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In this paper we study a part of a core algorithm of a complex software solution for truck itinerary con-
struction for one of the largest public road transportation companies in the EU. The problem is to construct
a cost optimal itinerary, given an initial location with an asset state, the location and other properties of
tasks to be performed. Such an itinerary specifies the location and activity of the truck and the driver until
the completition of the last routing task. The calculation of possible itineraries is a branch and bound
algorithm. The nodes of the search tree have the following arguments: position, time, driver-state and
truck-state. For each node we calculate the cumulative cost for the road reaching that state, and a heuristic
lower bound for the cost of the remaining road. In each step the procedure expands the next unexpanded
node with the best sum for cumulative and heuristical costs.
It is hard to give a sharp lower bound if the model contains time windows. To make a sharp heuristic we
run the same branch and bound algorithm (from each node) but with simplified data (hypothetical positions
and simplified activities: no refuelling, no road costs, etc.). We have reached significant gains in perfor-
mance and quality compared to the previous approach.

Povzetek: Članek predstavlja aplikacijo za razporejanje tovornjakov v enem največjih transportnih podjetij
v EU. Za reševanje problema je uporabljena metoda razveji in omeji. Da bi izboljšali hevristiko, je bila
uporabljena ista razveji in omeji metoda iz vsakega vozlišča na poenostavljenih podatkih. Končni rezultat
je pomembno izboljšan v primerjavi s predhodnimi pristopi.

1 Introduction

We will study a part of a core algorithm of a complex soft-
ware solution for truck itinerary construction for one of the
largest public road transportation companies in the EU. A
minor improvement on the operational cost of each tour can
result huge advantage for the freight services company.
The problem is to construct a cost optimal itinerary, given
an initial location with an asset state, the location and other
properties of tasks (we will call them routing tasks) to be
performed. Such an itinerary specifies the location and ac-
tivity of the truck and the driver until the completition of
the last routing task. This means that this itinerary gives
every instruction to the driver, including every turn in the
road and every stops with exact durations, etc. The work-
ing stops can be done only in the places of the tasks, the
refueling and resting stops can be done only in previously
fixed places (roughly 4000 fixed parking places and 100
fixed filling stations across Europe). To achieve such an
itinerary we use mapping software to construct the routes
and calculate the distance, duration and cost between any

two locations. Clearly the problem is much harder than a
path finding in the graph, because we can do many differ-
ent actions in each place (different amount of fuel taken,
different duration of rest, etc).
The software (which also performs the vehicle assignment)
is already finished and applied with positive results (from
2015), large cost saving is achieved by the company. For
more formal definitions of the problem, and more infor-
mation of the software one must read [4]. The ongoing
researches aim to extend the functionality of the software.
One goal is to improve optimality by planning the itinerary
for longer timespan. That means more routing tasks have
to be calculated each round.

2 History

This area of operations research is widely studied [1].
However, to build a complex solver for truck routing and
scheduling is a novel concept. This is the reason why we
have collected some approaches and solutions that are simi-
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lar in methodology and solution concept not in the problem
in this section. For detailed information on the literature of
the problem one can read [4].
There is no such concept in the literature which contains
the idea of using the same algorithm on simplified data
to get the lower bounds for a branch and bound method.
Hence, we have named our method Self-Bounding Branch
and Bound (SBBB).
There are many approaches using so called Recursive
Branch and Bound (RBB) methods [7]. However, they ob-
tain the bounds by a recursive strategies using the infor-
mation from preceding calculations [8]. In SBBB we do
not use any previously calculated information during the
lower bound calculation. In our particular problem the
driver state makes this approach impossible because the
state is different in all the nodes of the searching tree. In
some cases (such as in rectangular guillotine strip packing
problem [5]) the recursivity can be formalized in functions
which help the calculation of the bounds.
Searching for SBBB alike concepts one can find the Fractal
Branch and Bound (FBB) [9]. However, FBB is a very spe-
cial method where the searching field is self-similar. This
means that FBB is more likely an RBB because it uses sim-
plification on the often calculated values. That way, it is
different from SBBB and it is not applicable to our prob-
lem because of the different driver states of the nodes.
The Double Branch and Bound (DBB) methods are al-
gorithms where the lower bound for a branch and bound
method is calculated by another branch and bound method
[11], [10]. This means that SBBB is a special type of DBB.
However, the DBB concept can be applied for small in-
stances in reasonable timeframe (see some computational
results in [10]). It is usual to use RBB like methods for
m-machine permutation flowshop problems [2]. Moreover
there are some approaches where they apply DBB methods
[3] instead of the recursive functions.
As we mentioned before no such concept can be found
in the literature where the same algorithm on simplified
data gives the lower bound of a branch and bound method.
However, our results (see Section 4) shows that for some
problems with proper reconciliation SBBB can solve large
problem instances (larger than DBB).

3 The algorithm

The calculation of possible itineraries is a branch and
bound algorithm. For detailed information on the widely
used algorithms of operations research the reader should
see [1] The nodes of the search tree have the following ar-
guments: position, time, driver-state and truck-state (we
will call these data the state). For each node we calculate
the cumulated cost for the itinerary reaching that state, and
a heuristical lower bound for the cost of the remaining road.
Each node has a pointer to its parent (this will make it pos-
sible to calculate the roue from a proper node). In each step
the procedure expands the next unexpanded node with the

best sum for cumulated and heuristical cost.
The following oversimplified example of [4] with Figure 1
illustrates the tree of the algorithm. Suppose that we are in
position ’Start’ in the begining. From ’Start’ we can go to
different places for example two parking places ’P1’ and
’P2’ (the state will be different in the two locations if the
duration and distance of the drivings are not equal). Sup-
posing that we can rest 9 or 11 hours we get two new nodes
from each parking place reaching node. If we can reach
place ’P3’ from both ’P1’ and’P2’ then this way we get
four different nodes in the same place ’P3’. In general none
of the four nodes can be bounded in the algorithm, because
the states are different and hence, we can not predict which
will give the best solution in the end.

Figure 1: An example subtree of the algorithm

The algorithm has many additional logics, but here we
focus on the heuristics only. A more detailed description of
the algorithm can be found in [4].
The better the lower bounds are, the less nodes need to be
expanded. However, it is always more time-consuming to
make better estimations. The difficulty with the heuristics
is the presence of the state of the driver (driver state) and
the opening times of the routing tasks (time window). Both
would be easier to handle separately but together it gives
an NP-hard problem. The current solution optimizes the
routes for each task in a tour separately, because the current
heuristics are too weak and that way the algorithm would
be too slow (would expand too many nodes).
The main steps of the algorithm are the following:

Algorithm 1. 1. Create the starting node of the tree
from the initial state and position of the driver. Put
it in an empty list L. Set the upper bound U =∞.

2. While L has any element:

(a) Pick X from L with the best TotalCost value.

(b) If the itinerary given by X is a complete tour
(finishing all the routing tasks), then RETURN
X .



A Self-bounding B&B Procedure. . . Informatica 43 (2019) 33–38 35

(c) Select the best possible activities (set A) to do
from X .

(d) BRANCHING: For each element of A create the
node (set N ) which represents the state and po-
sition after that activity.

(e) For each element ofN calculate the cummulated
cost (we can get it by adding the cost of the ac-
tivity to the cummulated cost of X).

(f) BOUNDING 1: For each element ofN calculate
the lower bound for the remaining cost (this will
be examined in detail in the next sections). Dis-
card the nodes from N which has a total cost (it
is the sum of the cummulated and the remaining
costs) higher than the upper bound U .

(g) BOUNDING 2: For each element of N compare
the lower bound for the reaching time with the
limitations (we get the lower bound during the
calculation of the heuristics). If the node can
not reach the target in time than delete it from
N .

(h) BOUNDING 3: For each element Y ofN , where
the place of Y is P , get the list LP of the pre-
viously examined nodes in place P . Compare Y
with every element ofLP , and if there exists such
Z that every state related variable and the cost
are not worse in Z than in Y , then delete Y from
N .

(i) For each element of N put it into L and into
the proper LPi list according to the place of the
nodes.

(j) For each element C of N which is a complete
tour, let the upper boundU = min(U, cost(C)).

3. RETURN: Unreachable target. The target can not be
reached in the given time limit.

The first bounding is the usual bounding of BB methods.
The second bounding discards the infeasible solutions. The
third bounding is a dominance criteria which uses domi-
nance relation between partial solutions.
In this paper a solution is given for the efficient lower
bound calculation (in Step 2/f). This will be done by a
similar branch and bound structure but with simplified data
(relaxed field of POIs).

3.1 The concept of the main bounding
method

As we mentioned in step 2/f of the algorithm we need
a good heuristic to bound the remaining cost from every
node. For this we need to calculate a minimal itinerary and
we have to bound the needed duration.
First we estimate the remaining distance and driving du-
ration. To optimize the running time we do not want to
make the mapping software calculate all these estimations,
but store as much of the possibly needed information as

we can. We construct two graphs where the nodes are the
possible POIs of the tours (parking places, filling stations,
ferries, tunnels, etc.) and the length of the edges are the
minimal distances and driving durations (we get those val-
ues using PTV Group softwares). From these graphs we
generate the minimal distances and durations between each
pair of nodes with the Floyd – Warshall algorithm (Floyd
[6] 1962; Warshall [12] 1962). This happens in a precal-
culation phase before the itinerary generator algorithm. It
is a separate topic how we handle the truck positions and
places of the routing tasks (since they are not permanent,
hence, they are not contained in the graphs).
These graphs can be used during the algorithm instead of
PTV, thus accelerating the computation that way.
After we have a lower bound for the remaining driving time
we estimate the total time needed by constructing a hypo-
thetical itinerary. These are the steps of the estimation:

Algorithm 2. 1. Let X be the remaining driving time
needed to reach the target. Let D be the state of the
driver, and T = the actual time.

2. Y = the amount the driver with driver-state D can
drive continuously.

3. Let Z = min{X,Y }.

4. D = the driver-state after a Z long drive.

5. X = X − Z; T = T + Z.

6. If X = 0 then RETURN T .

7. R = the amount what the driver with driver-state D
should rest.

We suppose that the driver can drive the maximal avail-
able driving time, each time, and then reaches a parking
place. In each parking place the driver rests the minimal
amount what is needed and then proceeds further. When
the driver reaches a routing task sometimes he has to wait
for the time-window. However, supposing that there are
no time-windows the heuristics can be calculated in linear
time (we will call it linear heuristic).
On the other hand, if we think about how to include the
time-windows in the linear heuristic we face a problem.
Namely, sometimes it would be better to rest more, not just
the minimal needed amount before making the task. The
following example highlights that behavior.
Suppose that the driver arrives at 6 a clock, after 9 hours of
driving, but the routing task opens at 10 a clock. To finish
the routing task, the driver has to work 1 hour there and we
have one more routing task which is 2 hours far from this.
When will we finish the last routing task?
1. If we wait for the first opening and work 1 hour, then we
cannot drive further because of the daily driving time limit
(9 hours). That way we have to rest at least 9 hours. After
the rest we can drive to the next routing task and finish it
until 23 a clock.
2. If we rest 9 hours instead of the 4 hours waiting then
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we can start the work with a fresh state, drive to the next
routing task and finish it until 19 a clock.
The above example shows that we can not make good lower
bounds with Algorithm 2 (linear heuristic) if we try to op-
timize with the driver-state and the time-windows at the
same time. However, to obtain better estimations for the
branch and bound procedure we must include the time-
windows in the heuristics. For the best fit (between the
heuristics and the algorithm) we apply the same logics to
calculate a lower bound for the duration as we use in the
branch and bound algorithm itself (see Section 3.2), but re-
lax the field of POIs.
With the linear heuristic we can not efficiently optimize
the tours with more than one tasks together. That way the
current solution runs Algorithm 1 for each task in a tour
separately (after each other, because they use the finishing
driver state of the previous one).

3.2 The self-bounding branch and bound
algorithm

As we mentioned before the main branch and bound algo-
rithm works on nodes with position, time, driver-state and
truck-state. The positions are real locations on the map.
We present the algorithm B&B heuristic below, to make a
sharp heuristic in step 2/f of the original algorithm. Mainly
we run the same branch and bound algorithm (from each
node) but with hypothetical positions (and simplified activ-
ities: no refuelling, no road costs, etc.).

Algorithm 3. 1. Create the starting node S′ of the inner
searching tree. S′ has the same state and position of
the driver as the node in the outer branch and bound
(to which this algorithm results the lower bound).

2. Put S′ in an empty list L′.

3. While L′ has any element:

(a) Pick X ′ from L′ with the best TotalCost value.
(b) If the itinerary given by X ′ is a complete tour

(finishing all the routing tasks), then RETURN
X ′.

(c) Select the best possible hypothetical activities
(set A′) to do from X ′.

(d) For each element of A′ create the node (set N ′)
which represents the state and position after that
activity.

(e) For each element of N ′ calculate the cummula-
tive duration (we can get it by adding the dura-
tion of the activity to the cummulative duration
of X ′).

(f) For each element of N ′ calculate the heuristical
duration (with the linear heuristics).

(g) For each element of N ′ compare the lower
bound for the reaching time with the limitations.
If the node can not reach the target in time than
delete it from N ′.

(h) For each element Y ′ of N ′, where the place of
Y ′ is P ′, get the list L′P of the previously exam-
ined nodes in place P ′. Compare Y ′ with every
element of L′P , and if there exists such Z ′ that
every state related variable and the cost are not
worse in Z ′ than in Y ′, then delete Y ′ from N ′.

(i) For each element of N ′ put it into L′ and into
the proper L′Pi list according to the place of the
nodes.

4. RETURN: Unreachable target. The target can not be
reached in the given time limit.

This algorithm is similar to the linear heuristic from the
aspect, that it generates those positions which was used
by the linear heuristic. However, this algorithm lets the
different cases compete in total duration. The best solution
will give the B&B heuristic, that will be the lower bound
for the remaining cost of the node in Algorithm 1 (the
main branch and bound algorithm).
Observe that the B&B heuristic needs a lower bound too.
For this we can use Algorithm 2 (the linear heuristic).
The real difference with Algorithm 1 is in Step 3/c. Here
we generate many hypothetical parking places on the
fastest road between S′ and the goal. Each time Algorithm
3 reaches Step 3/c new parking places can be generated.
It is easy to see that this extended procedure can give
much better lower bounds for the main branch and bound
algorithm, but it is questionable that if it is worth the extra
time required to construct the nodes (calculating their
heuristic values). Observe that it is more likely to get
better heuristics this way if we have more routing tasks
(with time-windows).

3.2.1 Driver state penalty

The objective function includes not just the real costs of
the itineraries but the cost of the driver’s work, the amorti-
zation of the car and many other things. The hardest part
is the evaluation of the driver’s state in the end of the tour.
Of course it is better if the driver can drive more in the
day after finishing the last working task because that way
the location of the next task can be approached earlier. In
fact every variable of the driver-state can be important in
the end of the tour. We mainly apply a highly tested linear
combination of these quantities.
The original lower bound (Algorithm 2) could not include
this type of cost. Algorithm 2 gives a hypothetical fastest
solution, this way it can be the case that the driver’s state is
much worse than in a slower solution, hence, it would not
be a lower bound if we add the penalty.
However, Algorithm 3 can also handle the driver state
penalty, because if those costs are included to the objec-
tive function of the inner branch and bound method, then it
will lead to the best hypothetical solution which will give a
lower bound on the best possible solution’s objective func-
tion. It is not trivial why this approach gives a lower bound.
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It mainly depends on the fact that the finishing driver state’s
penalty cannot be higher if we put a parking later. This pa-
per does not aim to prove this fact.
This opportunity is very important because the driver state
penalty can give about one third of the total cost of a tour.
This means that compared to our previous lower bounds
this approach can be much more efficient. Hence, if we in-
clude the driver state penalty to the heuristics the searching
tree of the main algorithm will be much thinner.

3.2.2 Longer tours

Applying Algorithm 3 we could extend the optimization
to tours (with 2 − 3 tasks) not just separated tasks. This
means that we run Algorithm 1 with more than one targets
at once, and in step 2/f we run Algorithm 3. Observe that
this means that the lower bound calculation (step 2/f) can
get more than one tasks at a time also.
The algorithm was a success in practice. Not just that it
could plan a longer time period for a truck, but also gives
more profitable plans. Building a route in a chain like con-
cept (such as our original solution) optimizes for mid-route
objective functions also and fix the earlier parts of the route
in each chain. That way it was anticipated that using the
new algorithm we could get better objective function val-
ues in the end of the tours. Indeed the new algorithm have
given better results than the original.
A detailed description of the performance of the new algo-
rithm can be found in Section 4.

4 Results
We evaluated the differences using a sample pack of 4500
long tours. In average, these tours contains 2 − 3 rout-
ing tasks with time windows. We have applied Algorithm
1 with the linear heuristic (Algorithm 2) for all tasks of
those tours separately. Then we have applied Algorithm 1
with the new heuristic (Algorithm 3) for the same tours, but
without decomposing them into tasks.

4.1 Sizes and speed
We use about 100 parallel machines. Hence, the software
runs in about 20 minutes to construct the 4400 itineraries.
However, here we give the performance data in total
(summarized for the parallel machines).
The original branch and bound procedure created 3.42 ·104

nodes, inserted 2.01 · 104 nodes (these are the not bounded
ones) and expanded 1.33 · 104 nodes during a tour con-
struction in average. The total time of the algorithm was
about 2.6 · 103 minutes. The heuristics was calculated in
about 26.3 minutes in total.
The new branch and bound procedure (with the B&B
heuristic) expands about 1.85 · 104 nodes, inserted
1.18 · 104 nodes and expanded 7.22 · 104 nodes during
an tour construction in average. This means that the new
heuristic reduces the number of node expandations by

55%. However, each node creation needs more time. The
heuristics was calculated in 927 minutes in total (35 times
more than the original). Fortunately the total time of the
algorithm was about 3.67 · 103 minutes, which is just 40%
more than the original.

4.2 Costs

The following numbers are not exactly the profits of the
tours, because some costs are calculated in other parts of
the software (such as the task assignment). Some costs are
also modified for the algorithm (only without changing the
optimality of the plans), for example the fuel costs and the
wages of the drivers.
The original algorithm results 1.03 · 109 objective function
value in total, and 713 Euros of costs in average. The new
algorithm results 9.69 · 108 objective function value in
total, and 686 Euros of costs in average. This means that
we reach about 4% better results with the new algorithm.
These results are promising. Moreover the new solution
will be even better for longer tours. We are not capable to
make statistics for more than 10 routing tasks in one plan
yet. However, with the new algorithm it could be profitable
to add more computational capacity, and that way plan
more routing tasks in one run.
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