
https://doi.org/10.31449/inf.v44i1.2737 Informatica 44 (2020) 55–61 55

Application of Algorithms with Variable Greedy Heuristics for

k-Medoids Problems

Lev Kazakovtsev and Ivan Rozhnov

Reshetnev Siberian State University of Science and Technology

prosp. Krasnoyarskiy Rabochiy 31, Krasnoyarsk 660031, Russia

Siberian Federal University, prosp.Svobodny 79, Krasnoyarsk 660041, Russia

E-mail: levk@bk.ru

Keywords: clustering algorithms, VNS, k-medoids, greedy heuristic method

Received: March 28, 2019

Progress in location theory methods and clustering algorithms is mainly targeted at improving the

performance of the algorithms. The most popular clustering models are based on solving the p-median

and similar location problems (k-means, k-medoids). In such problems, the algorithm must find several

points called cluster centers, centroids, medoids, depending on the specific problem which minimize

some function of distances from known objects to the centers. In the the k-medoids problem, the centers

(medoids) of the cluster must coincide with one of the clustered objects. The problem is NP-hard, and

the efforts of researchers are focused on the development of compromise heuristic algorithms that

provide a fairly quick solution with minimal error. In this paper, we propose new algorithms of the

Greedy Heuristic Method which use the idea of the Variable Neighborhood Search (VNS) algorithms for

solving the k-medoids problem (which is also called the discrete p-median problem). In addition to the

known PAM (Partition Around Medoids) algorithm, neighborhoods of a known solution are formed by

applying greedy agglomerative heuristic procedures. According to the results of computational

experiments, the new search algorithms (Greedy PAM-VNS) give more accurate and stable results

(lower average value of the objective function and its standard deviation, smaller spread) in comparison

with known algorithms on various data sets.

Povzetek: Avtorji predlagajo nove algoritme za reševanje problema lokacije k-medoidov in gručenja.

1 Introduction
The rapid development of artificial intelligence systems

using, inter alia, methods of automatic data grouping

(clustering) and methods of location theory, as well as

increasing requirements for economic efficiency in all

branches, creates a request for the creation of new

algorithms with higher requirements for accuracy of the

result.

The attempts to discover a universal and, at the same

time, exact method for solving most popular location and

clustering problems (k-means, k-medoids, etc.), which

guarantees the global optimum of the objective function,

in the case of a large amount of input data has been

recognized as unpromising. The efforts of researchers

focused on the development of compromise heuristic

algorithms that give a quick solution [1]. The heuristic

algorithms or procedures, also called “heuristics” in the

literature, are algorithms that do not have a rigorous

justification, but gives an acceptable solution to the

practically important problems. The so-called "greedy"

algorithms are also heuristics. On each iteration, the

greedy algorithm selects the best solution from a certain

neighborhood (subset of intermediate solutions). At the

same time, some of the practically important clustering

problems require such a solution which is very close to

the exact solution of the problem, and also stable during

repeated runs of the randomized algorithm, reproducible

and, therefore, verifiable. The problems should be solved

online within a limited time. Such problems include, for

example, the problem of forming special batches of

semiconductor devices in the specialized testing centers

[1], where the need to obtain stable results is due to the

requirement of reproducibility and verifiability of

calculation results that are part of the production process

involving two parties with different interests: the

manufacturer and the test Centre.

The ensemble (collective) approach [2] allows

reducing the dependence of the final decision on the

selected parameters of the original models and

algorithms and obtaining a more stable solution [3], or

isolating "controversial" objects for which different

clustering models give a contradictory result, into a

separate class. The k-medoids problem is a convenient

model for building clustering algorithm ensembles due to

the adaptability of the model to the use of various

measures of the distance between objects.

The overall aim of the continuous location problem

[4] is to find the location of one or several points

(centers, centroids, medoids) in continuous space. There

is an intermediate class of problems that are actually

discrete (the number of possible locations of the searched

mailto:levk@bk.ru

56 Informatica 44 (2020) 55–61 L. Kazakovtsev et al.

points is finite), operating with concepts characteristic of

the continuous problems. In particular, such is the the k-

medoids problem [5, 6] (also called the discrete p-median

problem [7] in the scientific literature). The main

parameters of all such problems are the coordinates of

the objects and the distances between them [8-10]. The

aim of the continuous p-median problem [8] is to find k

points (centers, centroids, medians, cluster medoids),

such that the sum of weighted distances from N known

points, called demand points, consumers, objects or data

vectors depending on the formulation of a specific

problem, to the nearest of the k centers reaches its

minimum.

The allocation problems with Euclidean, Manhattan

(rectangular), Chebyshev metrics are well studied (all

these metrics are particular cases of metrics based on

Minkowski lp-norms [11]), and many algorithms have

been proposed for solving the Weber problem for these

metrics. In particular, the well-known Weisfeld

procedure [12] was generalized for metrics based on

Minkowski norms.

If the distance is Euclidean 𝐿(𝑋𝑗 , 𝐴𝑖) =

√∑ (𝑥𝑗,𝑘 − 𝑎𝑖,𝑘)
2𝑑

𝑘=1 , we have the p-median problem.

Here, Xj=(xj,1,…,xj,k) ∀𝑗 = 1, 𝑝̅̅ ̅̅̅, Ai=(ai,1,…,ai,d) ∀𝑖 = 1,𝑁̅̅ ̅̅ ̅.

If the squared Euclidean metric is used, 𝐿(𝑋𝑗 , 𝐴𝑖) =

∑ (𝑥𝑗,𝑘 − 𝑎𝑖,𝑘)
2𝑑

𝑘=1 , we have the k-means problem.

Vectors A1,…,AN are data vectors in a d-dimensional

space, Ai=(ai,1,…,ai,d), 𝐴𝑖 ∈ ℝ𝑑 d
iA R .

 In the k-medoids model and problem, cluster

centers Xj=(xj,1,…,xj,k) called medoids, are searched

among the known points Ai, and this is a discrete

optimization problem.

The most popular algorithm for the k-medoid

problem, Partitioning Around Medoids (PAM) algorithm,

was created by L. Kaufman and P. J. Rousseeuw) [13]. It

is very similar to the k-means algorithm. Both algorithms

divide a lot of objects into groups (clusters) and both are

based on attempts to minimize the error (total distance)

on each iteration. The PAM algorithm works with

medoids, objects that are part of the original set and

representing the cluster in which they are included, and

the k-means algorithm works with centroids, which are

artificially created objects representing a cluster. The

PAM algorithm divides a set of N objects into k clusters

(k is a parameter of the algorithm). This algorithm

operates the pre-calculated distance matrix between

objects, its aim is to minimize the distance between the

medoid of each cluster and other objects included in the

same cluster.

For discrete optimization problems, the local search

methods are the most natural and visual [14]. Such

problems include the location problems, building

networks, schedules, etc. [15-18]. The standard local

descent algorithm starts with some initial solution x0 (in

our case, the initial set of medoids) chosen randomly or

with the use of some additional algorithm. At each step

of a local descent, the current solution is transformed into

to the neighboring solution with a smaller value of the

objective function until a local optimum is reached. At

each step of local descent, the function of neighborhood

O defines a set of possible directions of local search.

Very often this set consists of several elements and there

is a certain freedom in choosing the next solution. On the

one hand, when choosing a neighborhood, it is desirable

to have a set of O(X) as small as possible in order to

reduce the complexity of a single step. On the other

hand, a wider neighborhood can lead to a better local

optimum. A possible way to resolve this contradiction is

to develop complex neighborhoods, the size of which can

be varied during local search [19].

In this paper, we propose the use of local search

algorithms that contain greedy agglomerative heuristic

procedures, as well as the well-known PAM algorithm,

using an idea of the Variable Neighborhood Search

(VNS) [20]. It is shown that new VNS algorithms have

advantages over the standard PAM algorithm and are

competitive in comparison with the known genetic

algorithms of the Greedy Heuristics Method for the

considered problem [21].

2 Idea of new algorithms
Local search methods have been further developed into

metaheuristics [22]. We consider one of them, called the

Variable Neighborhoods Search [23, 24]. The idea is to

systematically vary the neighborhood function during a

local search. Flexibility and efficiency explain its

competitiveness in solving NP-hard problems, in

particular, p-median problems [25], clustering and

location problems [26, 27].

Let us denote by Nk, k=1,..kmax, the finite set of

neighborhood functions preselected for local search. The

proposed method with variable neighborhoods relies on

the fact that a local minimum in one neighborhood is not

necessarily a local minimum in another neighborhood,

and the global minimum is the local minimum in all

neighborhoods [14]. In addition, on average, local

minima are closer to the global than a randomly selected

point, and they are located close to each other. This

allows us to narrow the search area for a global optimum

using information about local optimums already detected.

This hypothesis forms the basis for various crossover

operators for genetic algorithms [28] and other

approaches.

The deterministic local descent with variable

neighborhoods (VND) implies a fixed order of changing

neighborhoods and finding a local minimum relative to

each of them. Probabilistic local descent with variable

neighborhoods differs from the previous VND method

by a random selection of points from the neighborhood

Ok(X)Nk. The stage of finding the best point in the

neighborhood is omitted. The probabilistic algorithms are

most productive in solving problems of large dimension,

when the use of a deterministic version requires too

much machine time to perform one iteration.

The basic local search scheme with variable

neighborhoods is a combination of the two previous

options [23].

Application of Algorithms with Variable Greedy Heuristics... Informatica 44 (2020) 55–61 57

VNS algorithm

Step 1. Choose the neighborhoods Ok, k = 1, .. kmax,

and the starting point x.

Step 2. Repeat until the stopping criterion is

satisfied.

2.1. k ← 1.

2.2. Repeat until k≤kmax:

2.2.1. Randomly select a point)(' xOx k ;

2.2.2. Apply a local descent from the starting point

x'. The resulting local optimum is denoted by x";

2.2.3. if F (x") <F (x), then it is assumed that x ← x",

k ← 1, otherwise k ← k + 1.

We can use the time limitation or maximum number

of iterations as the stop criterion. In the case of large-

scale problems, the complexity of performing one

iteration becomes very large and new approaches are

needed to develop effective local search methods.

A popular idea in solving continuous clustering

problems is the use of genetic algorithms (GA) and other

evolutionary approaches to improve the results of local

search [29-31]. Many of these evolutionary algorithms

recombine the initial solution obtained by one of the

simple local search algorithms.

The PAM procedure consists of two phases: BUILD

and SWAP:

- In the BUILD phase, primary clustering is

performed, during which k objects are successively

selected as medoids.

- The SWAP phase is an iterative process in which

the algorithm makes attempts to improve some of the

medoids. At each iteration of the algorithm, a pair is

selected (medoid and non-medoid) such that replacing

the medoid with a non-medoid object gives the best value

of the objective function (the sum of the distances from

each object to the nearest medoid). The procedure for

changing the set of medoids is repeated as long as there

is a possibility of improving the value of the objective

function.

Algorithm 1 (PAM procedure).

Initialization (if needed):

1. Select k objects as a set of medoids (if such set is

not given).

2. Build a distance matrix if needed.

Build Phase:

3. Assign each object to the nearest medoid.

Swap Phase:

4. For each cluster, find objects that reduce the

average distance, and if there are such objects, select

those that reduce it most strongly, as a medoid.

5. If at least one medoid has changed, return to Step

3, otherwise stop the algorithm.

The following algorithm is the basic algorithm of the

Greedy Heuristics Method [1] for clustering problems.

His idea is that initially some unacceptable solution with

an excessive number of centers / medoids is selected,

which is then gradually reduced to a solution with a

given number of centers.

Algorithm 2. Basic greedy agglomerative heuristic

procedure.

Required: the initial number of clusters K, the

required number of clusters k <K.

1. Randomly choose an initial solution with K cluster

centers S = {X1, ..., Xk} if it is not given.

2. Execute Algorithm 1 with the initial solution S,

store a new (improved) solution to S.

3. If K = k, then stop.

4. For each  K,'i 1 perform:

4.1. Get a truncated set S←S\{Xi’}.
4.2. Run Algorithm 1 with the initial solution S’. In

this case, Algorithm 1 is limited to only one iteration.

Store the achieved value of the objective function (1) to

F’i ’.

4.3. Next iteration of loop 4.

5. Find the index 𝑖′′ = argmax𝑖′=1,𝑘̅̅ ̅̅ 𝐹𝑖′.

6. Get a truncated set S←S\{Xi’’}, improve it with

Algorithm 1, then go to step 3.

This procedure forms the basis for three new

procedures that use the centers/medoids of some second

known feasible solution to compile an intermediate

infeasible solution with an excessive number of clusters

K.

Algorithm 3. Greedy procedure # 1.

Given: multiple cluster centers S’= {X’1, ..., X’k} and

S’’= {X’’1,…, X’’k}.

1. For each 𝑖′ ∈ {1, 𝑘̅̅ ̅̅̅} perform:

1.1. Combine element by element sets S’ and S’’:

 .''X'SS 'i

1.2. Run the basic greedy heuristic (Algorithm 2)

with S as the initial solution. The result obtained (the

resulting set, as well as the value of the objective

function) is memorized.

2. Return the best (by the value of the objective

function) solution among the solutions obtained in step

1.2.

A simpler, but more demanding in terms of

computing resources version of the similar algorithm is

presented below.

Algorithm 4. The greedy procedure # 2.

1. Form a unified set 𝑆 ← 𝑆′ ∪ 𝑆".
2. Run Algorithm 2 with S as the initial solution.

An intermediate variant is suggested in [21]. There,

the Algorithm 2 starts from the set S' united with a

randomly chosen subset of S.

Algorithm 5. The greedy procedure # 3.

1. Choose random r’[0,1). Assign r←[(k/2-2)

r’2]+2. Here, [.] is the integer part.

2. Repeat k-r times:

2.1. Form a randomly selected subset of S’’’ of the r

elements of the set S’’. Join the sets 𝑆 ← 𝑆′ ∪ 𝑆′′′.

58 Informatica 44 (2020) 55–61 L. Kazakovtsev et al.

2.2. Run Algorithm 2 with this set S as the initial

solution.

3. Return the best (in terms of the objective function)

among the solutions obtained in step 2.2.

These heuristic procedures, which are local search

algorithms in the neighborhood of a known (“parent”)

solution represented by the set S’, can be used as a part of

various global search strategies. At the same time, as the

neighborhoods of this solution S’ are formed by adding

elements from the other known solution S’’ and

eliminating the excessive elements from the unified

solution using the basic greedy agglomerative heuristic

procedure.

The search in such neighborhoods is made by

Algorithms 3-5. Thus, these algorithms search in some

neighborhoods of the solution S’, and the second known

solution S’’ is a randomly selected parameter of this

neighborhood. The general idea of the new Variable

Neighborhood Search algorithms neighborhoods for

solving the k-medoids problem is given below:

Algorithms 6. PAM-VNS.

1. Run Algorithm 1 from a random initial solution,

store the resulting set of medoids to S.

2. Assign O ← Ostart //comment: Ostart is the initial

number of neighborhood type).

3. Assign i←0, j←0; (the number of unsuccessful

iterations in a particular neighborhood and as a whole by

the algorithm).

4. Run Algorithm 1 from the random initial solution,

get the solution S’.

5. Depending on the value of O (values 1, 2 or 3 are

allowed), run Algorithm 3, 4 or 5 with the initial

solutions S and S’.

6. If the result (by the objective function value) is

better than S, then replace S with this new result, assign

i=0, j=0, go to Step 5.

7. Assign i←i+1;

8. If i <imax, then go to Step 4.

9. Assign i←0, j←j +1. Switch to a new

neighborhood type: O=O+1; if O>3, then assign O=1;

10. If j> jmax, or other stop conditions are satisfied

(maximum running time), then STOP. Otherwise, go to

Step 5.

The values of the two control parameters are

important: the number of ineffectual searches in the

current neighborhood imax, and the number of ineffectual

switching of the neighborhoods jmax. We used the values

imax = 2k, jmax = 2.

In addition, important control parameter Ostart, which

specifies the number of the starting neighborhood type.

We performed our experiments with all its possible

values (1, 2 and 3). Depending on this value, the

algorithms are designated below, respectively, PAM-

VNS1, PAM-VNS2, PAM-VNS3. In these versions of

Algorithm 6, the number of elements in S’ is equal to the

number of elements in S: |S|=|S’|=k. In special versions

called PAM-VNS1-R, PAM-VNS2-R, PAM-VNS3-R,

the number of elements (medoids) in S’ is chosen

randomly, 𝑆′ ∈ {2,2𝑘̅̅ ̅̅ ̅̅ }.

3 Computational experiments
In the description of the computation experiments, we

used the following abbreviations of the algorithm names:

PAM is the classical PAM algorithm in multi-start mode;

PAM-VNS1, PAM-VNS2, PAM-VNS3, PAM-VNS1-R,

PAM-VNS2-R, and PAM-VNS3-R are variations of

Algorithm 6; GA-FULL is the genetic algorithm with a

greedy heuristic for the k-medoids problem [1]; GA-

ONE is a new genetic algorithm with greedy heuristic [1]

where Algorithm 3 is used as a crossing-over procedure.

As test data sets for our experiments, we used the

results of non-destructive test tests of prefabricated

production batches of semiconductor devices (Tables 1-

7), datasets from repositories UCI [32] and Clustering

basic benchmark [33]. In our experiments, we used the

DEXP computing system (4-core Intel® Core ™ i5-7400

CPU 3.00 GHz, 8 GB of RAM).

For all data sets, 30 attempts were made with each of

the 9 algorithms. In every attempt, we fixed the best

achieved results. The best values of the objective

function (minimum value, mean value, median value and

standard deviation) are highlighted in bold italics, the

smallest of the best values is additionally highlighted.

We used the T-test and the Wilcoxon signed rank

test [34, 35] (significance level 0.01 for both tests). Note:

“↑”, “⇑”: the advantage of the best of new algorithms

over known algorithms is statistically significant (“↑” for

the t-test, and “⇑” for the Wilcoxon test); “↓”, “⇓”: the

disadvantage of the best new algorithms compared to

known algorithms is statistically significant; “↕”, “⇕”:

advantage or disadvantage is statistically insignificant.

Table 4 presents the results of the new algorithm in

comparison with known evolutionary algorithms that

have worked well in solving this problem [1].

In Table 4, we use the following abbreviations [1]:

- GA a genetic algorithm with uniform stochastic

crossingover procedure,

- GAGH is the genetic algorithm with greedy heuristic

#3 as crossingover procedure,

- LS is the local search by PAM algorithm in

Algorithm

Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 1 654,4 1 677,4 1679,5 12,2445

PAM-VNS1 1 554,3 1 566,7 1565,7 7,4928

PAM-VNS2 1 558,0 1 566,1 1566,5 5,0686

PAM-VNS3 ↑⇑ 1 555,1 1 563,9 1564,9 3,9161

GA-FULL 1 599,2 1 637,6 1636,2 25,5365

GA-ONE 1 589,9 1 614,8 1615,4 13,5342

Table 1: Comparative results of computational

experiments with data set 3OT122A (767 data vectors,

13 attributes) 10 clusters, 60 seconds for each attempt,

30 attempts, Manhattan distance.

Application of Algorithms with Variable Greedy Heuristics... Informatica 44 (2020) 55–61 59

multistart mode,

- GA FIX is the genetic algorithm with recombination

of fixed-length subsets [36],

- Determ.GH is the deterministic algorithm with

greedy heuristic [1] built on the principles of the

Information Bottleneck Clustering.

- For some of the datasets, we performed our

computational experiments with various number of

clusters and various distance metrics (Tables 5-7).

For the genetic algorithms, we used the population

size NPOP starting from NPOP=20. In [21], authors

show that smaller populations (NPOP<10) in the genetic

algorithms with the greedy agglomerative crossingover

procedure decrease the accuracy of the result, and larger

populations (NPOP>50) slow down the algorithm which

also decreases the accuracy.

In all genetic algorithms, we used the simple

tournament selection. Traditionally [30], such algorithms

do not contain any mutation operator.

4 Conclusion
The results of our computational experiments showed

that the new search algorithms in alternating

neighborhoods (PAM-VNS) can outperform known

algorithms and give more stable results (a lower median

and average values and / or standard deviation of the

objective function, a smaller spread of the achieved

values) and, consequently, better performance in

comparison with known algorithms. The comparative

efficiency of the new algorithm and its modifications on

several data sets has been experimentally proven.

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 50 184,0 50 883,7 50 693,0 472,441

PAM-VNS1 ↑⇑ 45 440,4 45 553,0 45 496,6 95,800

PAM-VNS2 45 453,7 45 657,7 45 648,4 153,329

PAM-VNS3 45 444,4 45 637,9 45 594,4 177,586

GA-FULL 46 660,9 48 391,2 48 341,9 845,084

GA-ONE 47 081,3 48 125,9 47 965,0 766,566

Table 2: Comparative results of computational

experiments with data set 5514BC1T2-9A5 (91 data

vectors, 173 attributes) 10 clusters, 60 seconds for each

attempt, 30 attempts, Manhattan distance.

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 50 184,0 50 883,7 50 693,0 472,441

PAM-VNS1 ↑⇑ 45 440,4 45 553,0 45 496,6 95,800

PAM-VNS2 45 453,7 45 657,7 45 648,4 153,329

PAM-VNS3 45 444,4 45 637,9 45 594,4 177,586

GA-FULL 46 660,9 48 391,2 48 341,9 845,084

GA-ONE 47 081,3 48 125,9 47 965,0 766,566

Table 3: Comparative results of computational

experiments with data set 1526TL1 (1234 data vectors,

157 attributes) 10 clusters, 60 seconds for each attempt,

30 attempts, Manhattan distance.

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 64 232,0 66 520,2 66 776,2 991,994

PAM-VNS1 ↕⇕ 55 361,8 55 363,9 56 004,1 2,457

PAM-VNS2 55 361,8 55 858,4 55 904,3 359,416

PAM-VNS3 55 383,8 55 755,0 55 662,5 353,947

GA-FULL 58 789,3 60 629,5 61 069,2 1187,09

GA-ONE 58 300,2 60 165,4 59 689,1 1388,62

GAGH+LS 55 361,8 55 364,1 55 754,2 6,2204

GAGH 55 361,8 55 361,8 55 622,3 7,8E-12

GA FIX 55 361,8 55 452,7 55 814,1 240,563

GA classical 55 361,8 55 364,1 55 638,9 6,220

Determ GH 55 998,2 55 998,2 56 199,4 0,000

Table 4: Comparative results of computational

experiments with data set 1526TL1 (1234 data vectors,

157 attributes) 10 clusters, 60 seconds for each attempt,

30 attempts, squared Euclidean distance.

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 2 688,57 2 704,17 2 702,58 12,3308

PAM-VNS1 ↑⇑ 2 607,21 2 607,25 2 607,21 0,1497

PAM-VNS2 2 607,21 2 607,43 2 607,21 0,4303

PAM-VNS3 2 607,21 2 607,34 2 607,21 0,4159

GA-FULL 2 608,22 2 624,97 2 625,77 9,5896

GA-ONE 2 608,69 2 625,18 2 624,57 10,7757

Table 5: Comparative results of computational

experiments with data set Ionosphere (351 data vectors,

35 attributes) 10 clusters, 60 seconds for each attempt, 30

attempts, Manhattan distance.

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 319,84 343,44 346,23 15,300

PAM-VNS1 278,63 390,43 367,03 82,609

PAM-VNS2 333,26 471,15 450,34 100,259

PAM-VNS3 273,91 354,98 352,75 54,244

PAM-VNS1-R 301,91 428,14 398,28 129,216

PAM-VNS2-R 384,62 475,92 470,64 53,097

PAM-VNS3-R ↑⇑ 265,96 325,49 317,94 42,144

GA-FULL 315,57 383,41 365,04 60,149

GA-ONE 343,21 433,01 424,73 66,036

Table 6: Comparative results of computational

experiments with data set Mopsi-Joensuu (6015 data

vectors, 2 attributes) 20 clusters, 60 seconds for each

attempt, 30 attempts, Euclidean distance.

60 Informatica 44 (2020) 55–61 L. Kazakovtsev et al.

However, for some of the considered datasets, the

genetic algorithms show their advantages over new

algorithms. Genetic algorithms show the best results in

the case of a complex relief of the objective function, the

presence of plateaus, due to diversity in the population,

as revealed in some of the cases considered. One of the

most important shortcomings of such algorithms is the

possible “dumping” of the entire population into the

region of attraction of a single local minimum. Probably,

new VNS-algorithms allow us to avoid this drawback

due to the continuous random generation of new

solutions, which are parameters of the search

neighborhood, and allow us to "jump out" of the

attraction region.

Therefore, the interest for further research is the

combined approach, combining the presence of a certain

population with the possibility of generating random

solutions, which play a role similar to that of the

mutation operator in traditional genetic algorithms.

Acknowledgement
Results were obtained in the framework of the state task

No. 2.5527.2017/8.9 of the Ministry of Education and

Science of the Russian Federation.

References
[1] Kazakovtsev L.A. (2016) The greedy heuristics

method for systems of automatic grouping of

objects. Diss ... Dr. tech. of science. Krasnoyarsk.

Siberian Federal University.

[2] Ghosh J., Acharya A. (2011) Cluster ensembles.

Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, Vol. 1(4), pp..305−315.

https://doi.org/10.1002/widm.32.

[3] Rozhnov I., Orlov V., Kazakovtsev L. (2018)

Ensembles of clustering algorithms for problem of

detection of homogeneous production batches of

semiconductor devices. CEUR-WS, Vol.2098,

pp.338-348.

https:// http://ceur-ws.org/Vol-2098/paper29.pdf

[4] Drezner Z., Hamacher H. (2004) Facility location:

applications and theory. Berlin:Springer-Verlag.

[5] Struyf A., Hubert M., Rousseeuw P. (1997)

Clustering in an Object-Oriented Environment.

Journal of Statistical Software, Issue 1 (4), pp.1-30.

https://doi.org/ 10.18637/jss.v001.i04.

[6] Kaufman L., Rousseeuw P.J. (1990) Finding groups

in data: an introduction to cluster analysis. New

York:Wiley.

https://doi.org/10.1002/9780470316801

[7] Moreno-Perez J.A., Roda Garcia J.L., Moreno-

Vega J.M. (1994) A Parallel Genetic Algorithm for

the Discrete p-Median Problem. Studies in

Location Analysis, Issue 7, pp.131-141.

[8] Wesolowsky, G. (1993) The Weber problem:

History and perspectives. Location Science, No.1,

pp.5-23.

[9] Drezner Z., Wesolowsky G.O. (1978) A Trajectory

Method for the Optimization of the Multifacility

Location Problem with lp Distances. Management

Science, Vol.24, pp.1507-1514.

https://doi.org/10.1287/mnsc.24.14.1507

[10] Farahani R., Hekmatfar M. (2009). Facility

location: Concepts, models, algorithms and case

studies. Berlin Heidelberg:Springer-Verlag.

https://doi.org/10.1080/13658816.2010.528422

[11] Deza M.M., Deza E. (2013) Metrics on Normed

Structures. Encyclopedia of Distances. Berlin

Heidelberg: Springer, pp.89-99.

https://doi.org/10.1007/978-3-642-30958-85.

[12] Weiszfeld, E. (1937) Sur le point sur lequel la

somme des distances de n points donnes est

minimum. Tohoku Mathematical Journal, Vol.43,

No.1, pp.335-0386.

https://link.springer.com/article/10.1007/s10479-

008-0352-z

[13] Kaufman L. and Rousseeuw P.J. (1987) Clustering

by means of Medoids. Statistical Data Analysis

Based on the L1-Norm and Related Methods,

Springer US. pp. 405-416.

[14] Kochetov Yu., Mladenovic N., Hansen P. (2003)

Local search with alternating neighborhoods.

Discrete analysis and operations research, Series 2,

Vol.10(1), pp.11-43.

[15] Nicholson T. A. J. (1965) A sequential method for

discrete optimization problems and its application

to the assignment, traveling salesman and tree

scheduling problems. J. Inst. Math. Appl, Vol.13,

pp.362-375.

https://doi.org/10.1093/imamat/3.4.362

[16] Page E. S. (1965) On Monte Carlo methods in

congestion problems. I: Searching for an optimum

in discrete situations. Oper. Res. Vol.13(2), pp.

291-299.

https://doi.org/10.1287/opre.13.2.291

[17] Kernighan B. W., Lin S. (1970) An efficient

heuristic procedure for partitioning graphs. Bell

Syst. Tech. J. Vol.49. pp.291-307.

https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

[18] Rastrigin L.А. (1978) Random search - specificity,

stages of history and prejudice. Questions of

Algorithm Objective function value

(sum of distances)

Min

(the best

attempt)

Average

among 30

attempts

Median Standard

deviation

PAM 10 763,0 10 822,4 10 833,0 47,127

PAM-VNS1 10 357,0 10 530,9 10 563,5 122,962

PAM-VNS2 10 803,0 11 107,1 11 079,5 174,118

PAM-VNS3 10 429,0 10 594,6 10 575,0 114,719

PAM-VNS1-R 10 400,0 10 659,0 10 664,5 161,298

PAM-VNS2-R 10 891,0 11 097,0 11 096,5 187,911

PAM-VNS3-R ↕⇕ 10 310,0 10 623,3 10 597,5 214,129

GA-FULL 10 252,0 10 381,3 10 393,0 72,911

GA-ONE 10 944,0 11 098,0 11 064,5 112,081

Table 7: Comparative results of computational

experiments with data set Chess (3196 data vectors, 37

binary attributes) 50 clusters, 60 seconds for each

attempt, 30 attempts, squared Euclidean distance.

https://doi.org/10.1002/widm.32
http://dx.doi.org/10.18637/jss.v001.i04
https://doi.org/10.1287/mnsc.24.14.1507
https://doi.org/10.1080/13658816.2010.528422
https://doi.org/10.1093/imamat%2F3.4.362
https://doi.org/10.1287/opre.13.2.291

Application of Algorithms with Variable Greedy Heuristics... Informatica 44 (2020) 55–61 61

cybernetics. M.: Nauch. Council on the complex

problem "Cybernetics" of the USSR Academy of

Sciences, Vol. 33, pp.3-16.

[19] Kochetov Yu.А. (2010) Local search methods for

discrete placement problems. Dis. Doctors of

Physical and Mathematical Sciences. Novosibirsk.

[20] Hansen P., Mladenovic N., Bruke E.K., Kendall G.

(2014) Variable Neighborhood Search. Search

Methodology. Springer US. P.211-238.

https://doi.org/10.1007/0-387-28356-0_8.

[21] Kazakovtsev, L.A., Antamoshkin, A.N. (2014)

Genetic Algorithm with Fast Greedy Heuristic for

Clustering and Location Problems. Informatica,

Vol.38(3), pp.229-240.

[22] Osman I. H., Laporte G. (1996) Metaheuristics: a

bibliography. Ann. Oper. Res, Vol.63. pp.513-628.

https://doi.org/10.1007/BF02125421.

[23] Mladenovic N., Hansen P. Variable neighborhood

search. Comput. Oper. Res, Vol.24, P.1097-1100.

https://doi.org/10.1016/S0305-0548(97)00031-2.

[24] Hansen P., Mladenovic N. (2001) Variable

neighborhood search: principles and applications

(invited review). European J. Oper. Res,

Vol.130(3), pp.449-467.

https://doi.org/10.1016/S0377-2217(00)00100-4

[25] Garcia-Lopez F., Melian-Batista B., Moreno-Perez

J.A., Moreno-Vega M. (2002) The parallel variable

neighborhood search for the p-median problem.

Journal of Heuristics, Vol.8, pp. 375-388 (2002).

https://doi.org/10.1023/A:1015013919497.

[26] Brimberg J., Mladenovic N. (1996) A variable

neighborhood algorithm for solving the continuous

location-allocation problem. Stud. Locat. Anal. V.

10. pp. 1-12.

[27] Hansen P., Mladenovic N., Perez-Brito D. (2001)

Variable neighborhood decomposition search. J.

Heuristics, Vol.7 (4), pp. 335-350.

https://doi.org/ 10.1023/A:1011336210885.

[28] Goldberg D. E. (1989) Genetic algorithms in

search, optimization, and machine learning.

Reading, MA: Addison-Wesley.

https://doi.org/10.5555/534133.

[29] Houck C.R., Joines J. A., G.Kay. M. (1996)

Comparison of Genetic Algorithms, Random

Restart, and Two-Opt Switching for Solving Large

Location-Allocation Problems. Computers and

Operations Research, Vol. 23, pp. 587-596.

https://doi.org/10.1016/0305-0548(95)00063-1.

[30] Alp O., Erkut E., Drezner Z. (2003) An Efficient

Genetic Algorithm for the p-Median Problem.

Annals of Operations Research. Vol.122, pp.21-42,

https://doi.org/10.1023/A:1026130003508. (2003).

[31] Neema M.N., Maniruzzaman K.M., Ohgai A.

(2011) New Genetic Algorithms Based Approaches

to Continuous p-Median Problem. Netw. Spat.

Econ., Vol.11, pp.83-99,

https://doi.org/10.1007/s11067-008-9084-5.

[32] UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. access date

28.03.2019.

[33] Clustering basic benchmark [http://cs.joensuu.fi/

sipu/datasets], access date 28.03.2019.

[34] Wilcoxon F. (1945) Individual comparisons by

ranking methods. Biometrics Bulletin, Vol.1(6),

pp. 80–83.

https://doi.org/10.2307/3001968.

[35] Derrac J., Garcia S., Molina D., Herrera F. (2011) A

practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms.

Swarm and Evolutionary Computation, Vol. 1(1),

pp. 3-18,

https://doi.org/j.swevo.2011.02.002.

[36] Sheng W., Liu X. (2006) A genetic k-medoids

clustering algorithm. Journal of Heuristics. Vol.12,

No.6. P. 447-466.

https://doi.org/10.1007/s10732-006-7284-z.

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/0305-0548(95)00063-1
https://doi.org/j.swevo.2011.02.002

62 Informatica 44 (2020) 55–61 L. Kazakovtsev et al.

