 

we get an average error index of 35.33% with the same 

Eps and Minpts, F-measure= 0.264, number of clusters = 

3. Another real data set is Glass dataset and when we 

apply DBSCAN on it, we get an average error index of 

68.22 %, F-measure= 0.423 with a number of = 6. We 

get for Adult dataset an average error index of 32%, F-

measure= 0.475 with number of clusters=1216. For 

ionosphere, an average error index= 31.62%, F-measure= 

0.854 and number of clusters=2 (see Table 2) 
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s 
Fisher's iris 3 0.264 0.02 35.33 0 

Wine 3 0.175 0.06 26.18 1 

Glass 

identification 
6 0.423 0.04 68.22 4 

Adult 1216 0.475 1638,35 32 15813 

Ionosphere 2 0.854 0.23 31.62 111 

Table 2: Results of applying DBSCAN. 

IDBSCAN: 

We apply IDBSCAN algorithm on wine dataset with 

Eps = 0.9 and MinPts = 6, F-measure= 0.274 and obtain 

an average error index of 23.45%, number of clusters = 

4. While applying IDBSCAN on Iris data set, we get an 

average error index of 28.54% with the same Eps and 

Minpts, F-measure= 0.354, number of clusters = 3. 

Another real data set is Glass dataset and when we apply 

IDBSCAN on it, we get an average error index of 

49.52%, F-measure= 0.323 with a number of clusters = 8. 

We get for Adult dataset an average error index of 

Dataset 
No. of 

instances 

No. of 

attributes 
Attribute type Data types 

Ionosphere 351 34 Integer, real Multivariate 

Wine 178 13 Integer, real Multivariate 

Glass 

Identification 
214 10 Real Multivariate 

Adult 48842 15 
Categorical,  

Integer, Real 
Multivariate 

Fisher's Iris 150 4 Real Multivariate 

Table 1: Description of UCI databases. 
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27.96%, F-measure= 0.475 with number of 

clusters=1265. For ionosphere, an average error index= 

29.15%, F-measure= 0.639 and number of clusters=3 

(see Table3). 

Table 3: Results of applying IDBSCAN. 

AMF-IDBSCAN: 

In our experiments, we have used for canopy 

clustering implementation, a Weka tool (Waikato 

Environment for Knowledge Analysis) [35] which is an 

open-source Java application produced by the University 

of Waikato in New Zealand. It functions like 

Preprocessing Filters, Attribute selection, 

Classification/Regression, Clustering, Association 

discovery, Visualization. The set of training instances has 

to be encoded in an input file with.ARFF (Assign 

Relation File Format) extension to be used by the Weka 

tool in order to generate the canopies that will be used as 

inputs in our algorithm.  

We apply our proposed AMF-IDBSCAN algorithm 

on wine data set with Eps = 0.9 and MinPts = 6, number 

of canopies= 4, F-measure= 0.354 and obtain an average 

error index of 18.25%, number of clusters = 4. While 

applying AMF-IDBSCAN on Iris data set, we get an 

average error index of 25.63% with the same Eps and 

Minpts, number of canopies= 3, F-measure= 0.758, 

number of clusters = 4. Another real data set is Glass 

data set and when we apply our proposed algorithm on it, 

we get an average error index of 35.96% , number of 

canopies= 8, F-measure= 0.695 with number of = 6. We 

get for Adult dataset an average error index of 29.46%, 

number of canopies= 100, F-measure= 0.495 with 

number of clusters=1285. For ionosphere, an average 

error index= 27.64%, number of canopies= 11, F-

measure= 0.821 and number of clusters=5 (see Table 4). 

 

DMDBSCAN: 

We apply the DMDBSCAN algorithm on the wine 

data set, and applying k-dist for 3-nearest points, we have 

3 values of Eps which are 4.3, 4.9 and 5.1. F-measure= 

0.125, the average error index is 23.15% and number of 

clusters = 3. While applying DMDBSCAN on Iris data 

set, and applying k-dist for 3-nearest points, we have 2 

values of Eps which are 0.39 and 0.45. The average error 

index is 38.46%, F-measure =0.295 and a number of 

clusters = 3.  

Another real data set is Glass dataset and when we 

apply DMDBSCAN on it and applying k-dist for 3-

nearest points, we have 3 values of Eps which are 0.89, 

9.3 and 9.4. F-measure= 0.623, the average error index is 

58.39% and the number of clusters = 6. We get for Adult 

dataset an F-measure= 0.474, the average error index of 

34.66%, with a number of clusters=1301. For ionosphere, 

F-measure= 0.754, an average error index= 30.04%, and 

number of clusters=6 (see Table 5). 
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1,237 0,989 8 6 0.695 35.96 0.04 
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0.495 29.46 0.07 
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2,700 2,160 11 5 0.821 27.64 0.04 

Table 4: Results of applying AMF-IDBSCAN. 

Dataset Name 
N° of 

clusters 

F-

measure 

Error 

rate 

(%) 

Time is 

taken to 

build a 

model 

Fisher's iris 3 0.293 38.46 0.08 

Wine 3 0.125 23.15 0.13 

Glass 

identification 
6 0.623 58.39 0.24 

Adult 1301 0.474 34.66 0.64 

Ionosphere 6 0.754 30.04 0.09 

Table 5: Results of applying DMDBSCAN. 

 

 

Dataset Name 
N° of 

clusters 
F-measure 

Time taken 

to build a 

model 

Error 

rate (%) 

Fisher's iris 3 0.354 0.03 28.54 

Wine 4 0.274 0.05 23.45 

Glass 

identification 
8 0.323 0.09 49.52 

Adult 1265 0.475 5476.9 27.96 

Ionosphere 3 0.639 0.84 29.15 
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Dataset 
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Fisher's iris 3 0.264 35.33 4 0.798 25.63 3 0.293 38.46 3 0.354 28.54 

Wine 3 0.175 26.18 4 0.354 18.25 3 0.125 23.15 4 0.274 23.45 

Glass 

identification 
6 0.423 68.22 6 0.695 35.96 6 0.623 58.39 8 0.323 49.52 

Adult 1216 0.475 32 1285 0.495 29.46 1301 0.474 34.66 1265 0.475 27.96 

Ionosphere 2 0.854 31.62 5 0.821 27.64 6 0.754 30.04 3 0.639 29.15 

Table 6: Comparison against the results of DBSCAN, IDBSCAN, DMDBSCAN  

and our proposed algorithm AMF-IDBSCAN. 

Table 6 compares the results obtained by our 

proposed algorithm against those of three other 

algorithms, namely: DBSCAN, IDBSCAN, and 

DMDBSCAN: 

• From our experiments, and as Tables 2, 3, 4 and 5 

show: by using the DBSCAN algorithm for multi-

densities data sets, we get low-quality results with 

long times. DBSCAN algorithm is a time-

consuming algorithm when dealing with large 

datasets. This is due to Eps and Minpts parameters 

values which are very important for DBSCAN 

algorithm, but their calculations are time-

consuming. In other sense, clustering algorithms 

are in need to discover a better version of the 

DBSCAN algorithm to deal with these special 

multi-densities datasets. 

• DMDBSCAN gives better efficiency results than 

DBSCAN clustering algorithm but takes more time 

compared with the other algorithms. This is due 

that the algorithm needs to call the DBSCAN 

algorithm for each value of Eps.  

• The IDBSCAN algorithm is more efficient in 

terms of error rate and f-measure than DBSCAN 

algorithm. Also, it takes more time compared with 

DBSCAN, DMDBSCAN, and AMF-IDBSCAN. 

This is due to the fact that this algorithm needs to 

call the DBSCAN algorithm to make the initial 

clustering.  

• AMF-IDBSCAN gives the best efficiency results 

compared to the other studied algorithms. Table 6 

presents the F-Measure values recorded for all the 

data sets and all the algorithms. A high value of F-

Measure proves the better quality of the clustering 

process. A significant improvement is found on 

AMF-IDBSCAN and on all datasets except the 

Ionosphere dataset. The maximum increase is 

observed in both Iris and Glass data sets. The 

improvement in F-Measure shows that our 

proposed method is more efficient in terms of 

noise removal and outlier labeling. Apart from F-

Measure, our proposed method allows to achieve 

good clustering results in a reasonable time. 

It can be easily observed from Figure 5 that our 

proposed clustering method for noise removal is 

well suited for high dimensional data sets and it 

exceeds the other existing methods. 

5 Conclusion and perspectives 
In this paper, we proposed AMF-IDBSCAN an 

enhanced version of the DBSCAN algorithm, 

including the notions of density, canopies and noise 

removal. This work presents a comparative study of 

the performance of this proposed approach which is 

fused with an adaptive median filtering median for 

noise removal and outlier detection technique and a 

canopy clustering method to reduce the volume of 

large datasets. 

We compared this algorithm with the original 

DBSCAN algorithm, IDBSCAN, DMDBSCAN, and 

our experimental results show that the proposed 

approach gives better results in terms of error rate and 

f-measure with the increment of data in the original 

database.  

In our future works, we will extend our 

investigations to other incremental clustering 

algorithms like COBWEB, incremental OPTICS and 

incremental supervised algorithms like incremental 

SVM, learn++, etc. 

One of the remaining interesting challenges is 

how to select the algorithm parameters like k-dist, eps, 

Minpts, and number of canopies automatically. 
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Figure 5: F-Measure (FM) Comparison across all Datasets.
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