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Association Rules Mining is one of the most studied and widely applied fields in Data Mining. However,
the discovered models usually result in a very large set of rules; so the analysis capability, from the user
point of view, is diminishing. Hence, it is difficult to use the found model in order to assist in the decision-
making process. The previous handicap is hightened in the presence of redundant rules in the final set. In
this work, a new definition of redundancy in association rules is proposed, based on user prior knowledge.
A post-processing method is developed to eliminate this kind of redundancy, using association rules known
by the user. Our proposal allows finding more compact models of association rules to ease its use in the
decision-making process. The developed experiments have shown reduction levels that exceed 90 percent
of all generated rules, using prior knowledge always below ten percent. So, our method improves the
efficiency of association rules mining and the exploitation of discovered association rules.

Povzetek: Opisan je sistem za zmanjševanje števila in dolžine pravil s pomočjo analize redundantnosti za
metode asociativnega učenja.

1 Introduction

Mining for association rules has been one of the most stud-
ied fields in data mining. Its main goal is to find unknown
relations among items in a database.

Given a set of items I which contains all the items in the
domain and a transactional database D where every trans-
action is composed by a transaction id (tid) and a set of
items, subset of I (itemset).

An association rule is presented as an implication X →
Y whereX is the antecedent and Y is the consequent of the
rule. Both X and Y are itemsets and usually, but not nec-
essarily, they check X ∩Y = ∅ property. Association rules
reflect how much the presence of the rule antecedent influ-
ences the presence of the rule consequent in the database
records.

What generally makes a rule meaningful are two statis-
tical factors: support and confidence. The support of a
rule supp(X → Y ) refers to the portion of the database
transaction for which X ∩ Y is true while confidence
conf(X → Y ) is a measure of certainty to evaluate the

validity of the rule, it is a measure for the portion of record
which contains Y from those that contain X . The problem
with association rule mining deals with finding all the rules
that satisfy a user-given threshold for support and confi-
dence. Most algorithms face the challenge in a two steps
procedure

1. Find all the itemsets which support value is equal or
greater than the support threshold.

2. Generate all association rules X → (Y − X), con-
sidering: Y is a frequent itemset, X ⊂ Y , and
conf(X → Y ) is equal or greater than the confidence
threshold value.

The discovering of meaningful association rules can help
in the decision-making process but the quite large number
of rules usually makes it difficult for decision-makers in or-
der to process, interpret and apply them. A significant part
of the rules presented to the user are irrelevant because they
are obvious, too general, too specific or because they are
not relevant for the decision topic. Several methods were
proposed in the literature to overcome this handicap such
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as interest measures development, concise representations
of frequent itemsets and redundancy reduction. Section 2
discusses some of the most important works in the field.

This paper proposes a new approach to deal with redun-
dancy, taking into account user previous knowledge about
the studied domain. Previous knowledge is used to detect
and prune redundant rules. We adapt the concept of redun-
dancy and we propose a procedure to develop the redun-
dancy reduction process in the post-processing stage.

The paper is organized as follows. Section 2 discusses
related work. In section 3 we propose an algorithm to find
and prune redundant rules. In section 4 the proposed algo-
rithm is used over three datasets one with data about finan-
cial investment [1], other with data about the USA census
[2] and the other with data about Mushrooms [2]. Section
5 closes the paper with conclusions.

2 Related work
Interestingness is difficult to define quantitatively [3] but
most interestingness measures are classified in objective
measures and subjective measures. Objective measures
are domain-independent, one of them is the interestingness
which is expressed in terms of statistic or information the-
ory applied over the database. Several surveys [4, 5, 6]
summarize and compare objective measures. The explo-
sion of objective measures has raised a new problem: What
are the best metrics to use in a specific situation and a par-
ticular application field? Several papers attempt to solve it
[8, 9] but it is far from being solved. The correlation be-
tween 11 objective rule interestingness measures and real
human interest over eight different datasets were computed
in [10] and there was not a clear “winner”, the correlation
values associated with each measure varied considerably
across the eight datasets.

Subjective measures were proposed in order to involve
explicitly user knowledge in the selection of interesting
rules so that the user can make a better selection. Accord-
ing to [11] subjective measures are classified in:

– Unexpectedness: a pattern is interesting if it is surpris-
ing to the user.

– Actionability: a pattern is interesting if it can help the
user to take some actions.

Actionability started as an abstract notion, with an un-
clear definition, but nowadays, several researchers are in-
terested in it. The actionability problem is discussed in
[12].

Unexpectedness or novelty [13] was proposed in order to
solve the pattern triviality problem, assessing the surprise
level of the discovered rules. Several techniques have been
used to accomplish this aim:

– Templates: Templates are syntactic constraints that al-
low the user to define a group of rules that are interest-
ing or not to him/her [14, 15]. A template is defined

as A1...An → An+1 where Ai is a class name in a
hierarchy or an expression E over a class name. Tem-
plates may be inclusive or restrictive. A rule is con-
sidered interesting if it matches an inclusive template
and uninteresting if it matches a restrictive template.
The use of templates is quite restrictive because the
matching method requires each rule element to be an
instance of the elements in templates, and all template
elements must have at least one instance in the rule.
Moreover, the template definition makes hard to use it
for declaring restrictive templates because it should be
composed of elements subsuming all attributes of the
rule, being in a subsuming relation with the inclusive
template elements.

The best known form of templates is meta-rules [16,
40] a meta-rule is the relationship between two asso-
ciation rules. The main drawback of this approach is
that meta-rules are restricted to having a single rule in
their antecedent and consequent, because of this some
important information may be lost.

– Belief: Silbershatz and Tuzilin [11] defined user
knowledge as a set of convictions, denominated belief.
They are used in order to measure the unexpectedness
of a pattern. Each belief is defined as a predicate for-
mula expressed in first-order logic with a degree of
confidence associated, measuring how much the user
trusts in the belief. Two types of belief were defined:

– Soft belief is that knowledge user accepts to
change if new evidence contradicts the previous
one. The interestingness of the new pattern is
computed by how the new pattern changes the
degree of beliefs.

– Hard belief is that knowledge user will not
change whatever new patterns are extracted.
They are constraints that cannot be changed with
new evidence.

This approach is still in a development stage, no fur-
ther advances were published, so it is not functional.

– General Impressions: were presented in [17] and later
developed in [18] and [19]. They developed a spec-
ification language to express expectations and goals.
Three levels of specification were established: Gen-
eral Impressions, Reasonably Precise Concept and
Precise Knowledge. Item taxonomies concept was
integrated in the specification languages in order to
generalize rule selection. The matching process in-
volved a syntactic comparison between antecedent/-
consequent elements. Thus, each element in the gen-
eral impression should find a correspondent in the as-
sociation rule.

– Logical Contradiction: was developed in [20]. It con-
sists in extracting only those patterns which logically
contradict the consequent of the corresponding belief.
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An association rule X → Y is unexpected with re-
spect to some belief A→ B if:

– Y ∧ B |= FALSE B and Y are in logical con-
tradiction;

– X ∧B has an important support in the database.
This condition eliminates those rules which
could be considered unexpected, but not those
concerning the same transaction in the database;

– A,X → B exists.

– Preference Model: was proposed in [21]. It is a spe-
cific type of user knowledge representing how the
basic knowledge of the user, called knowledge rules
(K), will be applied over a given scenario or tuples of
the database. The user proposes a covering knowledge
(Ct) for each tuple (t) - a subset of the knowledge rule
set K that the user prefers to apply to the tuple t. The
approach validates the transactions which satisfy the
extracted rule.

All the previously presented works use some kind of
knowledge to reduce the number of useless association
rules in the final set. In this way, our approach is similar
to them but there are some remarkable differences.

Like in templates our approach uses the syntactical nota-
tion of association rules to represent knowledge. Templates
use this knowledge to constraint the structure of selected
rules, pruning out those rules which do not satisfy the tem-
plate but produce a lot of association rules with similar in-
formation. On the other hand, we use the knowledge to
remove those rules with similar information, presenting to
the user a set of unexpected rules that can help him to better
understand the underlying domain.

The approach followed by Belief tries to find just un-
known rules, this is our main goal too but, they use a com-
plex and fixed formal knowledge representation based on
first order logic and degrees of belief with no clear way
of building and maintaining the belief system. Instead, we
use a simpler and natural rule-based form of knowledge, fo-
cused on the enhanced capability to increase interactively
the knowledge system.

2.1 Rule redundancy reduction

Research community accepts the semantical definition of
association rule redundancy given in [22] “an association
rule is redundant if it conveys the same information - or
less general information - than the information conveyed
by another rule of the same usefulness and the same rele-
vance”. But several formal definitions have been proposed
over time. In table 1, a sample transactional database is
presented. Defining a support threshold of 0.15 and a con-
fidence threshold of 0.75, an association rule model with 92
rules is obtained. It is used to show redundancy definitions.

Income Balance Sex Unemployed Loan
High High F No Yes
High High M No Yes
Low Low M No No
Low High F Yes Yes
Low High M Yes Yes
Low Low F Yes No
High Low M No Yes
High Low F Yes Yes
Low Medium M Yes No
High Medium M No Yes
Low Medium F Yes No
Low Medium M No No

Table 1: Sample transactions

Definition 1. Minimal non-redundant association
rules[22]: An association rule R : X → Y is a min-
imal non-redundant association rule if there is not an
association rule R1 : X1 → Y1 with:

– support(R) = support(R1)

– confidence(R) = confidence(R1)

– X1 ⊆ X and Y ⊆ Y1

From data on table 1 we can obtain the rules:
R : {[balance].[medium]} →
{[income].[low], [loan].[no]} supp = 0.25, conf = 0.75
and R1 : {[balance].[medium]} → {[loan].[no]}
supp = 0.25, conf = 0.75. According to definition 1 R
is a redundant rule. No new information is provided by its
inclusion into the association rules model.

Several works have been developed to prune that kind
of redundancy. Mining Closed Associations, uses frequent
closed itemsets [23] tries to produce the set of minimal gen-
erators for each itemset. The number of closed association
rules is linear to the number of closed frequent itemsets. It
can be large for sparse and large datasets.

The Generic Basis (GB) and the Informative Basis (IB)
[22] used the Galois connections to propose two condensed
basics that represent non-redundant rules. The Gen-GB and
Gen-RI algorithms were presented to obtain a generic ba-
sis and a transitive reduction of the IB. The reduction ra-
tio of IB was improved by [24] maximal closed itemsets.
The Informative Generic Basis [25] also uses the Galois
connection semantics but taking the support of all frequent
itemsets as an entry, so it can calculate the support and con-
fidence of derived rules. The augmented Iceberg Galois
lattice was used to construct the Minimal Generic Basis
(MGB) [26]. The concept of generator was incorporated
into high utility itemsets mining in [27].

The redundancy definition presented in definition 1
requires that a redundant rule and its corresponding
non-redundant rule must have identical confidence and
identical support. From data on table 1 we can obtain the
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rules:
R : {[income].[high], [unemployed].[no]} →
{[loan].[yes]} supp = 0.33, conf = 1.0, and
R1 : {[income].[high]} → {[loan].[yes]}
supp = 0.41, conf = 1.0 those rules are non-redundant
ones, but the consequent of R can be obtained from R1 a
rule with the same confidence and fewer conditions. So
without R the same results are achieved, rule R must be a
redundant rule. Xu [28] formalizes this kind of redundancy
in definition 2.

Definition 2. Redundant rules[28]: Let X → Y and
X1 → Y1 be two association rules with confidence cf and
cf1, respectively. X → Y is said to be a redundant rule to
X1 → Y1 if

– X1 ⊆ X and Y ⊆ Y1

– cf ≤ cf1

Based on definition 2 the Reliable basis was proposed.
It consists of two bases the ReliableApprox used in par-
tial rules, and ReliableExact used in exact rules. Frequent
closed itemsets are used to perform the reliable redundancy
reduction process. It generates rules with minimal an-
tecedent and maximal consequent. The reliable basis re-
moves a great amount of redundancy without reducing the
inference capacity of the remaining rules. Phan [29] uses
a more radical approach to define redundancy see defini-
tion 3.

Definition 3. Representative association rules[29]: Let
X → Y an association rule. X → Y
is said to be a representative association rule if there is not
other interesting rule X1 → Y1 such that X1 ⊆ X and
Y ⊆ Y1.

The redundancy definitions presented above do not guar-
antee the exclusion of all non-interesting patterns of the fi-
nal model. Example 1 shows a group of rules with no new
information to the user, and they are not classified as re-
dundant by the previous definitions.

Example 1. A set of redundant rules from data in table 1
Let’s see a subset of association rules obtained from
table 1:

R1 : {[income].[high]} → {[loan].[yes]}
R2 : {[sex].[female], [unemployed].[no]} →
{[income].[high]}
R3 : {[sex].[female], [unemployed].[no]} →
{[income].[high], [loan].[yes]}
R4 : {[sex].[female], [unemployed].[no]} →
{[loan].[yes]}
R5 : {[income].[high], [loan].[yes]} →
{[unemployed].[no]}
R6 : {[income].[high], [loan].[yes], [sex].[male]} →
{[unemployed].[no]}
R7 : {[balance].[high], [income].[high], [loan].[yes]} →

{[unemployed].[no]}

If we analyze the rules R1 and R3 we see that item
[loan].[yes] in R3 consequent provides no new informa-
tion, because this is known by R1. So rule R3 is redundant
but this kind of redundancy is not detected by the previous
definitions. Analyzing rules R1, R2 and R4 we can check
that combining, transitively, of R1 and R2 it will produce
R4 so, R4 is redundant. One more time this kind of redun-
dancy is not detected by previous definitions. InR5,R6 and
R7 antecedent the item [loan].[yes] provides no new infor-
mation because this is known by R1. It is redundant and
must be pruned, but it can not be detected by redundancy
definitions.

2.2 Post-processing
Since the year 2000, the interest in post-processing meth-
ods in association rules has been increasing. Perhaps the
most accurate definition of post-processing tasks were done
by Baesens et al. [30] Post-processing consists of dif-
ferent techniques that can be used independently or to-
gether: pruning, summarizing, grouping and visualization.
We have a special interest in pruning techniques that prune
those rules that do not match to the user knowledge. Those
techniques are associated with interestingness measures
that may not satisfy the downward closure property, so it
is impossible to integrate them in Apriori like extraction
algorithms.

An element to consider is the nature of Knowledge Dis-
covery in Databases (KDD) as an interactive and iterative
user-centered process. Enforcing constraints during the
mining runs neglects the character of KDD [31], [32]. A
single and possibly expensive mining run is accepted but
all subsequent mining questions are supposed to be satis-
fied with the initial result set.

In this work, a method is developed to obtain non-
redundant association rules about user knowledge. It is im-
portant to ensure the user capability to refine his/her knowl-
edge in an interactive and iterative way, accepting any of
the discovered associations or discarding some previous as-
sociations and updating prior knowledge. This approach
also makes possible to fulfill the mining question of dif-
ferent users, with different domain knowledge, in a single
mining run.

3 A knowledge guided approach

3.1 Knowledge based redundancy
In example 1, a group of redundant rules, which are cur-
rently not covered by the definitions of redundancy, are
showed. Our interest is to eliminate these forms of redun-
dancy in association rule models. Based on a core set of
rules that represent the user belief; a result of his experi-
ence working in the subject area. This knowledge is more
general than rules obtained in the mining process which
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only represent a particular dataset with partial information
so the quality metric value for this kind of rule is considered
maximal. This set of rules will be named prior knowledge.
A rule that does not contradict prior knowledge of the user
will be considered redundant. We formalize the notion of
prior knowledge redundancy in definition 4. User can rep-
resent previous knowledge in different ways like semantic
networks, ontologies, among others.

Considering that, the expert is interested in association
rules discovering, prior knowledge is incorporated to the
model using association rules format. For example an ex-
pert working with the dataset presented in table 1 knows
that customers with high income ([income].[high]) pay
their loans on time and therefore these must be approved.
This knowledge can be represented as the association rule
{[income].[high]} → {[loan].[yes]}.

Definition 4. Knowledge Based Redundancy: Let S be a
set of association rules and Sc a set of prior known rules,
defined over the same domain of S. An association rule
R : X → Y ∈ S is redundant with respect to Sc if there
is a rule R

′
: X

′ → Y
′ ∈ Sc and fulfills some of the

following conditions.

1. X
′ ⊆ X ∧ Y ′ ∩ Y 6= {∅}

A rule is redundant if there is another rule presented
in Sc that contains more general information.

2. X
′ ⊆ X ∧ ∃R′′

: X
′′ → Y

′′ ∈ Sc : X
′′ ⊆ Y ′ ∧ Y ⊆

Y
′′

A rule R is redundant if there is a rule R
′

in Sc that
contains part or the whole antecedent and there is a
third rule R

′′
in Sc that shares information with R

′

and its consequent contains R consequent.

3. X
′ ⊆ X ∧ Y ′ ∩X 6= {∅}

A rule is redundant if its antecedent contains a part or
the whole information of a previously known rule.

4. X
′ ⊆ Y ∧ Y ′ ∩ Y 6= {∅}

A rule is redundant if its consequent contains a part
or the whole information of a previously known rule.

Reviewing rules in example 1 with definition 4 we have:
Sc = {{[income].[high]} → {[loan].[yes]},
{[sex].[female], [unemployed, ].[no]} →
{[income].[high]}}

Rule R3 : {[sex].[female], [unemployed].[no]} →
{[income].[high], [loan].[yes]} fulfills condition 1 in def-
inition 4 because:

1. [sex].[female], [unemployed].[no] ⊆
[sex].[female], [unemployed].[no]

2. [income].[high] ⊆ [income].[high], [loan].[yes]

Rule R3 : {[sex].[female], [unemployed].[no]} →
{[income].[high], [loan].[yes]} fulfills condition 4 in def-
inition 4 because:

1. [income].[high] ⊆ [income].[high], [loan].[yes]

2. [loan].[yes] ⊆ [income].[high], [loan].[yes]

Rule R4 : {[sex].[female], [unemployed].[no]} →
{[loan].[yes]} fulfills condition 2 in definition 4 because:

1. [sex].[female], [unemployed].[no] ⊆
[sex].[female], [unemployed].[no]

2. [income].[high] ⊆ [income].[high]

3. [loan].[yes] ⊆ [loan].[yes]

Rule R5 : {[income].[high], [loan].[yes]} →
{[unemployed].[no]} fulfills condition 3 in definition 4 be-
cause:

1. [income].[high] ⊆ [income].[high], [loan].[yes]

2. [loan].[yes] ⊆ [income].[high], [loan].[yes]

Rule R6 :
{[income].[high], [loan].[yes], [sex].[male]} →
{[unemployed].[no]} fulfills condition 3 in definition 4
because:

1. [income].[high] ⊆
[income].[high], [loan].[yes], [sex].[male]

2. [loan].[yes] ⊆ [income].[high], [loan].[yes], [sex].[male]

Rule R7 :
{[balance].[high], [income].[high], [loan].[yes]} →
{[unemployed].[no]} fulfills condition 3 in definition 4
because:

1. [income].[high] ⊆
[balance].[high], [income].[high], [loan].[yes]

2. [loan].[yes] ⊆ [balance].[high], [income].[high], [loan].[yes]

Armstrong’s axioms [33] are a set of inference rules.
They allow to obtain the minimum set of functional de-
pendencies that are maintained in a database. The rest of
functional dependencies can be derived from this set. They
are part of clear mechanisms designed to find smaller sub-
sets of a larger set of functional dependencies called “cov-
ers” that are equivalent to the “bases” in Closure Spaces
and Data Mining.

Armstrong’s axioms can not be used as an inference
mechanism in association rules [34] because it is impos-
sible to obtain the values of support and confidence in the
derived rules:

– Reflexivity (if B ⊂ A then A → B) holds because
conf(A→ B) = supp(A∩B)

supp(A) = supp(A)
supp(A) = 1

– Transitivity if A → B and B → C both hold with
confidence ≥ threshold we can not know the value
for conf(AD → C) so the Transitivity does not hold.

– Augmentation (if A → B then AC → B) does not
hold. Enlarging the antecedent of a rule may give a
rule with much smaller confidence, even zero: think
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of a case where most of the times X appears it comes
with Z, but it only comes with Y when Z is not present;
then the confidence of X → Z may be high whereas
the confidence of XY → Z may be null.

Our intention is to use Armstrong’s axioms in order to
assess if a rule has Prior Knowledge Redundancy over a set
of rules Sc from previous knowledge. So they must verify
the condition presented in definition 4.

Condition X
′ ⊆ X ∧ Y ′ ∩ Y 6= {∅} represents the

classical definition of redundancy like in definition 1,
definition 2 and definition 3. This condition is fulfilled if
a single attribute in Y is redundant. Armstrong’s axioms
can be used to perform this operation. Let R1 : X → Y
and R2 : X

′ → Y
′

be association rules. Suppose
Y

′ ∩ Y = Y1. Then by the reflexivity axiom on R2 conse-
quent R3 : Y → Y1 and by reflexivity on R1 consequent
R4 : Y

′ → Y1. By transitivity betweenR1 andR3 we have
R5 : X → Y1, applying transitivity betweenR2 andR4 we
have R6 : X

′ → Y1. X
′ ⊆ X by statement condition, ap-

plying augmentation in R6 until X
′

= X , R7 : X → Y1.
Therefore Armstrong’s axioms check the condition. For
example, the rule R : {[income].[high], [sex].[male]} →
{[loan].[yes], [unemployed].[no]} is part of the asso-
ciation model generated from the dataset in table 1.
This rule can be classified as redundant by condition
1 of definition 4 with respect to prior knowledge.
Sc = {Rs1 : [income].[high] → [loan].[yes],
Rs2 : [sex].[female], [unemployed].[no] →
[income].[high]}. By the application of Reflexivity,
we have that R1 : [loan].[yes] → [loan].[yes] by
Augmentation of [unemployed].[no] on R1 we have
R2 : [loan].[yes], [unemployed].[no] → [loan].[yes]
and by Transitivity between R and R2 we have
R3 : [income].[high], [sex].[male] → [loan].[yes], the
same procedure must be followed to [unemployed].[no].
Now by Augmentation of [sex].[male] in rule
[income].[high] → [loan].[yes] ∈ Sc we have
R4 : [income].[high], [sex].[male] → [loan].[yes]
R4 = R3 so item [loan].[yes] is redundant in R and
therefore R is also redundant.

Condition X
′ ⊆ X ∧ ∃R′′

: X
′′ → Y

′′ ∈ Sc :
X

′′ ⊆ Y
′ ∧ Y ⊆ Y

′′
represents the notion of transitivity

a common term in human thinking. This condition is
fulfilled if a single attribute in Y is redundant. Let
R1 : X → Y , R2 : X

′ → Y
′

and R3 : X
′′ → Y

′′

be rules. Suppose Y
′′ ∩ Y = Y1. Then by the re-

flexitivity axiom on R1 consequent R4 : Y → Y1 by
transitivity between R1 and R4 we have R5 : X → Y1.
By statement condition X

′′ ⊆ Y
′

so by reflexivity on
R2 consequent we have R6 : Y

′ → X
′′

. By transi-
tivity between R2 and R6 we have R7 : X

′ → X
′′

now by transitivity between R2 and R7 we have
R8 : X

′ → Y
′′

. Applying augmentation in R8 until
we have R9 : X → Y

′′
. By reflexivity in R9 consequent

R10 : Y → Y1 and by transitivity between R9 and R10 we
have R11 : X → Y1. Therefore Armstrong’s axioms check

the condition. For example, taking into account rule R :
{[sex].[female], [unemployed].[no]} → {[loan].[yes]}
and prior knowledge Sc = {Rs1 : [income].[high] →
[loan].[yes], Rs2 : [sex].[female], [unemployed].[no] →
[income].[high]}. R is classified as redundant according
to condition 2 in definition 4. R is a single consequent
rule so no separation is needed. By the application of
Transitivity between [income].[high] → [loan].[yes] and
[sex].[female], [unemployed].[no] → [loan].[yes] both
in Sc the rule R1 : [sex].[female], [unemployed].[no] →
[loan].[yes] is obtained R = R1 so R is a redundant rule.

Condition X
′ ⊆ X ∧ Y ′ ∩X 6= {∅} represents the case

when any item in the antecedent of a rule is a redundant
one. Let R1 : X → Y and R2 : X

′ → Y
′

be rules.
Suppose Y ′ ∩ X = X1. Then by augmentation of X1

in R2 we have R3 : X
′
X1 → X1Y

′
and by transitivity

between R3 and R1 R4 : X → Y . Therefore Armstrong’s
axioms fulfill the condition. For example, with R :
{[income].[high], [loan].[yes]} → {[unemployed].[no]}
and Sc = {Rs1 : [income].[high] → [loan].[yes],
Rs2 : [sex].[female], [unemployed].[no] →
[income].[high]} R is classified as redundant by
condition 3 in definition 4. Applying Reflexivity of
[income].[high] in [income].[high] → [loan].[yes] rule
R1 : [income].[high] → [income].[high], [loan].[yes]
is obtained by Transitivity between R1 and R we have
R2 : [income].[high] → [income].[high] R2 is simpler
than R with the same information so R is a redundant rule.
However, by Augmentation of [loan].[yes] in R2 we have
R3 : [income].[high], [loan].[yes] → [unemployed].[no]
R = R3.

Condition X
′ ⊆ Y ∧ Y ′ ∩ Y 6= {∅} represents the case

when any item in the consequent ofR is redundant with re-
spect to other item in consequent. This condition is fulfilled
if a single attribute in Y is redundant. Let R1 : X → Y
and R2 : X

′ → Y
′

be rules. Suppose Y ∩ Y ′
= Y1. Then

by the reflexivity axiom on R2 consequent R3 : Y
′ → Y1

by transitivity between R2 and R3 we have R4 : X
′ → Y1.

By statement condition we have X ⊆ Y so by transitivity
between R1 and R4 we have R5 : X → Y1. Therefore
Armstrong’s axioms fulfill the condition. For exam-
ple, R : {[balance].[high], [unemployed].[no]} →
{[income].[high], [loan].[yes]} and Sc =
{Rs1 : [income].[high] → [loan].[yes],
Rs2[sex].[female], [unemployed].[no] →
[income].[high]}. R is redundant according to
condition 4 in definition 4. Applying Reflexiv-
ity, Augmentation and Transitivity we obtain R1 :
[balance].[high], [unemployed].[no] → [income].[high]
and R2 : [balance].[high], [unemployed].[no] →
[loan].[yes] now by Transitivity between R1 and
[income].[high] → [loan].[yes] ∈ Sc we have R3 :
[balance].[high], [unemployed].[no] → [loan].[yes].
R2 = R3 so R is a redundant rule.
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We do not use Armstrong’s Axioms as an inference
mechanism so, we do not worry if it is not able to ensure
the support and confidence threshold in the inferred rules.

3.2 Algorithm to eliminate prior knowledge
redundancy in association rules

In this section we present an algorithm to determine if a
rule contains redundant items, see Fig. 1. The closure al-
gorithm presented in [35] is used to compute X+.

Require: Set of previous knowledge rules Sc
A rule Ri in form X → Y

Ensure: Boolean value to indicate if the rule is redundant
1: i = 0
2: n = |Y |
3: while i < n do
4: if Y [i] ∈ X+

Sc∪X→(Y−{Y [i]}) then
5: return true
6: end if
7: i = i+ 1
8: end while
9: i = 0

10: n = |X|
11: while i < n do
12: if X[i] ∈ (X −X[i])+

Sc∪(X−X[i])→Y then
13: return true
14: end if
15: i = i+ 1
16: end while
17: return false

Algorithm 1: Prior Knowledge Redundancy detection

To determine the redundancy of a rule X → Y we have
to prove if any item A in the rule’s antecedent is redundant
or if an item W in the consequent is redundant. The item
A is redundant if the consequent can be derived from the
prior knowledge without A. The first part of algorithm 1
performs this task for all items A ∈ X by calculating the
closure of the new antecedent X − {A} over the previous
knowledge rules joined to the studied rule focus, and
comparing results with the closure of the same antecedent
over the set of previous rules joined to a new rule, where
the item A is not a part of the antecedent. If both results
are equal, then the item A is redundant and the entire rule
is also redundant. To test if item W is redundant we have
to apply a similar procedure, the second part of algorithm 1
performs this task.

Example 2. Prior Knowledge Redundancy detection: We
use the following Prior Knowledge
Sc = {Rs1 : [income].[high]→ [loan].[yes],
Rs2 : [sex].[female], [unemployed].[no] →
[income].[high]} and the rules
R1 : {[balance].[high], [unemployed].[no]} →
{[income].[high], [loan].[yes]} and

R2 : {[income].[high], [loan].[yes]} →
{[unemployed].[no]} to show the performance of al-
gorithm 1. For R1 we have:

The first step is to compute F = Sc ∪ Ri for R1

F = {Rf1 : [income].[high] → [loan].[yes], Rf2 :
[sex].[female], [unemployed].[no]→ [income].[high],
Rf3 : [balance].[high], [unemployed].[no] →
[income].[high], [loan].[yes]}.

Second, checks the redundancy in the antecedent,
computing closure of [balance].[high] over F . This
is [balance].[high]+F = [balance].[high] and com-
paring with closure of [balance].[high] over G
where G = ((F − {R1}) ∪ ([balance].[high]) →
[income].[high], [loan].[yes]), [balance].[high]+G =
[balance].[high], [income].[high], [loan].[yes]. They are
different so [unemployed].[no] is not redundant. The item
[balance].[high] is also non-redundant.

And last, checks the redundancy in the consequent.
F

′
= {(F −R1 ∪ ([balance].[high],

[unemployed].[no]→ [income].[high])}
[balance].[high], [unemployed].[no]+F =
[balance].[high], [unemployed].[no],
[income].[high], [loan].[yes],
[balance].[high], [unemployed].[no]+

F ′ =
[balance].[high], [unemployed].[no], [income].
[high], [loan].[yes]. They are the same so the item
[loan].[yes] and the rule R1 are redundant.

For R2 we have:

– F
′

= (F −R1) ∪ [income].[high]→
[unemployed].[no].
F = {(F −R1) :
[income].[high] → [loan].[yes],
Rf2[sex].[female], [unemployed].[no] →
[income].[high],Rf3[income].[high], [loan].[yes]→
[unemployed].[no]}.

– [income].[high]+F =
[income].[high], [loan].[yes], [unemployed].[no],
[income].[high]+

F ′ =
[income].[high], [loan].[yes], [unemployed].[no].
They are the same so the rule is redundant.

3.2.1 Correctness

We first prove that closure algorithm [35] can be used to
detect redundancy according to definition 4. Closure algo-
rithm applies Armstrong’s axioms to find all items implied
by a given itemset.

Theorem 1. Let Sc be a set of prior known rules and R :
X → Y an association rule. If there is a rule R

′
: X

′ →
Y

′ ∈ Sc and X
′ ⊆ X ∧Y ′ ∩Y 6= {∅} then Y

′ ∩Y ∈ X+
Sc

Proof. Assume X
′ ⊆ X ∧ Y ′ ∩ Y 6= {∅}. Then X

′ ∈
X+
Sc by assumption X

′ ⊆ X and reflexivity axiom. So
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Y
′ ∈ X+

Sc by transitivity between X →
X

′
and X

′ → Y
′
. Therefore Y

′ ∩ Y ∈ X+
Sc by definition

of set intersection.

Theorem 2. Let Sc be a set of prior known rules and R :
X → Y one association rule. If there is a rule R

′
: X

′ →
Y

′ ∈ Sc and X
′ ⊆ X∧ ∃R′′

: X
′′ →

Y
′′ ∈ Sc : X

′′ ⊆ Y ′ ∧ Y ⊆ Y ′′
then Y ∈ X+

Sc .

Proof. Assume X
′ ⊆ X ∧∃R′′

: X
′′ → Y

′′ ∈ Sc : X
′′ ⊆

Y
′ ∧ Y ⊆ Y

′′
. Then X

′ ∈ X+
Sc by assumption X

′ ⊆ X

and reflexivity axiom. Y
′ ∈ X+

Sc by transitivity between
X → X

′
and X

′ → Y
′
. X

′′ ∈ X+
Sc

by assumption X
′′ ⊆ Y

′
and subset definition. So Y

′′ ∈
X+
Sc by transitivity between X → X

′′
and X

′′ → Y
′′

.
Therefore Y ∈ X+

Sc by assumption Y ⊆ Y
′′

and subset
definition.

Theorem 3. Let Sc be a set of prior known rules and R :
X → Y one association rule. If there is a rule R

′
: X

′ →
Y

′ ∈ Sc and X
′ ⊆ X ∧ Y ′ ∩ X 6= {∅} then Y

′ ∩ X ∈
(X − (Y

′ ∩X))+
Sc .

Proof. AssumeX
′ ⊆ X∧Y ′∩X 6= {∅}. ThenX

′ ∈ (X−
(Y

′∩X))+
Sc by assumptionX

′ ⊆ X and reflexivity axiom.
Y

′ ∈ (X − (Y
′ ∩X))+

Sc by transitivity between X → X
′

and X
′ → Y

′
. Therefore Y

′ ∩X ∈ (X − (Y
′ ∩X))+

Sc by
definition of set intersection.

Theorem 4. Let Sc be a set of prior known rules and R :
X → Y one association rule. If there is a rule R

′
: X

′ →
Y

′ ∈ Sc and X
′ ⊆ Y ∧ Y ′ ∩ Y 6= {∅} then Y

′ ∩ Y ∈
X+
Sc∪X→(Y−(Y ′∩Y ))

.

Proof. Assume X
′ ⊆ Y ∧ Y ′ ∩ Y 6= {∅}. Then X

′ ∈
X+
Sc∪X→(Y−(Y ′∩Y ))

by assumption X
′ ⊆ Y and associa-

tion rule property X ∩ Y = ∅. Y ′ ∈ X+
Sc∪X→(Y−(Y ′∩Y ))

by transitivity between X → X
′

and X
′ → Y

′
. There-

fore Y
′ ∩ Y ∈ X+

Sc∪X→(Y−(Y ′∩Y ))
by definition of set

intersection.

Theorem 5. If (∃Ai ∈ X ∧ Ai ∈ (X −
A1)+
Sc∪(X−Ai)→Y ) ∨ (∃Wi ∈ Y ∧Wi ∈ X+

Sc∪X→Y−Wi
)

then rule X → Y has prior knowledge redundancy over
Sc.

Proof. Direct from theorem 1, theorem 2, theorem 3 and
theorem 4.

Hoare triple was introduced by C. A. R. Hoare [38] as
{P}C{Q}, for specifying what a program does. In such a
Hoare triple:

– C is a program.

– P and Q are assertions, conditions on the program
variables used in C. They will be written using stan-
dard mathematical notation together with logical oper-
ators. We can use functions and predicates to express

high-level properties based on a domain theory [39]
covering specifics of the application area.

We say {P}C{Q} is true, if whenever C is executed in
a state satisfying {P} and if the execution of C finishes,
then the state in which C execution finishes satisfies Q. If
there is a loop in C, loop invariants must be used to prove
correctness. If loop invariants are proved to be true after
each loop iteration then the postcondiction must be proven
true.

In algorithm 1 lines one through eight and lines nine
through sixteen perform basically the same operation, one
over the rule antecedent and the other over the rule con-
sequent. So we analize them only one time. Line four
checks if Y [i] is subset of the closure. So closure algo-
rithm must be computed, this algorithm has been proved as
correct[35]. The search of Y [i] within closure can be done
by a well known linear search algorithm, we assume it is
correct.

Precondictions:

– Sc is a set of previous knowledge rules.

– X → Y is an association rule with
X = X1, .., Xn and Y = Y1, .., Ym

Postcondition: If (∃Ai ∈ X ∧ Ai ∈ (X −
A1)+
Sc∪(X−Ai)→Y ) ∨ (∃Wi ∈ Y ∧Wi ∈ X+

Sc∪X→Y−Wi
)

the return value is true.
Loop invariants: If the loop is executed j or more times,

then after j executions

– i = j

– 0 ≤ i ≤ n

– Y [h] /∈ X+
Sc∪X→(Y−{Y [i]}) for 0 ≤ h < i

Proving the loop invariant: (by induction on j) Base
Case: j = 0

– before first execution of loop i = 0

– loop invariant holds, i = 0 ⇒ (0 ≤ h < 0). No such
h value.

Inductive hypothesis: assume that, if the loop iterates
j times then the loop invariant holds iold = j. Proving
that if the loop iterates j + 1 times, then the loop invariant
holds for inew = j + 1. If true for iteration iold = j then
Y [h] /∈ X+

Sc∪X→(Y−{Y [i]}) for 0 ≤ h < iold.

– if loop iterates then Y [iold] /∈ X+
Sc∪X→(Y−{Y [iold]})

and inew = iold + 1.

– thus Y [h] /∈ X+
Sc∪X→(Y−Y [h]) for

0 ≤ h < inew.

– because loop iterated for iold = j we have iold < n
and inew ≤ n
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Thus, the loop invariant holds for j + 1.
When the loop test fails, the loop invariant holds and

either i ≥ n or Y [i] ∈ X+
Sc∪X→(Y−Y [i])

– Case 1 (j ≥ n): loop invariant implies that Y [h] /∈
X+
Sc∪X→(Y−Y [h]) for 0 ≤ h < n, so no element in

cosequent is a redundant one.

– Case 2 (j < n): loop invariant implies that Y [i] ∈
X+
Sc∪X→(Y−Y [i]) and true is returned

Conclusions: Poscondition is satisfied in either case, so
the algorithm is correct.

3.2.2 Complexity analysis

Time complexity of an algorithm is a function T (n) limit-
ing the maximum number of steps in the algorithm for an
input size n. T (n) depends on what is counted as one com-
putation step, the random access machine (RAM) model is
the most extended one. RAM is a model for a simple digi-
tal computer with random access memory. For the sake of
simplicity T (n) is approximated by a simplest function, it
is written T (n) = O(f(n)) if there are constants c ≥ 0 and
n1 ≥ 0 such that: T (n) ≤ cf(n) for all n ≥ n1.

For algorithm in Fig 1 we considered a as the number
of different attribute symbols in Sc and p the number of
previous knowledge rules presented in Sc. The complexity
order to compute the closure is O(n) see [35]. The execu-
tion time of the first while loop (the consequent of the rule)
takes a∗p since the number of rules in F is p, and we com-
pute the closure with a cost of O(p). The execution time
of the second while loop (the antecedent of the rule) takes
the same value of a ∗ p because it performs the same op-
eration and in the same way the complexity of the steps is
O(ap). To compute the complexity of the entire algorithm,
the complexity of the first and second while loops must be
added so it is O(ap) + O(ap) = 2O(ap) but the constant
2 can be ignored and the final value for complexity of the
algorithm is O(ap).

Association rules extraction algorithms have much
higher complexity [36] than the reduction approach pre-
sented here. This difference led us to propose a reduction
mechanism in which rule extraction algorithm is executed
once and then, in the post processing stage, the reduction
algorithm is fired to prune the redundant rules, rather than
applying prior knowledge as restriction within the extrac-
tion algorithms, which would force to execute it for each
different user and even for each change on a user’s prior
knowledge. The computational cost for the constraint ap-
proach is very high. However, our approach, in post pro-
cessing stage, allows us to run a simpler routine when the
user changes or the user prior knowledge is updated. The
temporal cost of this approach did not exceed 5 seconds in
any of the applied tests.

4 Experimental results

4.1 Methodology

In order to verify the effectiveness of our approach we per-
formed experiments with four datasets. The first one with
data about USA census[2], the second one with data about
stock market investments [1], the third one with data about
hypothetical samples of mushroom[2] and the last one with
data about breast cancer[2]. Prior knowledge consists of
6 rules for each dataset. We use Pruning Ratio metric
PR = (PrunedRules/TotalRules) × 100 to evaluate
our results.

Table 2 shows the result of the experiments. Each row
corresponds to an experiment following the next steps:

1. Find the complete set of rules using as support thresh-
old the value in column 2 and confidence threshold the
value in column 3. The number of rules is showed in
column 4.

2. Apply the steps presented in algorithm 1. The number
of pruned rules are presented in column 5 of Table 2.

3. After applying the algorithm to the dataset, the final
number of rules is presented in column 6 of Table 2
while column 7 contains the pruning ratio. The exe-
cution time is presented in column 8.

4.2 Results and discussion

Pruning Ratio changes according to support in Census and
Stocks datasets, first increasing while the support increases,
but when the support is greater than 0.07 for the Census
dataset and greater than 0.5 for Stocks dataset, the Pruning
Ratio decreases while the support increases. The behav-
ior in Mushroom dataset is the opposite, the Pruning Ratio
decreases while support increases until the support reaches
the 0.5 value then the Pruning Ratio increases while the
support value increases.

This behavior shows a relation between support and pre-
vious knowledge patterns. If the support is increased, then
a number of rules do not meet the support threshold and
they are discarded. Hence the discarded rules have no
major impact on the rules derived from previous knowl-
edge, Pruning Ratio will be increased, but as the support
increases it starts to reduce the rules derived from previous
knowledge, so the Pruning Ratio will be decreased.

In Fig 1, Fig 2 and Fig 3 the mean value of Pruning Ra-
tio is shown for several support values in Census, Stocks
and Mush datasets respectively using combination of all
six rules in Sc.
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Dataset Support Confidence Rules Pruned Rules Final Rules Pruning Ratio Time
Census 0.01 0.4 3408 942 2466 27 0.589
Census 0.03 0.4 835 242 593 28 0.079
Census 0.05 0.4 458 158 300 32 0.043
Census 0.07 0.4 229 79 150 34 0.021
Census 0.09 0.4 163 51 112 31 0.015
Census 0.11 0.4 114 23 91 20 0.010
Stocks 0.2 0.4 11010 5592 5418 50 2.170
Stocks 0.3 0.4 3314 2225 1089 67 0.536
Stocks 0.4 0.4 1230 904 326 73 0.116
Stocks 0.5 0.4 349 294 55 84 0.039
Stocks 0.6 0.4 212 64 148 30 0.020

Mushroom 0.3 0.5 78998 29154 49844 36 11.245
Mushroom 0.4 0.5 5767 1225 4542 21 0.852
Mushroom 0.5 0.5 1148 200 948 17 0.098
Mushroom 0.6 0.5 266 88 178 33 0.025
Mushroom 0.7 0.5 180 83 97 46 0.017

Breast 0.01 0.4 210500 98582 111918 47 27.732
Breast 0.1 0.4 28808 13695 15113 47 4.190
Breast 0.2 0.4 6092 2982 3110 49 0.859
Breast 0.3 0.4 5284 2398 2886 45 0.798
Breast 0.4 0.4 1246 449 797 36 0.118

Table 2: Experiment’s result

4.3 Traditional vs. knowledge based
reduction

The approach developed in this paper differs from those
published until now. Previous woks are concerned with
the structural relationship between association rules and
mechanisms to reduce redundancy using inference rules
and maximal itemsets. We use the user experience to prune
rules that do not bring new knowledge to the user, simpli-
fying decision making. Both approaches are not compara-
ble in essence, but we carried out experiments to compare
KBR’s pruning ratio with previous works.

Fig 4 shows the pruning ratio of some relevant works
in redundancy reduction, over a Mushroom dataset with
a support value of 0.3. We used Mushroom dataset be-
cause we can access to author experiments and it is suf-
ficient to test our case. The values for pruning ratio are
taken from the author’s papers: MinMax, Reliable, GB,
CHARM, CRS and MetaRules.[40]

Reliable has the best Pruning Ratio, see Fig 4, so we
compare it with our approach at different support values,
see Table 3.

Reliable Pruning Ratio is the best of KBR6rules,
KBR9rules and KBR12rules. Nevertheless, KBR15rules

reaches better Pruning Ratio than Reliable for all supports
except 0.4, see Fig. 6. A previous knowledge of 15 rules
is equivalent to 0.018% of the whole rule set, for a support
value of 0.3, and 7.9% for a support value of 0.7.

With very few rules in KBR is possible to exceed the
Pruning Ratio of previous works. Of course there is a nar-
row relationship between the Pruning Ratio and the reper-
cussion of the previous knowledge rules over the whole set
of rules. The Pruning Ratio of knowledge rules increases
in the same way that they are able to describe the domain
under study. The better KBR results are, the better the user
will know the domain under study. Our approach has the
possibility to determine when a model can not be improved
like in the case of KBR15rules for a support value of 0.7
where the Pruning Ratio is 100%.

4.4 Knowledge vs knowledge based
reduction

In section 2 we surveyed some works that used knowledge
to reduce the number of association rules presented to the
final user. The main goal of those papers is to obtain a set of
association rules that satisfies some constraint provided by
users, using different forms of knowledge representation.
They are able to reduce the association rules set cardinality
but generate a lot of rules that represent the same knowl-
edge. Strictly speaking we can not compare our proposal
with those ones because of the difference between goals,
but we want to test the association rules model cardinality
reduction capability of our approach with template, the best
known form of knowledge approach.

We compare the pruning ratio of our approach with the
template implementation proposed in [41] that up-perform
the implementation proposed in [16] across five dataset
from [2].
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Figure 1: Rules pruned in census dataset

Support Reliable KBR6rules KBR9rules KBR12rules KBR15rules

0.3 95 36 76 80 96
0.4 90 21 37 47 84
0.5 89 17 30 44 93
0.6 74 33 40 62 97
0.7 78 46 46 75 100
Average 85 32,5 45,8 61,5 94

Table 3: Pruning Ratio

– Mushroom data (mush)

– Johns Hopkins University Ionosphere data (ion)

– Statlog Project Heart Disease data (hea)

– Thyroid Disease data (thy)

– Attitudes Toward Workplace Smoking Restrictions
data (smo)

The continuous attributes in the data sets used were dis-
cretized using a 4-bin equal-frequency discretization. Sup-
port and Confidence were set to the same values used
in [16]. In table 4 we present the result of our pruning
approach (KBR) and compare it with the previous work
(MetaRules) [41].

Each row in table 4 represents an experiment where col-
umn Dataset contains the dataset id, column TotalRules
shows the total number of rules produced by extraction
algorithms, MetaRules presents the remaining rules after
the application of the aplgorithm proposed in [41] while
column KBR contains the average of remaining rules of
ten runs of knowledge based redundancy elimination algo-
rithm using a random knowledge of ten rules for each exe-
cution. The remaining rules in our approach are lower than
the number of rules in metarules approach for all datasets.

Dataset TotalRules MetaRules KBR
mush 1374 138 120.2
ion 1215 452 402.6
hea 371 246 176.7
thy 1442 502 431.6
smo 797 300 283.3

Table 4: Remaining rules

5 Conclusion
The fundamental idea in this work is linked to the main
definition of data mining: analysis of large amount of data
to extract interesting patterns, previously unknown and the
consideration that an association rule that correspond to
prior knowledge is a redundant one[37]. Our approach
prunes those rules, presenting a simpler model to the final
user.

The main contribution in this work is the definition of re-
dundancy of association rules with respect to prior knowl-
edge, and the definition of a mechanism to eliminate this
kind of redundancy from the final model of association
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Figure 2: Rules pruned in stocks dataset

rules presented to the end user. The redundancy elimina-
tion is performed in two procedures, the first one to de-
tect and prune redundant element in rules antecedent and
consequent, and the second one to detect if all information
provided by a rule is redundant with respect to prior knowl-
edge and then to prune it.

The results of this study confirm it is possible to use prior
knowledge of experts to reduce the volume of association
rules. Models of association rules with fewer rules can be
interpreted more clearly by specialists so they can generate
advantages in decision making process. The experimen-
tal results show that prior knowledge of less than 10% can
reach a reduction ratio above 90%.
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