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Assume that we are given two graphic sequences, π1 and π2. We consider conditions for π1 and π2 which
guarantee that there exists a simple graphG2 realizing π2 such thatG2 is the subgraph of any simple graph
G1 that realizes π1.

Povzetek: Recimo, da imamo grafni zaporedji π1 in π2. V prispevku preučujemo pogoje za zaporedji,
ki zagotavljajo, da obstaja preprost graf G2, ki je realizacija π2 in je podgraf grafa G1, ki je realizacija
zaporedja π2.

1 Introduction

All graphs considered in this paper are simple. We use stan-
dard graph theory notation, see for example [16]. Let us
provide a short list of a few perhaps not so common no-
tions, notations. Given a bipartite graph G(A,B) we call
it balanced if |A| = |B|. This notion naturally generalizes
for r-partite graphs with r ∈ N, r ≥ 2.

If S ⊂ V for some graph G = (V,E) then the subgraph
spanned by S is denoted by G[S]. Moreover, let Q ⊂ V
so that S ∩Q = ∅, then G[S,Q] denotes the bipartite sub-
graph of G on vertex classes S and Q, having every edge
of G that connects a vertex of S with a vertex of Q. The
number of vertices in G is denoted by v(G), the number
of its edges is denoted by e(G). The degree of a vertex
x ∈ V (G) is denoted by degG(x), or if G is clear from
the context, by deg(x). The number of neighbors of x in a
subset S ⊂ V (G) is denoted by degG(x, S), and δ(G) and
∆(G) denote the minimum and maximum degree of G, re-
spectively. The complete graph on n vertices is denoted by
Kn, the complete bipartite graph with vertex class sizes n
and m is denoted by Kn,m.

A finite sequence of natural numbers π = (d1, . . . , dn) is a
graphic sequence or degree sequence if there exists a graph
G such that π is the (not necessarily) monotone degree se-
quence of G. Such a graph G realizes π. For example, the
degree sequence π = (2, 2, . . . , 2) can be realized only by
vertex-disjoint union of cycles.

The largest value of π is denoted by ∆(π). Often the po-
sitions of π will be identified with the elements of a vertex
set V . In this case, we write π(v) (v ∈ V ) for the corre-
sponding component of π.

The degree sequence π = (a1, . . . , ak; b1, . . . , bl) is a bi-
graphic sequence if there exists a simple bipartite graph
G = G(A,B) with |A| = k, |B| = l realizing π such that
the degrees of vertices in A are a1, . . . , ak, and the degrees
of the vertices of B are b1, . . . , bl.

Let G and H be two graphs on n vertices. We say thatH is
a subgraph of G, if we can delete edges from G so that we
obtain an isomorphic copy of H . We denote this relation
by H ⊂ G. In the literature the equivalent complementary
formulation can be found as well: we say that H and G
pack if there exist edge-disjoint copies of H and G in Kn.
Here G denotes the complement of G.

It is an old an well-understood problem in graph theory to
tell whether a given sequence of natural numbers is a de-
gree sequence or not. We consider a generalization of it,
which is remotely related to the so-called discrete tomog-
raphy1 (or degree sequence packing) problem (see e.g. [5])
as well. The question whether a sequence of n numbers
π is a degree sequence can also be formulated as follows:
Does Kn have a subgraph H such that the degree sequence
of H is π? The question becomes more general if Kn is
replaced by some (simple) graph G on n vertices. If the
answer is yes, we say that π can be embedded into G, or
equivalently, π packs with G.

Let us mention two classical results in extremal graph the-
ory.

Theorem 1 (Dirac, [6]). Every graph G with n ≥ 3 ver-
tices and minimum degree δ(G) ≥ n

2 has a Hamilton cycle.

1In the discrete tomography problem we are given two degree se-
quences of length n, π1 and π2, and the questions is whether there exists
a graph G on n vertices with a red-blue edge coloration so that the fol-
lowing holds: for every vertex v the red degree of v is π1(v) and the blue
degree of v is π2(v).
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Theorem 2 (Corrádi-Hajnal, [3]). Let k ≥ 1, n ≥ 3k,
and let H be an n-vertex graph with δ(H) ≥ 2k. Then H
contains k vertex-disjoint cycles.

Observe, that Dirac’s theorem implies that given a constant
2 degree sequence π of length n and any graph G on n
vertices having minimum degree δ(G) ≥ n/2, π can be
embedded into G. One can interprete the Corrádi-Hajnal
theorem similarly, but here one may require more on the
structure of the graph that realizes π and in exchange a
larger minimum degree of G is needed.

One of our main results is the following.

Theorem 3. For every η > 0 and D ∈ N there exists an
n0 = n0(η,D) such that for all n > n0 ifG is a graph on n
vertices with δ(G) ≥

(
1
2 + η

)
n and π is a degree sequence

of length n with ∆(π) ≤ D, then π is embeddable into G.

It is easy to see that Theorem 3 is sharp up to the ηn ad-
ditive term. For that let n be an even number, and sup-
pose that every element of π is 1. Then the only graph that
realizes π is the union of n/2 vertex disjoint edges. Let
G = Kn/2−1,n/2+1 be the complete bipartite graph with
vertex class sizes n/2− 1 and n/2 + 1. Clearly G does not
have n/2 vertex disjoint edges.

In order to state the other main result of the paper we intro-
duce a new notion.

Definition 4. Let q ≥ 1 be an integer. A bipartite graph H
with vertex classes S and T is q-unbalanced, if q|S| ≤ |T |.
The degree sequence π is q-unbalanced, if it can be realized
by a q-unbalanced bipartite graph.

Theorem 5. Let q ≥ 1 be an integer. For every η > 0
and D ∈ N there exist an n0 = n0(η, q) and an M =
M(η,D, q) such that if n ≥ n0, π is a q-unbalanced degree
sequence of length n −M with ∆(π) ≤ D, G is a graph
on n vertices with δ(G) ≥ ( 1

q+1 + η)n, then π can be
embedded into G.

Hence, if π is unbalanced, the minimum degree require-
ment of Theorem 3 can be substantially decreased, what
we pay for this is that the length of π has to be slightly
smaller than the number of vertices in the host graph.

2 Proof of Theorem 3
Proof. First, we find a suitable realization H of π, our
H will consists of components of bounded size. Second,
we embed H into G using a theorem by Chvátal and Sze-
merédi and a result on embedding so called well-separable
graphs. The details are as follows.

We construct H in several steps. At the beginning, let
H be the empty graph and let all degrees in π be active.
While we can find 2i active degrees of π with value i (for
some 1 ≤ i ≤ ∆(π)) we realize them with a Ki,i (that
is, we add this complete bipartite graph to H , and the 2i

degrees are “inactivated”). When we stop we have at most∑∆(π)
i=1 (2i − 1) active degrees. This way we obtain sev-

eral components, each being a balanced complete bipar-
tite graph. These are the type 1 gadgets. Observe that if
a vertex v belongs to some type 1 gadget, then its degree
is exactly π(v). Observe further that if there are no active
degrees in π at this point then the graph H we have just
found is a realization of π.

Assume that there are active degrees left in π. Let R =
Rodd ∪ Reven be the vertex set that is identified with the
active vertices (v ∈ Rodd if and only if the assigned active
degree is odd). Since

∑
v∈R

d(v) must be an even number we

have that |Rodd| is even. Add a perfect matching on Rodd
to H . With this we achieved that every vertex of R misses
an even number of edges.

Next we construct the type 2 gadgets using the following al-
gorithm. In the beginning every type 1 gadget is unmarked.
Suppose that v ∈ R is an active vertex. Take a type 1 gad-
get K, mark it, and let MK denote an arbitrarily chosen
perfect matching in K (MK exists since K is a balanced
complete bipartite graph). Let xy be an arbitrary edge in
MK . Delete the xy edge and add the new edges vx and vy.
While v is missing edges repeat the above procedure with
edges of MK , until MK becomes empty. If MK becomes
empty, take a new unmarked type 1 gadget L, and repeat
the method with L. It is easy to see that in π(v)/2 steps v
reaches its desired degree and gets inactivated. Clearly, the
degrees of vertices in the marked type 1 gadgets have not
changed.
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Figure 1: Type 2 gadgets of H with a 3-coloring

Figure 1 shows examples of type 2 gadgets. In the upper
one two vertices of Rodd were first connected by an edge
and then two type 1 gadgets were used so that they could
reach their desired degree, while in the lower one we used
three type 1 gadgets for a vertex of R. The numbers at the
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vertices indicate the colors in the 3-coloring of H.

Let A ⊂ V (H) denote the set of vertices containing the
union of all type 2 gadgets. Observe that type 2 gadgets are
3-colorable and all have less than 5∆2(π) vertices. Let us
summarize our knowledge about H for later reference.

Claim 6. (1) |A| ≤ 5∆3(π),

(2) the components of H[V − A] are balanced complete
bipartite graphs, each having size at most 2∆(π),

(3) χ(H[A]) ≤ 3, and

(4) e(H[A, V −A]) = 0.

We are going to show that H ⊂ G. For that we first em-
bed the possibly 3-chromatic part H[A] using the follow-
ing strengthening of the Erdős–Stone theorem proved by
Chvátal and Szemerédi [2].

Theorem 7. Let ϕ > 0 and assume that G is a graph on n
vertices where n is sufficiently large. Let r ∈ N, r ≥ 2. If

e(G) ≥
(

r − 2

2(r − 1)
+ ϕ

)
n2,

then G contains a Kr(t), i.e. a complete r-partite graph
with t vertices in each class, such that

t >
log n

500 log 1
ϕ

. (1)

Since δ(G) ≥ (1/2+η)n, the conditions of Theorem 7 are
satisfied with r = 3 and ϕ = η/2, hence, G contains a bal-
anced complete tripartite subgraph T on Ω(log n) vertices.
Using Claim 6 and the 3-colorability of H[A] this implies
that H[A] ⊂ T .

Observe that after embedding H[A] into G every uncov-
ered vertex of G still has at least δ(G) − v(F ) > (1/2 +
η/2)n uncovered neighbors. Denoting the subgraph of the
uncovered vertices of G by G′ we obtain that δ(G′) >
(1/2 + η/2)n.

In order to prove that H[V − A] ⊂ G′ we first need a
definition.

Definition 8. A graph F on n vertices is well-separable if
it has a subset S ⊂ V (F ) of size o(n) such that all compo-
nents of F − S are of size o(n).

We need the following theorem.

Theorem 9 ([4]). For every γ > 0 and positive integer
D there exists an n0 such that for all n > n0 if F is a
bipartite well-separable graph on n vertices, ∆(F ) ≤ D
and δ(G) ≥

(
1
2 + γ

)
n for a graph G of order n, then

F ⊂ G.

Since H[V −A] has bounded size components by Claim 6,
we can apply Theorem 9 for H[V − A] and G′, with pa-
rameter γ = η/2. With this we finished proving what was
desired.

3 Further tools for Theorem 5
When proving Theorem 3, we used the Regularity Lemma
of Szemerédi, but implicitly, via the result on embedding
well-separable graphs. When proving Theorem 5 we will
apply this very powerful result explicitly, hence, below
we give a very brief introduction to the area. The inter-
ested reader may consult with the original paper by Sze-
merédi [15] or e.g. with the survey paper [10].

3.1 Regularity lemma
The density between disjoint sets X and Y is defined as:

d(X,Y ) =
e(X,Y )

|X||Y |
.

We will need the following definition to state the Regularity
Lemma.

Definition 10 (Regularity condition). Let ε > 0. A pair
(A,B) of disjoint vertex-sets in G is ε-regular if for every
X ⊂ A and Y ⊂ B, satisfying

|X| > ε|A|, |Y | > ε|B|

we have
|d(X,Y )− d(A,B)| < ε.

This definition implies that regular pairs are highly uni-
form bipartite graphs; namely, the density of any reason-
ably large subgraph is almost the same as the density of the
regular pair.

We will use the following form of the Regularity Lemma:

Lemma 11 (Degree Form). For every ε > 0 there is an
M = M(ε) such that if G = (W,E) is any graph and
d ∈ [0, 1] is any real number, then there is a partition of the
vertex set V into `+ 1 clusters W0,W1, . . . ,W`, and there
is a subgraph G′ of G with the following properties:

– ` ≤M ,

– |W0| ≤ ε|W |,

– all clusters Wi, i ≥ 1, are of the same size
m
(
≤
⌊
|W |
`

⌋
< ε|W |

)
,

– degG′(v) > degG(v)− (d+ ε)|W | for all v ∈W ,

– G′|Wi
= ∅ (Wi is an independent set in G′) for all

i ≥ 1,

– all pairs (Wi,Wj), 1 ≤ i < j ≤ `, are ε-regular,
each with density either 0 or greater than d in G′.
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We call W0 the exceptional cluster, W1, . . . ,W` are the
non-exceptional clusters. In the rest of the paper we will
assume that 0 < ε � d � 1. Here a � b means that a is
sufficiently smaller than b.

Definition 12 (Reduced graph). Apply Lemma 11 to the
graph G = (W,E) with parameters ε and d, and denote
the clusters of the resulting partition by W0,W1, . . . ,W`

(W0 being the exceptional cluster). We construct a new
graph Gr, the reduced graph of G′ in the following way:
The non-exceptional clusters of G′ are the vertices of the
reduced graph Gr (hence v(Gr) = `). We connect two
vertices of Gr by an edge if the corresponding two clusters
form an ε-regular pair with density at least d.

The following corollary is immediate:

Corollary 13. Apply Lemma 11 with parameters ε and d to
the graph G = (W,E) satisfying δ(G) ≥ γn (v(G) = n)
for some γ > 0. Denote Gr the reduced graph of G′. Then
δ(Gr) ≥ (γ − θ)`, where θ = 2ε+ d.

The (fairly easy) proof of the lemma below can be found
in [10].

Lemma 14. Let (A,B) be an ε-regular–pair with density
d for some ε > 0. Let c > 0 be a constant such that ε� c.
We arbitrarily divideA andB into two parts, obtaining the
non-empty subsets A′, A′′ and B′, B′′, respectively. As-
sume that |A′|, |A′′| ≥ c|A| and |B′|, |B′′| ≥ c|B|. Then
the pairs (A′, B′), (A′, B′′), (A′′, B′) and (A′′, B′′) are
all ε/c–regular pairs with density at least d− ε/c.

3.2 Blow-up lemma
Let H and G be two graphs on n vertices. Assume that we
want to find an isomorphic copy of H in G. In order to
achieve this one can apply a very powerful tool, the Blow-
up Lemma of Komlós, Sárközy and Szemerédi [8, 9]. For
stating it we need a new notion, a stronger one-sided prop-
erty of regular pairs.

Definition 15 (Super-Regularity condition). Given a graph
G and two disjoint subsets of its vertices A and B, the pair
(A,B) is (ε, δ)-super-regular, if it is ε-regular and further-
more,

deg(a) > δ|B|, for all a ∈ A,

and
deg(b) > δ|A|, for all b ∈ B.

Theorem 16 (Blow-up Lemma). Given a graph R of
order r and positive integers δ,∆, there exists a posi-
tive ε = ε(δ,∆, r) such that the following holds: Let
n1, n2, . . . , nr be arbitrary positive parameters and let us
replace the vertices v1, v2, . . . , vr of R with pairwise dis-
joint sets W1,W2, . . . ,Wr of sizes n1, n2, . . . , nr (blow-
ing up R). We construct two graphs on the same vertex
set V = ∪iWi. The first graph F is obtained by replac-
ing each edge vivj ∈ E(R) with the complete bipartite

graph between Wi and Wj . A sparser graph G is con-
structed by replacing each edge vivj arbitrarily with an
(ε, δ)-super-regular pair between Wi and Wj . If a graph
H with ∆(H) ≤ ∆ is embeddable into F then it is already
embeddable into G.

4 Proof of Theorem 5
Let us give a brief sketch first. Recall, that π is a q-
unbalanced and bounded degree sequence with ∆(π) ≤ D.
In the proof we first show that there exists a q-unbalanced
bipartite graph H that realizes π such that H is the ver-
tex disjoint union of the graphs H1, . . . ,Hk, where each
Hi graph is a bipartite q-unbalanced graph having bounded
size. We will apply the Regularity lemma to G, and find
a special substructure (a decomposition into vertex-disjoint
stars) in the reduced graph ofG. This substructure can then
be used to embed the union of the Hi graphs, for the ma-
jority of them we use the Blow-up lemma.

4.1 Finding H

The goal of this subsection is to prove the lemma below.

Lemma 17. Let π be a q-unbalanced degree sequence of
positive integers with ∆(π) ≤ D. Then π can be real-
ized by a q-unbalanced bipartite graph H which is the
vertex disjoint union of the graphs H1, . . . ,Hk, such that
for every i we have that Hi is q-unbalanced, moreover,
v(Hi) ≤ 4D2.

Before starting the proof of Lemma 17, we list a few nec-
essary notions and results.

We call a finite sequence of integers a zero-sum sequence
if the sum of its elements is zero. The following result of
Sahs, Sissokho and Torf plays an important role in the proof
of Lemma 17.

Proposition 18. [14] Assume that K is a positive inte-
ger. Then any zero-sum sequence on {−K, . . . ,K} having
length at least 2K contains a proper nonempty zero-sum
subsequence.

The following result, formulated by Gale [7] and Ryser
[13], will also be useful. We present it in the form as dis-
cussed in Lovász [11].

Lemma 19. [11] Let G = (A,B;E(G)) be a bipar-
tite graph and f be a nonnegative integer function on
A ∪ B with f(A) = f(B). Then G has a subgraph F =
(A,B;E(F )) such that dF (x) = f(x) for all x ∈ A ∪ B
if and only if

f(X) ≤ e(X,Y ) + f(Y ) (2)

for any X ⊆ A and Y ⊆ B, where Y = B − Y .

We remark that such a subgraph F is also called an f -factor
of G.
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Lemma 20. If f = (a1, . . . , as; b1, . . . , bt) is a sequence
of positive integers with s, t ≥ 2∆2, where ∆ is the maxi-
mum of f , and f(A) = f(B) with A = {a1, . . . , as} and
B = {b1, . . . , bt} then f is bigraphic.

Proof. All we have to check is whether the conditions of
Lemma 19 are met if G = Ks,t.

Suppose indirectly that there is an (X,Y ) pair for which (2)
does not hold. Choose such a pair with minimal |X|+ |Y |.
Then X = ∅ or Y = ∅ are impossible, as in those cases
(2) trivially holds. Hence, |X|, |Y | ≥ 1. Assuming that (2)
does not hold, we have that

f(X) ≥ e(X,Y ) + f(Y ) + 1, (3)

which is equivalent to

f(X) ≥ |X||Y |+ f(Y ) + 1, (4)

as G is a complete bipartite graph. Furthermore, using the
minimality of |X|+ |Y |, we know that

f(X − a) ≤ |X − a||Y |+ f(Y ) (5)

for any a ∈ X . (5) is equivalent to

f(X)− f(a) ≤ |X||Y | − |Y |+ f(Y ). (6)

From (4) and (6) we have

f(a)− 1 ≥ |Y | (7)

for any a ∈ X , which implies

∆ > |Y |. (8)

The same reasoning also implies that ∆ > |X| whenever
(X,Y ) is a counterexample. Therefore we only have to
verify that (2) holds in case |X| < ∆ and |Y | < ∆. Recall
that f(B) ≥ t, as all elements of f are positive. Hence,
f(X) ≤ ∆|X| ≤ ∆2, and f(Y ) = f(B)−f(Y ) ≥ t−∆2,
and we get that

f(X) ≤ ∆2 ≤ t−∆2 ≤ f(Y ) ≤ f(Y ) + eG(X,Y ) (9)

holds, since t ≥ 2∆2.

Proof. (Lemma 17) Assume that J =
(
S, T ;E(J)

)
is a q-

unbalanced bipartite graph realizing π. Hence, q|S| ≤ |T |.
Moreover, |T | ≤ D|S|, since ∆(π) ≤ D. We form vertex
disjoint tuples of the form (s; t1, . . . , th), such that s ∈ S,
ti ∈ T, q ≤ h ≤ D, and the collection of these tuples
contains every vertex of S ∪ T exactly once. We define the
bias of the tuple as

ζ = π(t1) + · · ·+ π(th)− π(s).

Obviously, −D ≤ ζ ≤ D2. The conditions of Proposi-
tion 18 are clearly met with K = D2. Hence, we can form
groups of size at most 2D2 in which the sums of biases
are zero. This way we obtain a partition of (S, T ) into q-
unbalanced set pairs which have zero bias. While these sets
may be small, we can combine them so that each combined
set is of size at least 2D2 and has zero bias. By Lemma 20
these are bigraphic sequences. The realizations of these
small sequences give the graphs H1, . . . ,Hk. It is easy to
see that v(Hi) ≤ 4D2 for every 1 ≤ i ≤ k. Finally, we let
H = ∪iHi.

4.2 Decomposing Gr

Let us apply the Regularity lemma with parameters 0 <
ε � d � η. By Corollary 13 we have that δ(Gr) ≥
`/(q + 1) + η`/2.

Let h ≥ 1 be an integer. An h-star is a K1,h. The center
of an h-star is the vertex of degree h, the other vertices are
the leaves. In case h = 1 we pick one of the vertices of the
1-star arbitrarily to be the center.

Lemma 21. The reduced graphGr has a decomposition S
into vertex disjoint stars such that each star has at most q
leaves.

Proof. Take a partial star-decomposition of Gr that is as
large as possible. Assume that there are uncovered vertices
in Gr. Let U denote those vertices that are covered (so we
assume that U has maximal cardinality), and let v be an un-
covered vertex. Observe that v has neighbours only in U,
otherwise, if uv ∈ E(Gr) with u /∈ U , then we can sim-
ply add uv to the star-decomposition, contradicting to the
maximality of U . See Figure 2 for the possible neighbors
of v.

a) If v is connected to a 1-star, then we can replace it with
a 2-star.

b) If v is connected to the center u of an h-star, where
h < q, then we can replace this star with an h + 1-star
by adding the edge uv to the h-star.

c) If v is connected to a leaf u of an h-star, where 2 ≤
h ≤ q, then replace the star with the edge uv and an
(h− 1)-star (i.e., delete u from it).

We have not yet considered one more case: when v is con-
nected to the center of a q-star. However, simple calcula-
tion shows that for every vertex v at least one of the above
three cases must hold, using the minimum degree condi-
tion of Gr. Hence we can increase the number of covered
vertices. We arrived at a contradiction, Gr has the desired
star-decomposition.

4.3 Preparing G for the embedding
Consider the q-star-decomposition S of GR as in
Lemma 21. Let `i denote the number of (i − 1)-stars in
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v

a) b)

c)

d)

Figure 2: An illustration for Lemma 21

the decomposition for every 2 ≤ i ≤ q+1. It is easy to see
that

q+1∑
i=2

i`i = `.

First we will make every ε-regular pair in S super-regular
by discarding a few vertices from the non-exceptional clus-
ters. Let for example C be a star in the decomposition of
Gr with center cluster A and leaves B1, . . . , Bk, where
1 ≤ k ≤ q. Recall that the (A,Bi) pairs has density at
least d. We repeat the following for every 1 ≤ i ≤ k : if
v ∈ A such that v has at most 2dm/3 neighbors in Bi then
discard v from A, put it into W0. Similarly, if w ∈ Bi has
at most 2dm/3 neighbors in A, then discard w from Bi,
put it into W0. Repeat this process for every star in S. We
have the following:

Claim 22. We do not discard more than qεm vertices from
any non-exceptional cluster.

Proof. Given a star C in the decomposition S assume that
its center cluster is A and let B be one of its leaves. Since
the pair (A,B) is ε-regular with density at least d, neither
A, nor B can have more than εm vertices that have at most
2dm/3 neighbors in the opposite cluster. Hence, during the
above process we may discard up to qεm vertices from A.
Next, we may discard vertices from the leaves, but since no
leaf B had more than εm vertices with less than (d− ε)m
neighbors in A, even after discarding at most qεm vertices
of A, there can be at most εm vertices in B that have less
than (d − (q + 1)ε)m neighbors in A. Using that ε � d,
we have that (d − (q + 1)ε) > 2d/3. We obtained what
was desired.

By the above claim we can make every ε-regular pair in
S a (2ε, 2d/3)-super-regular pair so that we discard only
relatively few vertices. Notice that we only have an upper
bound for the number of discarded vertices, there can be
clusters from which we have not put any points into W0.
We repeat the following for every non-exceptional cluster:
if s vertices were discarded from it with s < qεm then we
take qεm − s arbitrary vertices of it, and place them into
W0. This way every non-exceptional cluster will have the

same number of points, precisely m − qεm. For simpler
notation, we will use the letter m for this new cluster size.
Observe that W0 has increased by qεm` vertices, but we
still have |W0| ≤ 3dn since ε � d and `m ≤ n. Since
qεm � d, in the resulting pairs the minimum degree will
be at least dm/2.

Summarizing, we obtained the following:

Lemma 23. By discarding a total of at most qεn vertices
from the non-exceptional clusters we get that every edge in
S represents a (2ε, d/2)-super-regular pair, and all non-
exceptional clusters have the same cardinality, which is de-
noted by m. Moreover, |W0| ≤ 3dn.

Since v(G)− v(H) is bounded above by a constant, when
embedding H we need almost every vertex of G, in partic-
ular those in the exceptional clusterW0. For this reason we
will assign the vertices of W0 to the stars in S. This is not
done in an arbitrary way.

Definition 24. Let v ∈ W0 be a vertex and (Q,T ) be
an ε-regular pair. We say that v ∈ T has large de-
gree to Q if v has at least η|Q|/4 neighbors in Q. Let
S = (A,B1, . . . , Bk) be a star in S where A is the center
of S and B1, . . . , Bk are the leaves, here 1 ≤ k ≤ q. If
v has large degree to any of B1, . . . , Bk, then v can be as-
signed to A. If k < q and v has large degree to A, then v
can be assigned to any of the Bi leaves.

Observation 25. If we assign new vertices to a q-star, then
we necessarily assign them to the center. Since before as-
signing, the number of vertices in the leaf-clusters is ex-
actly q times the number of vertices in the center cluster,
after assigning new vertices to the star, q times the car-
dinality of the center will be larger than the total number
of vertices in the leaf-clusters. If S ∈ S is a k-star with
1 ≤ k < q, and we assign up to cm vertices to any of
its clusters, where 0 < c � 1, then even after assigning
new vertices we will have that q times the cardinality of
the center is larger than the total number of vertices in the
leaf-clusters.

The following lemma plays a crucial role in the embedding
algorithm.

Lemma 26. Every vertex ofW0 can be assigned to at least
η`/4 non-exceptional clusters.

Proof. Suppose that there exists a vertex w ∈ W0 that
can be assigned to less than η`/4 clusters. If w cannot
be assigned to any cluster of some k-star Sk with k < q,
then the total degree of w into the clusters of Sk is at
most kηm/4. If w cannot be assigned to any cluster of
some q-star Sq, then the total degree of w into the clus-
ters of Sq is at most m + qηm/4, since every vertex of
the center cluster could be adjacent to w. Considering that
w can be assigned to at most η`/4 − 1 clusters and that
d(w,W −W0) ≥ n/(q+ 1) +ηn/2, we obtain the follow-
ing inequality:
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n

q + 1
+
ηn

2
≤ d(v,W −W0) ≤ η `m

4
+

q−1∑
k=1

(k + 1)η
`k+1m

4
+ qη

`q+1m

4
+ `q+1m.

Using m` ≤ n and
∑q
k=1(k + 1)`k+1 = `, we get

m`

q + 1
+
ηm`

2
≤ η `m

4
+ (`− `q+1)

ηm

4
+

qη
`q+1m

4
+ `q+1m.

Dividing both sides by m and cancellations give

`

q + 1
≤ q η`q+1

4
+ (1− η

4
)`q+1.

Noting that (q + 1)`q+1 ≤ `, one can easily see that we
arrived at a contradiction. Hence every vertex of W0 can
be assigned to several non-exceptional clusters.

Lemma 26 implies the following:

Lemma 27. One can assign the vertices of W0 so that at
most

√
dm vertices are assigned to non-exceptional clus-

ters.

Proof. Since we have at least η`/4 choices for every ver-
tex, the bound follows from the inequality 4|W0|

η` ≤
√
dm,

where we used d� η and |W0| ≤ 3dn.

Observation 28. A key fact is that the number of newly
assigned vertices to a cluster is much smaller than their
degree into the opposite cluster of the regular pair since√
dm� ηm/4.

4.4 The embedding algorithm
The embedding is done in two phases. In the first phase we
cover every vertex that belonged toW0, together with some
other vertices of the non-exceptional clusters. In the second
phase we are left with super-regular pairs into which we
embed what is left from H using the Blow-up lemma.

4.4.1 The first phase

Let (A,B) be an ε-regular cluster-edge in the h-star C ∈ S.
We begin with partitioning A and B randomly, obtaining
A = A′∪A′′ andB = B′∪B′′ withA′∩A′′ = B′∩B′′ =
∅. For every w ∈ A (except those that came from W0) flip
a coin. If it is heads, we put w into A′, otherwise we put it
into A′′. Similarly, we flip a coin for every w ∈ B (except
those that came from W0) and depending on the outcome,
we either put the vertex into B′ or into B′′. The proof
of the following lemma is standard, uses Chernoff’s bound
(see in [1]), we omit it.

Lemma 29. With high probability, that is, with probability
at least 1− 1/n, we have the following:

–
∣∣|A′| − |A′′|∣∣ = o(n) and

∣∣|B′| − |B′′|∣∣ = o(n)

– deg(w,A′), deg(w,A′′) > deg(w,A)/3 for every
w ∈ B

– deg(w,B′), deg(w,B′′) > deg(w,B)/3 for every
w ∈ A

– the density d(A′, B′) ≥ d/2

It is easy to see that Lemma 29 implies that (A′, B′) is
a (5ε, d/6)-super-regular pair having density at least d/2
with high probability.

Assume that v was an element of W0 before we assigned
it to the cluster A, and assume further that deg(v,B) ≥
ηm/4. Since (A,B) is an edge of the star-decomposition,
either A or B must be the center of C.

LetHi be one of the q-unbalanced bipartite subgraphs ofH
that has not been embedded yet. We will use Hi to cover
v. Denote Si and Ti the vertex classes of Hi, where |Si| ≥
q|Ti|. Let Si = {x1, . . . , xs} and Ti = {y1, . . . , yt}.

If A is the center of C then the vertices of Ti will cover
vertices of A′, and the vertices of Si will cover vertices of
B′. If B is the center, Si and Ti will switch roles. The
embedding of Hi is essentially identical in both cases, so
we will only discuss the case when A is the center.2

In order to cover v we will essentially use a well-known
method called Key lemma in [10]. We will heavily use the
fact that

0 < ε� d� η.

The details are as follows. We construct an edge-preserving
injective mapping ϕ : Si ∪ Ti −→ A′ ∪ B′. In particular,
we will have ϕ(Si) ⊂ B′ and ϕ(Ti) − v ⊂ A′. First we
let ϕ(y1) = v. Set N1 = N(v) ∩B′. Using Lemma 29 we
have that |N1| ≥ ηm/12� εm.

Next we find ϕ(y2). Since |N1| � εm, by 5ε-regularity
the majority of the vacant vertices of A′ will have at least
d|N1|/3 neighbors in N1. Pick any of these, denote it by
v2 and let ϕ(y2) = v2. Also, set N2 = N1 ∩N(v2).

In general, assume that we have already found the vertices
v2, v3, . . . , vi, their common neighborhood inB′ isNi, and

|Ni| ≥
ηdi−1

3i−2 · 36
m� εm.

By 5ε-regularity, this implies that the majority of the vacant
vertices of A′ has large degree into Ni, at least d · |Ni|/3,
and this, as above, can be used to find vi+1. Then we set
ϕ(yi+1) = vi+1. Since η and d is large compared to ε,
even into the last set Nt−1 many vacant vertices will have
large degrees.

2Recall that if h < q then we may assigned v to a leaf, so in such a
case B could be the center.
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As soon as we have ϕ(y1), . . . , ϕ(yt), it is easy to find the
images for x1, . . . , xt. Since |Nt| � εm � s = |Si|,
we can arbitrarily choose s vacant points from Nt for the
ϕ(xj) images.

Note that we use less than v(Hi) ≤ 4D2 vertices from
A′ and B′ during this process. We can repeat it for every
vertex that were assigned to A, and still at most

√
d2D2m

vertices will be covered from A′ and from B′.

Another observation is that every h-star in the decomposi-
tion before this embedding phase was h-unbalanced, now,
since we were careful, these have become h′-balanced with
h′ ≤ h.

Of course, the above method will be repeated for every
(A,B) edge of the decomposition for which we have as-
signed vertices of W0.

4.4.2 The second phase

In the second phase we first unite all the randomly parti-
tioned clusters. For example, assume that after covering the
vertices that were coming from W0 the set of vacant ver-
tices of A′ is denoted by A′v . Then we let Av = A′v ∪ A′′,
and using analogous notation, let Bv = B′v ∪B′′.

Claim 30. All the (Av, Bv) pairs are (3ε, d/6)-super-
regular with density at least d/2.

Proof. The 3ε-regularity of these pairs is easy to see, like
the lower bound for the density, since we have only covered
relatively few vertices of the clusters. For the large mini-
mum degrees note that by Lemma 29 every vertex ofA had
at least dm/6 neighbors in B′′, hence, in Bv as well, and
analogous bound holds for vertices of B.

At this point we want to apply the Blow-up lemma for every
star of S individually. For that we first have to assign those
subgraphs of H to stars that were not embedded yet. We
need a lemma.

Lemma 31. Let Ka,b be a complete bipartite graph with
vertex classes A and B, where |A| = a and |B| = b. As-
sume that a ≤ b = ha, where 1 ≤ h ≤ q. Let H ′ be the
vertex disjoint union of q-unbalanced bipartite graphs:

H ′ =

t⋃
j=1

Hj ,

such that v(Hj) ≤ 2D2 for every j. If v(H ′) ≤ a + b −
4(2q + 1)D2, then H ′ ⊂ Ka,b.

Observe that if we have Lemma 31, we can distribute the
Hi subgraphs among the stars of S, and then apply the
Blow-up lemma. Hence, we are done with proving The-
orem 5 if we prove Lemma 31 above.

Proof. The proof is an assigning algorithm and its analysis.
We assign the vertex classes of the Hj subgraphs to A and

B, one-by-one. Before assigning the jth subgraph Hj the
number of vacant vertices of A is denoted by aj and the
number of vacant vertices of B is denoted by bj .

Assume that we want to assign Hk. If hak − bk > 0, then
the larger vertex class of Hk is assigned to A, the smaller
is assigned to B. Otherwise, if hak − bk ≤ 0, then we
assign the larger vertex class to B and the smaller one to
A. Then we update the number of vacant vertices of A and
B. Observe that using this assigning method we always
have ak ≤ bk.

The question is whether we have enough room for Hk. If
ha ≥ 4hD2, then we must have enough room, since bk ≥
ak and every Hj has at most 2D2 vertices. Hence, if the
algorithm stops, we must have ak < 4D2. Since bk −
hak ≤ 2D2 must hold, we have bk < (2h + 1)2D2 <
(2q + 1)2D2. From this the lemma follows.

5 Remarks
One can prove a very similar result to Theorem 5, in fact
the result below follows easily from it. For stating it we
need the notion of graph edit distance which is detailed
e.g. in [12]: the edit distance between two graphs on the
same labeled vertex set is defined to be the size of the sym-
metric difference of the edge sets

Theorem 32. Let q ≥ 1 be an integer. For every η > 0
and D ∈ N there exists an n0 = n0(η, q) and a K =
K(η,D, q) such that if n ≥ n0, π is a q-unbalanced degree
sequence of length n with ∆(π) ≤ D, G is a graph on n
vertices with δ(G) ≥ ( 1

q+1 +η)n, then there exists a graph
G′ on n vertices such that the edit distance of G and G′ is
at most K, and π can be embedded into G′.

Here is an example showing that Theorem 5 and 32 are
essentially best possible.

Example 33. Assume that π has only odd numbers and G
has at least one odd sized component. Then the embedding
is impossible. Indeed, any realization of π has only even
sized components, hence,G cannot contain it as a spanning
subgraph.

Note that this example does not work in case G is con-
nected. In Theorem 3 the minimum degree δ(G) ≥ (1/2 +
η)n, hence, G is connected, and in this case we can embed
π into G.
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