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Progress in location theory methods and clustering algorithms is mainly targeted at improving the 

performance of the algorithms. The most popular clustering models are based on solving the p-median 

and similar location problems (k-means, k-medoids). In such problems, the algorithm must find several 

points called cluster centers, centroids, medoids, depending on the specific problem which minimize 

some function of distances from known objects to the centers. In the the k-medoids problem, the centers 

(medoids) of the cluster must coincide with one of the clustered objects. The problem is NP-hard, and 

the efforts of researchers are focused on the development of compromise heuristic algorithms that 

provide a fairly quick solution with minimal error. In this paper, we propose new algorithms of the 

Greedy Heuristic Method which use the idea of the Variable Neighborhood Search (VNS) algorithms for 

solving the k-medoids problem (which is also called the discrete p-median problem). In addition to the 

known PAM (Partition Around Medoids) algorithm, neighborhoods of a known solution are formed by 

applying greedy agglomerative heuristic procedures. According to the results of computational 

experiments, the new search algorithms (Greedy PAM-VNS) give more accurate and stable results 

(lower average value of the objective function and its standard deviation, smaller spread) in comparison 

with known algorithms on various data sets. 

Povzetek: Avtorji predlagajo nove algoritme za reševanje problema lokacije k-medoidov in gručenja. 

 

1 Introduction 
The rapid development of artificial intelligence systems 

using, inter alia, methods of automatic data grouping 

(clustering) and methods of location theory, as well as 

increasing requirements for economic efficiency in all 

branches, creates a request for the creation of new 

algorithms with higher requirements for accuracy of the 

result. 

The attempts to discover a universal and, at the same 

time, exact method for solving most popular location and 

clustering problems (k-means, k-medoids, etc.), which 

guarantees the global optimum of the objective function, 

in the case of a large amount of input data has been 

recognized as unpromising. The efforts of researchers 

focused on the development of compromise heuristic 

algorithms that give a quick solution [1]. The heuristic 

algorithms or procedures, also called “heuristics” in the 

literature, are algorithms that do not have a rigorous 

justification, but gives an acceptable solution to the 

practically important problems. The so-called "greedy" 

algorithms are also heuristics. On each iteration, the 

greedy algorithm selects the best solution from a certain 

neighborhood (subset of intermediate solutions). At the 

same time, some of the practically important clustering 

problems require such a solution which is very close to 

the exact solution of the problem, and also stable during 

repeated runs of the randomized algorithm, reproducible 

and, therefore, verifiable. The problems should be solved 

online within a limited time. Such problems include, for 

example, the problem of forming special batches of 

semiconductor devices in the specialized testing centers 

[1], where the need to obtain stable results is due to the 

requirement of reproducibility and verifiability of 

calculation results that are part of the production process 

involving two parties with different interests: the 

manufacturer and the test Centre.  

The ensemble (collective) approach [2] allows 

reducing the dependence of the final decision on the 

selected parameters of the original models and 

algorithms and obtaining a more stable solution [3], or 

isolating "controversial" objects for which different 

clustering models give a contradictory result, into a 

separate class. The k-medoids problem is a convenient 

model for building clustering algorithm ensembles due to 

the adaptability of the model to the use of various 

measures of the distance between objects. 

The overall aim of the continuous location problem 

[4] is to find the location of one or several points 

(centers, centroids, medoids) in continuous space. There 

is an intermediate class of problems that are actually 

discrete (the number of possible locations of the searched 
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points is finite), operating with concepts characteristic of 

the continuous problems. In particular, such is the the k-

medoids problem [5, 6] (also called the discrete p-median 

problem [7] in the scientific literature). The main 

parameters of all such problems are the coordinates of 

the objects and the distances between them [8-10]. The 

aim of the continuous p-median problem [8] is to find k 

points (centers, centroids, medians, cluster medoids), 

such that the sum of weighted distances from N known 

points, called demand points, consumers, objects or data 

vectors depending on the formulation of a specific 

problem, to the nearest of the k centers reaches its 

minimum. 

The allocation problems with Euclidean, Manhattan 

(rectangular), Chebyshev metrics are well studied (all 

these metrics are particular cases of metrics based on 

Minkowski lp-norms [11]), and many algorithms have 

been proposed for solving the Weber problem for these 

metrics.  In particular, the well-known Weisfeld 

procedure [12] was generalized for metrics based on 

Minkowski norms. 

If the distance is Euclidean 𝐿(𝑋𝑗 , 𝐴𝑖) =

√∑ (𝑥𝑗,𝑘 − 𝑎𝑖,𝑘)
2𝑑

𝑘=1 , we have the p-median problem. 

Here, Xj=(xj,1,…,xj,k) ∀𝑗 = 1, 𝑝̅̅ ̅̅̅, Ai=(ai,1,…,ai,d) ∀𝑖 = 1,𝑁̅̅ ̅̅ ̅. 

If the squared Euclidean metric is used, 𝐿(𝑋𝑗 , 𝐴𝑖) =

∑ (𝑥𝑗,𝑘 − 𝑎𝑖,𝑘)
2𝑑

𝑘=1 , we have the k-means problem. 

Vectors A1,…,AN are data vectors in a d-dimensional  

space, Ai=(ai,1,…,ai,d), 𝐴𝑖 ∈ ℝ𝑑 d
iA R . 

 In the k-medoids model and problem, cluster 

centers Xj=(xj,1,…,xj,k) called medoids, are searched 

among the known points Ai, and this is a discrete 

optimization problem. 

The most popular algorithm for the k-medoid 

problem, Partitioning Around Medoids (PAM) algorithm, 

was created by L. Kaufman and P. J. Rousseeuw) [13]. It 

is very similar to the k-means algorithm. Both algorithms 

divide a lot of objects into groups (clusters) and both are 

based on attempts to minimize the error (total distance) 

on each iteration. The PAM algorithm works with 

medoids, objects that are part of the original set and 

representing the cluster in which they are included, and 

the k-means algorithm works with centroids, which are 

artificially created objects representing a cluster. The 

PAM algorithm divides a set of N objects into k clusters 

(k is a parameter of the algorithm). This algorithm 

operates the pre-calculated distance matrix between 

objects, its aim is to minimize the distance between the 

medoid of each cluster and other objects included in the 

same cluster. 

For discrete optimization problems, the local search 

methods are the most natural and visual [14]. Such 

problems include the location problems, building 

networks, schedules, etc. [15-18]. The standard local 

descent algorithm starts with some initial solution x0 (in 

our case, the initial set of medoids) chosen randomly or 

with the use of some additional algorithm. At each step 

of a local descent, the current solution is transformed into 

to the neighboring solution with a smaller value of the 

objective function until a local optimum is reached. At 

each step of local descent, the function of neighborhood 

O defines a set of possible directions of local search. 

Very often this set consists of several elements and there 

is a certain freedom in choosing the next solution. On the 

one hand, when choosing a neighborhood, it is desirable 

to have a set of O(X) as small as possible in order to 

reduce the complexity of a single step. On the other 

hand, a wider neighborhood can lead to a better local 

optimum. A possible way to resolve this contradiction is 

to develop complex neighborhoods, the size of which can 

be varied during local search [19]. 

In this paper, we propose the use of local search 

algorithms that contain greedy agglomerative heuristic 

procedures, as well as the well-known PAM algorithm, 

using an idea of the Variable Neighborhood Search 

(VNS) [20]. It is shown that new VNS algorithms have 

advantages over the standard PAM algorithm and are 

competitive in comparison with the known genetic 

algorithms of the Greedy Heuristics Method for the 

considered problem [21]. 

2 Idea of new algorithms 
Local search methods have been further developed into 

metaheuristics [22]. We consider one of them, called the 

Variable Neighborhoods Search [23, 24]. The idea is to 

systematically vary the neighborhood function during a 

local search. Flexibility and efficiency explain its 

competitiveness in solving NP-hard problems, in 

particular, p-median problems [25], clustering and 

location problems [26, 27]. 

Let us denote by Nk, k=1,..kmax, the finite set of 

neighborhood functions preselected for local search. The 

proposed method with variable neighborhoods relies on 

the fact that a local minimum in one neighborhood is not 

necessarily a local minimum in another neighborhood, 

and the global minimum is the local minimum in all 

neighborhoods [14]. In addition, on average, local 

minima are closer to the global than a randomly selected 

point, and they are located close to each other. This 

allows us to narrow the search area for a global optimum 

using information about local optimums already detected. 

This hypothesis forms the basis for various crossover 

operators for genetic algorithms [28] and other 

approaches. 

The deterministic local descent with variable 

neighborhoods (VND) implies a fixed order of changing 

neighborhoods and finding a local minimum relative to 

each of them. Probabilistic local descent with variable 

neighborhoods  differs from the previous VND method 

by a random selection of points from the neighborhood 

Ok(X)Nk. The stage of finding the best point in the 

neighborhood is omitted. The probabilistic algorithms are 

most productive in solving problems of large dimension, 

when the use of a deterministic version requires too 

much machine time to perform one iteration. 

The basic local search scheme with variable 

neighborhoods is a combination of the two previous 

options [23].  
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VNS algorithm 

Step 1. Choose the neighborhoods Ok, k = 1, .. kmax, 

and the starting point x. 

Step 2. Repeat until the stopping criterion is 

satisfied. 

2.1. k ← 1. 

2.2. Repeat until k≤kmax: 

2.2.1. Randomly select a point )(' xOx k ; 

2.2.2. Apply a local descent from the starting point 

x'. The resulting local optimum is denoted by x"; 

2.2.3. if F (x") <F (x), then it is assumed that x ← x", 

k ← 1, otherwise k ← k + 1. 

 

We can use the time limitation or maximum number 

of iterations as the stop criterion. In the case of large-

scale problems, the complexity of performing one 

iteration becomes very large and new approaches are 

needed to develop effective local search methods. 

A popular idea in solving continuous clustering 

problems is the use of genetic algorithms (GA) and other 

evolutionary approaches to improve the results of local 

search [29-31]. Many of these evolutionary algorithms 

recombine the initial solution obtained by one of the 

simple local search algorithms. 

The PAM procedure consists of two phases: BUILD 

and SWAP: 

- In the BUILD phase, primary clustering is 

performed, during which k objects are successively 

selected as medoids. 

- The SWAP phase is an iterative process in which 

the algorithm makes attempts to improve some of the 

medoids. At each iteration of the algorithm, a pair is 

selected (medoid and non-medoid) such that replacing 

the medoid with a non-medoid object gives the best value 

of the objective function (the sum of the distances from 

each object to the nearest medoid). The procedure for 

changing the set of medoids is repeated as long as there 

is a possibility of improving the value of the objective 

function. 

 

Algorithm 1 (PAM procedure). 

Initialization (if needed): 

1. Select k objects as a set of medoids (if such set is 

not given). 

2. Build a distance matrix if needed. 

Build Phase: 

3. Assign each object to the nearest medoid. 

Swap Phase: 

4. For each cluster, find objects that reduce the 

average distance, and if there are such objects, select 

those that reduce it most strongly, as a medoid. 

5. If at least one medoid has changed, return to Step 

3, otherwise stop the algorithm. 

 

The following algorithm is the basic algorithm of the 

Greedy Heuristics Method [1] for clustering problems. 

His idea is that initially some unacceptable solution with 

an excessive number of centers / medoids is selected, 

which is then gradually reduced to a solution with a 

given number of centers. 

Algorithm 2. Basic greedy agglomerative heuristic 

procedure. 

Required: the initial number of clusters K, the 

required number of clusters k <K. 

1. Randomly choose an initial solution with K cluster 

centers S = {X1, ..., Xk} if it is not given. 

2. Execute Algorithm 1 with the initial solution S, 

store a new (improved) solution to S. 

3. If K = k, then stop. 

4. For each  K,'i 1  perform: 

4.1. Get a truncated set S←S\{Xi’}. 
4.2. Run Algorithm 1 with the initial solution S’. In 

this case, Algorithm 1 is limited to only one iteration. 

Store the achieved value of the objective function (1) to 

F’i ’. 

4.3. Next iteration of loop 4. 

5. Find the index 𝑖′′ = argmax𝑖′=1,𝑘̅̅ ̅̅ 𝐹𝑖′. 

6. Get a truncated set S←S\{Xi’’}, improve it with 

Algorithm 1, then go to step 3. 

 

This procedure forms the basis for three new 

procedures that use the centers/medoids of some second 

known feasible solution to compile an intermediate 

infeasible solution with an excessive number of clusters 

K. 

 

Algorithm 3. Greedy procedure # 1. 

Given: multiple cluster centers S’= {X’1, ..., X’k} and 

S’’= {X’’1,…, X’’k}. 

1. For each 𝑖′ ∈ {1, 𝑘̅̅ ̅̅̅} perform: 

1.1. Combine element by element sets S’ and S’’: 

 .''X'SS 'i
 

1.2. Run the basic greedy heuristic (Algorithm 2) 

with S as the initial solution. The result obtained (the 

resulting set, as well as the value of the objective 

function) is memorized. 

2. Return the best (by the value of the objective 

function) solution among the solutions obtained in step 

1.2. 

 

A simpler, but more demanding in terms of 

computing resources version of the similar algorithm is 

presented below. 

 

Algorithm 4. The greedy procedure # 2. 

1. Form a unified set 𝑆 ← 𝑆′ ∪ 𝑆". 
2. Run Algorithm 2 with S as the initial solution. 

 

An intermediate variant is suggested in [21]. There, 

the Algorithm 2 starts from the set S' united with a 

randomly chosen subset of S. 

 

Algorithm 5. The greedy procedure # 3. 

1. Choose random r’[0,1). Assign r←[(k/2-2) 

r’2]+2. Here, [.] is the integer part. 

2. Repeat k-r times: 

2.1. Form a randomly selected subset of S’’’ of the r 

elements of the set S’’. Join the sets 𝑆 ← 𝑆′ ∪ 𝑆′′′. 
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2.2. Run Algorithm 2 with this set S as the initial 

solution. 

3. Return the best (in terms of the objective function) 

among the solutions obtained in step 2.2. 

 

These heuristic procedures, which are local search 

algorithms in the neighborhood of a known (“parent”) 

solution represented by the set S’, can be used as a part of 

various global search strategies. At the same time, as the 

neighborhoods of this solution S’ are formed by adding 

elements from the other known solution S’’  and 

eliminating the excessive elements from the unified 

solution using the basic greedy agglomerative heuristic 

procedure.  

The search in such neighborhoods is made by 

Algorithms 3-5. Thus, these algorithms search in some 

neighborhoods of the solution S’, and the second known 

solution S’’  is a randomly selected parameter of this 

neighborhood. The general idea of the new Variable 

Neighborhood Search algorithms neighborhoods for 

solving the k-medoids problem is given below: 

 

Algorithms 6. PAM-VNS. 

1. Run Algorithm 1 from a random initial solution, 

store the resulting set of medoids to S. 

2. Assign O ← Ostart //comment: Ostart is the initial 

number of neighborhood type). 

3. Assign i←0, j←0; (the number of unsuccessful 

iterations in a particular neighborhood and as a whole by 

the algorithm). 

4. Run Algorithm 1 from the random initial solution, 

get the solution S’. 

5. Depending on the value of O (values 1, 2 or 3 are 

allowed), run Algorithm 3, 4 or 5 with the initial 

solutions S and S’.  

6. If the result (by the objective function value) is 

better than S, then replace S with this new result, assign 

i=0, j=0, go to Step 5. 

7. Assign i←i+1; 

8. If i <imax, then go to Step 4. 

9. Assign i←0, j←j +1. Switch to a new 

neighborhood type: O=O+1; if O>3, then assign O=1; 

10. If  j> jmax, or other stop conditions are satisfied 

(maximum running time), then STOP. Otherwise, go to 

Step 5. 

 

The values of the two control parameters are 

important: the number of ineffectual searches in the 

current neighborhood imax, and the number of ineffectual 

switching of the neighborhoods jmax. We used the values 

imax = 2k, jmax = 2. 

In addition, important control parameter Ostart, which 

specifies the number of the starting neighborhood type. 

We performed our experiments with all its possible 

values (1, 2 and 3). Depending on this value, the 

algorithms are designated below, respectively, PAM-

VNS1, PAM-VNS2, PAM-VNS3. In these versions of 

Algorithm 6, the number of elements in S’ is equal to the 

number of elements in S: |S|=|S’|=k. In special versions 

called PAM-VNS1-R, PAM-VNS2-R, PAM-VNS3-R, 

the number of elements (medoids) in S’ is chosen 

randomly, 𝑆′ ∈ {2,2𝑘̅̅ ̅̅ ̅̅ }. 

3 Computational experiments 
In the description of the computation experiments, we 

used the following abbreviations of the algorithm names: 

PAM is the classical PAM algorithm in multi-start mode; 

PAM-VNS1, PAM-VNS2, PAM-VNS3, PAM-VNS1-R, 

PAM-VNS2-R, and PAM-VNS3-R are variations of 

Algorithm 6; GA-FULL is the genetic algorithm with a 

greedy heuristic for the k-medoids problem [1]; GA-

ONE is a new genetic algorithm with greedy heuristic [1] 

where Algorithm 3 is used as a crossing-over procedure. 

As test data sets for our experiments, we used the 

results of non-destructive test tests of prefabricated 

production batches of semiconductor devices (Tables 1-

7), datasets from repositories UCI [32] and Clustering 

basic benchmark [33]. In our experiments, we used the 

DEXP computing system (4-core Intel® Core ™ i5-7400 

CPU 3.00 GHz, 8 GB of RAM). 

For all data sets, 30 attempts were made with each of 

the 9 algorithms. In every attempt, we fixed the best 

achieved results. The best values of the objective 

function (minimum value, mean value, median value and 

standard deviation) are highlighted in bold italics, the 

smallest of the best values is additionally highlighted. 

We used the T-test and the Wilcoxon signed rank 

test [34, 35] (significance level 0.01 for both tests). Note: 

“↑”, “⇑”: the advantage of the best of new algorithms 

over known algorithms is statistically significant (“↑” for 

the  t-test, and “⇑” for the Wilcoxon test); “↓”, “⇓”: the 

disadvantage of the best new algorithms compared to 

known algorithms is statistically significant; “↕”, “⇕”: 

advantage or disadvantage is statistically insignificant.  

Table 4 presents the results of the new algorithm in 

comparison with known evolutionary algorithms that 

have worked well in solving this problem [1]. 

In Table 4, we use the following abbreviations [1]:  

- GA a genetic algorithm with uniform stochastic 

crossingover procedure, 

- GAGH is the genetic algorithm with greedy heuristic 

#3 as crossingover procedure, 

- LS is the local search by PAM algorithm in 

 

Algorithm 

Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 1 654,4 1 677,4 1679,5 12,2445 

PAM-VNS1 1 554,3 1 566,7 1565,7 7,4928 

PAM-VNS2 1 558,0 1 566,1 1566,5 5,0686 

PAM-VNS3 ↑⇑ 1 555,1 1 563,9 1564,9 3,9161 

GA-FULL 1 599,2 1 637,6 1636,2 25,5365 

GA-ONE 1 589,9 1 614,8 1615,4 13,5342 

Table 1: Comparative results of computational 

experiments with data set 3OT122A (767 data vectors, 

13 attributes) 10 clusters, 60 seconds for each attempt, 

30 attempts, Manhattan distance. 
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multistart mode, 

- GA FIX is the genetic algorithm with recombination 

of fixed-length subsets [36], 

- Determ.GH is the deterministic algorithm with 

greedy heuristic [1] built on the principles of the 

Information Bottleneck Clustering. 

- For some of the datasets, we performed our 

computational experiments with various number of 

clusters and various distance metrics (Tables 5-7). 

 

For the genetic algorithms, we used the population 

size NPOP starting from NPOP=20. In [21], authors 

show that smaller populations (NPOP<10) in the genetic 

algorithms with the greedy agglomerative crossingover 

procedure decrease the accuracy of the result, and larger 

populations (NPOP>50) slow down the algorithm which 

also decreases the accuracy.  

In all genetic algorithms, we used the simple 

tournament selection. Traditionally [30], such algorithms 

do not contain any mutation operator. 

4 Conclusion 
The results of our computational experiments showed 

that the new search algorithms in alternating 

neighborhoods (PAM-VNS) can outperform known 

algorithms and give more stable results (a lower median 

and average values and / or standard deviation of the 

objective function, a smaller spread of the achieved 

values) and, consequently, better performance in 

comparison with known algorithms. The comparative 

efficiency of the new algorithm and its modifications on 

several data sets has been experimentally proven.  

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 50 184,0 50 883,7 50 693,0 472,441 

PAM-VNS1 ↑⇑ 45 440,4 45 553,0 45 496,6 95,800 

PAM-VNS2 45 453,7 45 657,7 45 648,4 153,329 

PAM-VNS3 45 444,4 45 637,9 45 594,4 177,586 

GA-FULL 46 660,9 48 391,2 48 341,9 845,084 

GA-ONE 47 081,3 48 125,9 47 965,0 766,566 

Table 2: Comparative results of computational 

experiments with data set 5514BC1T2-9A5 (91 data 

vectors, 173 attributes) 10 clusters, 60 seconds for each 

attempt, 30 attempts, Manhattan distance. 

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 50 184,0 50 883,7 50 693,0 472,441 

PAM-VNS1 ↑⇑ 45 440,4 45 553,0 45 496,6 95,800 

PAM-VNS2 45 453,7 45 657,7 45 648,4 153,329 

PAM-VNS3 45 444,4 45 637,9 45 594,4 177,586 

GA-FULL 46 660,9 48 391,2 48 341,9 845,084 

GA-ONE 47 081,3 48 125,9 47 965,0 766,566 

Table 3: Comparative results of computational 

experiments with data set 1526TL1 (1234 data vectors, 

157 attributes) 10 clusters, 60 seconds for each attempt, 

30 attempts, Manhattan distance. 

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 64 232,0 66 520,2 66 776,2 991,994 

PAM-VNS1 ↕⇕ 55 361,8 55 363,9 56 004,1 2,457 

PAM-VNS2 55 361,8 55 858,4 55 904,3 359,416 

PAM-VNS3 55 383,8 55 755,0 55 662,5 353,947 

GA-FULL 58 789,3 60 629,5 61 069,2 1187,09 

GA-ONE 58 300,2 60 165,4 59 689,1 1388,62 

GAGH+LS 55 361,8 55 364,1 55 754,2 6,2204 

GAGH 55 361,8 55 361,8 55 622,3 7,8E-12 

GA FIX 55 361,8 55 452,7 55 814,1 240,563 

GA classical 55 361,8 55 364,1 55 638,9 6,220 

Determ GH 55 998,2 55 998,2 56 199,4 0,000 

Table 4: Comparative results of computational 

experiments with data set 1526TL1 (1234 data vectors, 

157 attributes) 10 clusters, 60 seconds for each attempt, 

30 attempts, squared Euclidean distance. 

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 2 688,57 2 704,17 2 702,58 12,3308 

PAM-VNS1 ↑⇑ 2 607,21 2 607,25 2 607,21 0,1497 

PAM-VNS2 2 607,21 2 607,43 2 607,21 0,4303 

PAM-VNS3 2 607,21 2 607,34 2 607,21 0,4159 

GA-FULL 2 608,22 2 624,97 2 625,77 9,5896 

GA-ONE 2 608,69 2 625,18 2 624,57 10,7757 

Table 5: Comparative results of computational 

experiments with data set Ionosphere (351 data vectors, 

35 attributes) 10 clusters, 60 seconds for each attempt, 30 

attempts, Manhattan distance. 

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 319,84 343,44 346,23 15,300 

PAM-VNS1 278,63 390,43 367,03 82,609 

PAM-VNS2 333,26 471,15 450,34 100,259 

PAM-VNS3 273,91 354,98 352,75 54,244 

PAM-VNS1-R 301,91 428,14 398,28 129,216 

PAM-VNS2-R 384,62 475,92 470,64 53,097 

PAM-VNS3-R ↑⇑ 265,96 325,49 317,94 42,144 

GA-FULL 315,57 383,41 365,04 60,149 

GA-ONE 343,21 433,01 424,73 66,036 

Table 6: Comparative results of computational 

experiments with data set Mopsi-Joensuu (6015 data 

vectors, 2 attributes) 20 clusters, 60 seconds for each 

attempt, 30 attempts, Euclidean distance. 
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However, for some of the considered datasets, the 

genetic algorithms show their advantages over new 

algorithms. Genetic algorithms show the best results in 

the case of a complex relief of the objective function, the 

presence of plateaus, due to diversity in the population, 

as revealed in some of the cases considered. One of the 

most important shortcomings of such algorithms is the 

possible “dumping” of the entire population into the 

region of attraction of a single local minimum. Probably, 

new VNS-algorithms allow us to avoid this drawback 

due to the continuous random generation of new 

solutions, which are parameters of the search 

neighborhood, and allow us to "jump out" of the 

attraction region. 

Therefore, the interest for further research is the 

combined approach, combining the presence of a certain 

population with the possibility of generating random 

solutions, which play a role similar to that of the 

mutation operator in traditional genetic algorithms. 

Acknowledgement 
Results were obtained in the framework of the state task 

No. 2.5527.2017/8.9 of the Ministry of Education and 

Science of the Russian Federation. 

References 
[1] Kazakovtsev L.A. (2016) The greedy heuristics 

method for systems of automatic grouping of 

objects.  Diss ... Dr. tech. of science. Krasnoyarsk. 

Siberian Federal University. 

[2] Ghosh J., Acharya A. (2011) Cluster ensembles. 

Wiley Interdisciplinary Reviews: Data Mining and 

Knowledge Discovery, Vol. 1(4), pp..305−315. 

https://doi.org/10.1002/widm.32. 

[3] Rozhnov I., Orlov V., Kazakovtsev L. (2018) 

Ensembles of clustering algorithms for problem of 

detection of homogeneous production batches of 

semiconductor devices. CEUR-WS, Vol.2098, 

pp.338-348. 

https:// http://ceur-ws.org/Vol-2098/paper29.pdf 

[4] Drezner Z., Hamacher H. (2004) Facility location: 

applications and theory. Berlin:Springer-Verlag. 

[5] Struyf A., Hubert M., Rousseeuw P. (1997) 

Clustering in an Object-Oriented Environment. 

Journal of Statistical Software, Issue 1 (4), pp.1-30. 

https://doi.org/ 10.18637/jss.v001.i04. 

[6] Kaufman L., Rousseeuw P.J. (1990) Finding groups 

in data: an introduction to cluster analysis. New 

York:Wiley. 

https://doi.org/10.1002/9780470316801 

[7] Moreno-Perez J.A., Roda Garcia J.L., Moreno-

Vega J.M. (1994) A Parallel Genetic Algorithm for 

the Discrete p-Median Problem. Studies in 

Location Analysis, Issue 7, pp.131-141. 

[8] Wesolowsky, G. (1993) The Weber problem: 

History and perspectives. Location Science, No.1, 

pp.5-23. 

[9] Drezner Z., Wesolowsky G.O. (1978) A Trajectory 

Method for the Optimization of the Multifacility 

Location Problem with lp Distances. Management 

Science, Vol.24, pp.1507-1514. 

https://doi.org/10.1287/mnsc.24.14.1507 

[10] Farahani R., Hekmatfar M. (2009). Facility 

location: Concepts, models, algorithms and case 

studies. Berlin Heidelberg:Springer-Verlag. 

https://doi.org/10.1080/13658816.2010.528422 

[11] Deza M.M., Deza E. (2013) Metrics on Normed 

Structures. Encyclopedia of Distances. Berlin 

Heidelberg: Springer, pp.89-99. 

https://doi.org/10.1007/978-3-642-30958-85. 

[12] Weiszfeld, E. (1937) Sur le point sur lequel la 

somme des distances de n points donnes est 

minimum. Tohoku Mathematical Journal, Vol.43, 

No.1, pp.335-0386. 

https://link.springer.com/article/10.1007/s10479-

008-0352-z 

[13] Kaufman L. and Rousseeuw P.J. (1987) Clustering 

by means of Medoids. Statistical Data Analysis 

Based on the L1-Norm and Related Methods, 

Springer US. pp. 405-416. 

[14] Kochetov Yu., Mladenovic N., Hansen P. (2003) 

Local search with alternating neighborhoods. 

Discrete analysis and operations research, Series 2, 

Vol.10(1), pp.11-43. 

[15] Nicholson T. A. J. (1965) A sequential method for 

discrete optimization problems and its application 

to the assignment, traveling salesman and tree 

scheduling problems. J. Inst. Math. Appl, Vol.13, 

pp.362-375. 

https://doi.org/10.1093/imamat/3.4.362 

[16] Page E. S. (1965) On Monte Carlo methods in 

congestion problems. I: Searching for an optimum 

in discrete situations. Oper. Res. Vol.13(2), pp. 

291-299. 

https://doi.org/10.1287/opre.13.2.291 

[17] Kernighan B. W., Lin S. (1970) An efficient 

heuristic procedure for partitioning graphs. Bell 

Syst. Tech. J. Vol.49. pp.291-307. 

https://doi.org/10.1002/j.1538-7305.1970.tb01770.x 

[18] Rastrigin L.А. (1978) Random search - specificity, 

stages of history and prejudice. Questions of 

Algorithm Objective function value 

(sum of distances) 

Min 

(the best 

attempt) 

Average 

among 30 

attempts 

Median Standard 

deviation 

PAM 10 763,0 10 822,4 10 833,0 47,127 

PAM-VNS1 10 357,0 10 530,9 10 563,5 122,962 

PAM-VNS2 10 803,0 11 107,1 11 079,5 174,118 

PAM-VNS3 10 429,0 10 594,6 10 575,0 114,719 

PAM-VNS1-R 10 400,0 10 659,0 10 664,5 161,298 

PAM-VNS2-R 10 891,0 11 097,0 11 096,5 187,911 

PAM-VNS3-R ↕⇕ 10 310,0 10 623,3 10 597,5 214,129 

GA-FULL 10 252,0 10 381,3 10 393,0 72,911 

GA-ONE 10 944,0 11 098,0 11 064,5 112,081 

Table 7: Comparative results of computational 

experiments with data set Chess (3196 data vectors, 37 

binary attributes) 50 clusters, 60 seconds for each 

attempt, 30 attempts, squared Euclidean distance. 

https://doi.org/10.1002/widm.32
http://dx.doi.org/10.18637/jss.v001.i04
https://doi.org/10.1287/mnsc.24.14.1507
https://doi.org/10.1080/13658816.2010.528422
https://doi.org/10.1093/imamat%2F3.4.362
https://doi.org/10.1287/opre.13.2.291


Application of Algorithms with Variable Greedy Heuristics... Informatica 44 (2020) 55–61 61 

 

cybernetics. M.: Nauch. Council on the complex 

problem "Cybernetics" of the USSR Academy of 

Sciences, Vol. 33, pp.3-16. 

[19] Kochetov Yu.А. (2010) Local search methods for 

discrete placement problems. Dis. Doctors of 

Physical and Mathematical Sciences. Novosibirsk.  

[20] Hansen P., Mladenovic N., Bruke E.K., Kendall G. 

(2014) Variable Neighborhood Search. Search 

Methodology. Springer US. P.211-238. 

https://doi.org/10.1007/0-387-28356-0_8. 

[21] Kazakovtsev, L.A., Antamoshkin, A.N. (2014) 

Genetic Algorithm with Fast Greedy Heuristic for 

Clustering and Location Problems. Informatica, 

Vol.38(3), pp.229-240. 

[22] Osman I. H., Laporte G. (1996) Metaheuristics: a 

bibliography. Ann. Oper. Res, Vol.63. pp.513-628. 

https://doi.org/10.1007/BF02125421. 

[23] Mladenovic N., Hansen P. Variable neighborhood 

search. Comput. Oper. Res, Vol.24, P.1097-1100.  

https://doi.org/10.1016/S0305-0548(97)00031-2. 

[24] Hansen P., Mladenovic N. (2001) Variable 

neighborhood search: principles and applications 

(invited review). European J. Oper. Res, 

Vol.130(3), pp.449-467. 

https://doi.org/10.1016/S0377-2217(00)00100-4 

[25] Garcia-Lopez F., Melian-Batista B., Moreno-Perez 

J.A., Moreno-Vega M. (2002) The parallel variable 

neighborhood search for the p-median problem. 

Journal of Heuristics, Vol.8, pp. 375-388 (2002).  

https://doi.org/10.1023/A:1015013919497. 

[26] Brimberg J., Mladenovic N. (1996) A variable 

neighborhood algorithm for solving the continuous 

location-allocation problem. Stud. Locat. Anal. V. 

10. pp. 1-12. 

[27] Hansen P., Mladenovic N., Perez-Brito D. (2001) 

Variable neighborhood decomposition search. J. 

Heuristics, Vol.7 (4), pp. 335-350.  

https://doi.org/ 10.1023/A:1011336210885. 

[28] Goldberg D. E. (1989) Genetic algorithms in 

search, optimization, and machine learning. 

Reading, MA: Addison-Wesley. 

https://doi.org/10.5555/534133. 

[29] Houck C.R., Joines J. A., G.Kay. M. (1996) 

Comparison of Genetic Algorithms, Random 

Restart, and Two-Opt Switching for Solving Large 

Location-Allocation Problems. Computers and 

Operations Research, Vol. 23, pp. 587-596. 

https://doi.org/10.1016/0305-0548(95)00063-1. 

[30] Alp O., Erkut E., Drezner Z. (2003) An Efficient 

Genetic Algorithm for the p-Median Problem. 

Annals of Operations Research. Vol.122, pp.21-42,  

https://doi.org/10.1023/A:1026130003508. (2003). 

[31] Neema M.N., Maniruzzaman K.M., Ohgai A. 

(2011) New Genetic Algorithms Based Approaches 

to Continuous p-Median Problem. Netw. Spat. 

Econ., Vol.11, pp.83-99,  

https://doi.org/10.1007/s11067-008-9084-5. 

[32] UCI Machine Learning Repository 

[http://archive.ics.uci.edu/ml]. access date 

28.03.2019. 

[33] Clustering basic benchmark [http://cs.joensuu.fi/ 

sipu/datasets], access date 28.03.2019. 

[34] Wilcoxon F. (1945) Individual comparisons by 

ranking methods. Biometrics Bulletin, Vol.1(6), 

pp. 80–83. 

https://doi.org/10.2307/3001968. 

[35] Derrac J., Garcia S., Molina D., Herrera F. (2011) A 

practical tutorial on the use of nonparametric 

statistical tests as a methodology for comparing 

evolutionary and swarm intelligence algorithms. 

Swarm and Evolutionary Computation, Vol. 1(1), 

pp. 3-18,  

https://doi.org/j.swevo.2011.02.002. 

[36] Sheng W., Liu X. (2006) A genetic k-medoids 

clustering algorithm. Journal of Heuristics. Vol.12, 

No.6. P. 447-466. 

https://doi.org/10.1007/s10732-006-7284-z. 

  

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/0305-0548(95)00063-1
https://doi.org/j.swevo.2011.02.002


62 Informatica 44 (2020) 55–61 L. Kazakovtsev et al. 

 

 


