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Multiple set is a newborn member of the family of generalized sets, which can model uncertainty together
with multiplicity. It has the power to handle numerous uncertain features of objects in a multiple way.
Multiple set theory has the edge over the well established fuzzy set theory by its capability to handle un-
certainty and multiplicity simultaneously. Similarity measure of fuzzy sets is well addressed in literature
and has found prominent applications in various domains. As multiple set is an efficient generalization
of fuzzy set, the concept and theory of similarity measure can be extended to multiple set theory and can
be developed probable applications in various real-life problems. This paper introduces the concept of
similarity measure of multiple sets and proposes two different similarity measures of multiple sets and
investigates their properties. Finally, this work substantiates application of the concept of similarity mea-
sure of multiple sets to pattern recognition. A numerical illustration demonstrates the effectiveness of the
proposed technique to this application.

Povzetek: V članku je predstavljena teorija podobnosti multipnih množic z namenom uporabe prepozna-
vanja vzorcev.

1 Introduction

Various mathematical models are available in the literature
to represent the concepts like uncertainty, vagueness and
inexactness. Such models includes fuzzy sets , L-fuzzy sets
[1], multisets [2], rough sets[3], intuitionistic fuzzy sets[4],
fuzzy multisets[5], vague sets[6], multi fuzzy sets[7], etc.
Each of these models has advanced into an elaborated the-
ory and has numerous practical applications.[3]

A fuzzy set is characterized by a membership function
which assigns a grade of membership to each object in
the universal set. Even though, the concept of fuzzy set
is strong enough to handle uncertain data successfully, it
can manage only one uncertain feature of the object at a
time. Also, fuzzy set fails to handle the multiplicity of ob-
jects. Later, The notion of fuzzy multiset was defined as
an extension of a fuzzy set. Fuzzy multiset gives fuzzy
membership values for identical copies of each object. The
main advantage of fuzzy multiset over fuzzy set is that it
can handle the multiplicity of objects. However, it can han-
dle only one feature of the object at a time. On the other
hand, multi fuzzy set is also an extension of fuzzy set, and
gives fuzzy membership values for different features of ob-
jects. The main advantage of multi fuzzy set over fuzzy
set is that it can simultaneously manage numerous uncer-
tain characteristics of objects, but fails to handle the mul-
tiplicity of objects. Recently, multiple set is introduced to
model uncertainty together with multiplicity. The advan-
tage of multiple set lies in the fact that it simultaneously ac-
cumulates numerous uncertain features of objects together

with its multiplicity, in a better way. It was put forward
by Shijina et al.[8, 9] as a generalization of fuzzy set, mul-
tiset, fuzzy multiset and multi fuzzy set. Later, Shijina et
al.[10, 11] defined more operations, viz. aggregation oper-
ators and matrix norms on multiple sets. Then, the concept
of relation on multiple sets is introduced and applied this
concept in medical diagnosis problem[12]. As a continua-
tion, this work is aspired as an attempt to extend the con-
cept of similarity measure to multiple sets.
Measuring the similarity between objects plays a crucial
role in many real life problems involving image process-
ing, image retrieval, image compression, pattern recogni-
tion, clustering, information retrieval problems, etc. Many
measures of similarity have been proposed and researched
in literature and it has been shown that similarity measure
is proficient in coping with uncertain information. For ex-
ample, the theory of fuzzy sets, introduced by Zadeh[13],
is a successful approach in confronting uncertainty. Fuzzy
set has enormous power to describe the objective world
that we live in and the strength of fuzzy set has transpired
in several real life applications. Zadeh himself initiated
the idea of similarity measure of fuzzy sets[14]. Later,
similarity measure of fuzzy sets has been explored widely
by many researchers[15, 16, 17, 18, 19, 20, 21, 22, 23] and
have applied them to real life problems involving pattern
recognition[24], image processing[25, 26, 27, 28, 29, 30],
etc. As an extension of fuzzy set theory, intuitionis-
tic fuzzy set theory has found to be highly useful in
dealing with imprecision and uncertainty. Many dif-
ferent similarity measures between intuitionistic fuzzy
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sets have been proposed and are extensively applied
to many areas such as decision making[31, 32], pattern
recognition[33, 34, 35, 36, 37, 38, 39], etc. As a combined
concept of intuitionistic fuzzy set and interval valued fuzzy
set, Atnassov[40] introduced interval valued intuitionistic
fuzzy sets. It greatly furnishes the additional capability to
deal with vague information and model non-statistical un-
certainty by providing both membership interval and non-
membership intervals. Similarity measure of interval val-
ued intuitionistic fuzzy sets was also proposed and it has
found applications in pattern recognition and multi-criteria
decision making[41]. Type-2 fuzzy sets, which is an exten-
sion of fuzzy sets was also proposed by Zadeh[42]. Their
membership values are fuzzy sets on the interval [0, 1].
Type-2 fuzzy sets can improve certain kinds of inference
better than fuzzy sets with increasing imprecision, uncer-
tainty and fuzziness in information. Hung and Yang[43]
presented a similarity measure of type-2 fuzzy sets based
on the fuzzy Hausdor distance. There were further stud-
ies of similarity measures on Type-2 fuzzy sets[44, 45, 46]
and have found applications in clustering[47, 48, 49], pat-
tern recognition[50], students’ evaluation[51], etc. Hesitant
fuzzy set was first introduced by Torra[52] and Torra and
Narukawa[53]. It permits the membership degree of an el-
ement to a set comprising of several possible values be-
tween 0 and 1. Hesitant fuzzy sets are very useful in deal-
ing with situations where people are hesitant in providing
their preference over objects in a decision making process.
Therefore hesitant fuzzy set has played a significant role
in the uncertain system and received much attention from
researchers. Similarity measures of hesitant fuzzy sets[54]
have been proposed, but it has not yet gained wide accep-
tance.
Analogously, several similarity measures between sets
have been proposed and have found many real life applica-
tions. But, here we will restrict our attention to the theory
of similarity measures of fuzzy sets and its various appli-
cations, so that it can be explored to define the similarity
measure of multiple sets. Before presenting the theory of
similarity measure of fuzzy sets, it is desirable to have a
short discussion on its application in day-to-day life. So, in
the following, the potential of similarity measure of fuzzy
sets in real life applications is reviewed.
Weken et al.[25] gave an overview of similarity measures of
fuzzy sets which can be applied to images. These similarity
measures are all pixel-based and fail to produce satisfactory
results consistently. To overcome this drawback,Weken et
al.[26] extended their work to propose similarity measures
based on neighbourhoods so that the relevant structures of
the images are observed better. In his survey paper on sim-
ilarity measures of fuzzy sets, Weken et al.[27] established
measures for image comparison. The same authors pre-
sented an overview of the possible application of similarity
measures of fuzzy sets to colour images in[28]. Nachtegael
et al.[30] presented a color image retrieval system using a
specific similarity measure of fuzzy sets. Li et al.[55] pre-
sented a faster algorithm on similarity measure using cen-

ter of gravity of fuzzy sets in content-based image retrieval.
The discussion in [55] nearly covers all the similarity mea-
sures of fuzzy sets, which may be greatly helpful to both
the development and application of fuzzy set theory for
content based image retrieval. Chen et al.[29] proposed a
novel algorithm viz., normalized fuzzy similarity measure
to deal with the nonlinear distortion in finger print images.
Chaira and Ray[24] presented a region extraction algorithm
to identify a color region similar to the query image from
an image database containing images with different types
of colors. Here, the matching process is based on simi-
larity measure of fuzzy sets between the query image and
the images in the database. Capitaine[56] proposed a gen-
eral framework of designing similarity measures based on
residual implication functions. They presented some new
families of parametric similarity measures using parametric
residual implications and modeled an algorithm to learn the
parameter of each similarity measure based on relevance
degrees. El-Sayed and Aboelwafa[57] introduced a new ap-
proach for face recognition based on similarity measure of
fuzzy sets. Xu et al.[58] proposed a new similarity measure
of fuzzy sets based on the extension of the Dice and cosine
similarity measures and then applied the variation coeffi-
cient similarity to the emergency group decision-making
problems. Also, they gave a practical example to evalu-
ate the emergency management capability of major snow
disaster in Hunan province of China. Baccour[59] applied
similarity measures of fuzzy sets reported in existing lit-
erature to classification of shapes, mosaic recognition and
Arabic sentence recognition.
As discussed above, similarity measure of fuzzy sets have
found widespread application in various fields such as im-
age processing, pattern recognition, decision making, etc.
Multiple set, which is an extension of fuzzy set, is ca-
pable of handling uncertainty and multiplicity simultane-
ously. Motivated by the benefits of similarity measure of
fuzzy sets, this work intends to extend similarity measure
to multiple sets. This paper proposes two different types
of similarity measures- one is based on similarity measure
of fuzzy sets; other one is based on the similarity measure
of fuzzy sets and fuzzy aggregation operators. We strongly
believe that similarity measure of multiple set can handle
uncertain information in a better way. It must, therefore,
have a better scope of real life applications. To substantiate
our claim, we have applied the concept of similarity mea-
sure of multiple sets to pattern recognition, which is the
first of its kind. The rest of the paper is organized as fol-
lows. In section 2, we briefly review some standard facts
on multiple sets and the similarity measures of fuzzy sets.
In section 3, we derive two interesting formulas for simi-
larity measure on multiple sets and establish some of their
properties. In section 4, we indicate how these techniques
may be used to pattern recognition problems. In section 5,
we end the paper by encapsulating the main conclusions.
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2 Preliminaries
In this section, we first give some basic concepts related to
multiple sets. Then, we proceed with a brief exposition of
similarity measures of fuzzy sets.
Throughout this paper, the following notations are used.
R+ = [0,∞); X is the universe of discourse; | X | is the
cardinality of X; capital letters A,B,C, etc. are fuzzy sets
on X and also represents corresponding membership func-
tions; A(x) is the fuzzy membership value of the element
x inX; φ is the fuzzy set with all membership values equal
to 0; I is the fuzzy set with all membership values equal
to 1; M is the fuzzy set with all membership values equal
to 0.5; Ā is the complement of fuzzy set A; FS(X) is the
class of all fuzzy sets of X; P (X) is the class of all crisp
subsets of X .
Let M = Mn×k([0, 1]) denotes the set of all matrices of or-
der n× k with entries from [0, 1] and for ε ∈ [0, 1], [ε]n×k
denotes the matrix in M with all its entries equal to ε.

Definition 2.1. Let M = [Mij ], N = [Nij ] ∈M. Then,

1. M ≤ N ⇐⇒ Mij ≤ Nij for every i = 1, 2, · · ·n
and j = 1, 2, · · · k.

2. M ≥ N ⇐⇒ Mij ≥ Nij for every i = 1, 2, · · ·n
and j = 1, 2, · · · k.

3. M = N ⇐⇒ Mij = Nij for every i = 1, 2, · · ·n
and j = 1, 2, · · · k.

4. Join of M and N , denoted by M ∨ N , is a matrix
in M defined by (M ∨ N)ij = Mij ∨ Nij for every
i = 1, 2, · · ·n and j = 1, 2, · · · k.

5. Meet of M and N , denoted by M ∧ N , is a matrix
in M defined by (M ∧ N)ij = Mij ∧ Nij for every
i = 1, 2, · · ·n and j = 1, 2, · · · k.

From this definition it can be noted that,
〈
M,≤

, [0]n×k, [1]n×k
〉

is a bounded lattice.

2.1 Multiple sets
Multiple set is a unified structure to represent numerous
uncertain features of objects simultaneously, in a multi-
ple way. Multiple set utilizes distinct fuzzy membership
functions to delineate each uncertain features of the object
and assigns various values to each membership function ac-
cording to the multiplicity. This is symbolized by assign-
ing a matrix to each object, where each row in the matrix
indicates distinct fuzzy membership function correspond-
ing to each feature of the object. Further, entries in a row
points out different values of the corresponding member-
ship function according to its multiplicity. Multiple set can
be defined as follows:

Definition 2.2. Let X be a non-empty crisp set called the
universal set and A1, A2, · · ·An be n distinct fuzzy sets
of X . For each i = 1, 2, · · ·n, A1

i (x), A2
i (x), · · ·Ak

i (x)

are membership values of the fuzzy set Ai for k identical
copies of the element x ∈ X , in descending order. Then,
multiple set A of order (n, k) over X is an object of the
form

A = {(x,A(x)) : x ∈ X}

where for each x ∈ X its membership value is an n × k
matrix in M given by

A(x) =


A1

1(x) A2
1(x) · · · Ak

1(x)
A1

2(x) A2
2(x) · · · Ak

2(x)
...

...
...

A1
n(x) A2

n(x) · · · Ak
n(x)


The matrix A(x) is called the membership matrix of the
element x.

Note that, fuzzy sets A1, A2, · · ·An evaluates n distinct
properties of objects and are called underlying fuzzy sets of
the multiple set A. Further, each underlying fuzzy set Ai

corresponds to k fuzzy sets Aj
i = {(x,Aj

i (x)) : x ∈ X},
for j = 1, 2, · · · k. Clearly, for every i = 1, 2, · · ·n,
A1

i ⊃ A2
i ⊃ · · ·Ak

i .
The universal multiple setX is a multiple set of order (n, k)
over X for which the membership matrix for each x ∈ X
is [1]n×k. The empty multiple set Φ is a multiple set of
order (n, k) over X for which the membership matrix for
each x ∈ X is [0]n×k.
The set of all multiple sets of order (n, k) overX is denoted
by MS(n,k)(X). It is perceived that a multiple set A of
order (n, k) over X can be viewed as a function A : X →
M, which maps each x ∈ X to its n×k membership matrix
A(x) in M.
As an example, multiple set can be used to represent the
evaluation of a set of students under the characteristics
of intelligence, extra curricular activities, communication
skill and personality by three experts.

Example 2.3. Suppose X = {x1, x2, x3} is the univer-
sal set of students under consideration and there is a panel
consisting of three experts evaluating the students under the
criteria of intelligence, extra curricular activities, commu-
nication skill and personality. Then the performance of the
students can be represented by a multiple set of order (4, 3)
as follows:

A = {(x1,A(x1)), (x2,A(x2)), (x3,A(x3))}

where A (xi) for i = 1, 2, 3 are 4 × 3 matrices given as
follows;

A(x1) =


0.7 0.6 0.5
0.6 0.5 0.4
0.7 0.5 0.3
0.9 0.9 0.8

 A(x2) =


0.8 0.6 0.6
0.6 0.5 0.4
0.7 0.5 0.4
0.9 0.8 0.7



A(x3) =


0.8 0.7 0.5
0.7 0.6 0.4
0.7 0.4 0.4
0.8 0.8 0.7
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Here, first, second, third and fourth row of the member-
ship matrix indicates the fuzzy membership function cor-
responding to the features intelligence, extra curricular ac-
tivities, communication skill and personality, respectively.
Corresponding to each feature, three entries in the row are
the values given by the three experts, written in descend-
ing order. For example, for the student x1 the membership
values corresponding to intelligence are 0.7, 0.6 and 0.5,
corresponding to extra curricular activities are 0.6, 0.5 and
0.4 and so on.

Next, we discuss the standard operations on multiple sets.
Let A and B be two multiple sets in MS(n,k)(X).

Definition 2.4. A is a subset of B, denoted as A ⊆ B , if
and only if A(x) ≤ B(x) for every x ∈ X .

Definition 2.5. A is equal to B , denoted asA = B , if and
only if A ⊆ B and B ⊆ A that is, if and only if A(x) =
B(x) for every x ∈ X .

Definition 2.6. The union of A and B is a multiple set in
MS(n,k)(X), denoted asA∪B, whose membership matrix
is (A ∪ B)(x) = A(x) ∨ B(x) for every x ∈ X .

Definition 2.7. The intersection of A and B is a multiple
set in MS(n,k)(X), denoted as A ∩ B, whose membership
matrix is (A ∩ B)(x) = A(x) ∧ B(x) for every x ∈ X .

Definition 2.8. The complement of A is a multiple set in
MS(n,k)(X), denoted as Ā, whose membership matrix for
each x ∈ X is an n × k matrix, Ā(x) = [Āj

i (x)] where
Āj

i (x) = 1 − A
(k−j+1)
i (x) for every i = 1, 2, ..., n and

j = 1, 2, ..., k.

2.2 Similariy measure of fuzzy sets
Being an important topic in the theory of fuzzy sets, sim-
ilarity measure of fuzzy sets has been investigated exten-
sively by many researchers from different point of view.
But, there does not exist a unique definition of similarity
measure of fuzzy sets. There do exist many special pur-
pose definitions which have been employed with success
in cluster analysis, pattern recognition, image processing,
classification, diagnostics and many other fields. Recently,
several similarity measures are proposed and used for var-
ious purposes. For example, Zwick et al.[15] reviewed 19
measures of similarity and compared their performance in a
behavioral experiment. Xuecheng[16] systematically gave
an axiom definition of similarity measure of fuzzy sets as:

Definition 2.9. A real function S : FS(X) × FS(X) →
R+ is called a similarity measure, if S has the following
properties:

1. S(A,B) = S(B,A) for all A,B ∈ FS(X).

2. S(D, D̄) = 0 for all D ∈ P (X).

3. S(C,C) = max
A,B∈FS(X)

S(A,B) for all C ∈ FS(X).

4. For all A,B,C ∈ FS(X), if A ⊆ B ⊆ C, then
S(A,B) ≥ S(A,C) and S(B,C) ≥ S(A,C).

On account of this definition, Xuecheng proposed a simi-
larity measure on the basis of a measurable function with
respect to borel field B1: Let X = [0, 1] and

F = {A ∈ FS(X);A(x) is a measurable function
with respect to borel field B1}

Then, for p ≥ 1

Sp(A,B) = 1−
(∫ 1

0

| A(x)−B(x) |p dx
)1/p

(2.1)

for all A,B ∈ F , is a similarity measure on F .
Pappis and Karacapilidis[17] presented three similarity
measures as follows:

(1) Measure based on the operations of union and inter-
section:

S(A,B) =

∑
x∈X

min{A(x), B(x)}∑
x∈X

max{A(x), B(x)}
(2.2)

(2) Measure based on the maximum difference:

S(A,B) = 1−max
x∈X
{| A(x)−B(x) |} (2.3)

(3) Measure based on the difference and the sum of grades
of membership:

S(A,B) = 1−

∑
x∈X
| A(x)−B(x) |∑

x∈X

(
A(x) +B(x)

) (2.4)

The authors summarized that similarity measures (2.2) and
(2.4) satisfies the following properties: xcvbnm,.

(p1) S(A,B) = S(B,A).

(p2) A = B ⇔ S(A,B) = 1.

(p3) A ∩B = φ⇔ S(A,B) = 0.

(p4) S(A, Ā) = 1⇔ A = M .

(p5) S(A, Ā) = 0⇔ A = I or A = φ.

The similarity measure (2.3) satisfies properties (p1), (p2)
and (p4) and

(p3’) A ∩B = φ⇔ S(A,B) = 1−max
x∈X
{A(x), B(x)}.

(p5’) S(A, Ā) = 0⇔ A and Ā are normal fuzzy sets.

Hyung et al.[18] proposed a similarity measure of fuzzy
sets using maximum and minimum operators:

S(A,B) = max
x∈X

min{A(x), B(x)} (2.5)

and showed that it satisfies the properties (p1) and
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(p6) The similarity degree is bounded:
0 ≤ S(A,B) ≤ 1.

(p7) If A and B are normalized and A = B then
S(A,B) = 1.

(p8) A ∩B = φ⇒ S(A,B) = 0.

(p9) If A and B are crisp sets, then S(A,B) = 0 if A ∩
B = φ and S(A,B) = 1 if A ∩B 6= φ.

Chen et al.[20] extended the work of Pappis to further in-
vestigate measures of similarity of fuzzy values. They pro-
posed 3 similarity measures:

(1) Measure based on geometric distance model:

S(A,B) = 1−

∑
x∈X
|A(x)−B(x)|

|X|
(2.6)

(2) Measure based on the set theoretic approach:

S(A,B) = sup
x∈X

(A ∩B)(x) (2.7)

(3) Measure based on the matching function[60]:

S(A,B) =

∑
x∈X

A(x)B(x)

max

{ ∑
x∈X

A(x)2,
∑
x∈X

B(x)2
} (2.8)

They summarized that similarity measure (2.6) satisfies the
properties (p1), (p2), (p4) and (p5) and fails to satisfy (p3),
similarity measure (2.7) satisfies the properties (p1) and
(p3) and fails to satisfy (p2), (p4) and (p5) and similarity
measure (2.8) satisfies the properties (p1) to (p5). Later,
Wang et al.[19] made a comparitive study of similarity mea-
sures. They commended on the study of similarity mea-
sures introduced by Pappis[17]. Also, they introduced a
new class of similarity measures extracted from the work
of Bandler and Kohout on fuzzy power sets[61], as:

S(A,B) = min{ inf
x∈X

I(A(x), B(x)),

inf
x∈X

I(B(x), A(x))} (2.9)

where I is any fuzzy implication operator. Wang[21] pro-
posed two new similarity measures of fuzzy sets:

S(A,B) =

∑
x∈X

(
min{A(x),B(x)}
max{A(x),B(x)}

)
|X|

(2.10)

S(A,B) =

∑
x∈X

(1− |A(x)−B(x)|)

|X|
(2.11)

They examined that similarity measures (2.10) and (2.11)
satisfies the Definition 2.9. They also made a comparison
between similarity measures put forward by them with that

of [17] and [18]. Razaei et al.[22] developed a new simi-
larity measure of fuzzy sets based on their relative sigma
count:.

S(A,B) =

∑
x∈X

min {A(x), B(x)}

max

{ ∑
x∈X

A(x),
∑
x∈X

B(x)

} (2.12)

where A 6= φ or B 6= φ and also define S(φ, φ) = 1. They
probed that this similarity measure satisfies the Definition
2.9 and also satisfies the properties (p1) to (p5).

3 Similarity measure of multiple sets
In this section, we first introduce the axiom definition of
similarity measure of multiple sets. Let ξ(n,k)(X) be the
subset of MS(n,k)(X), which is the collection of all mul-
tiple sets over X whose membership matrices are either
[0]n×k or [1]n×k.

Definition 3.1. A real function S : MS(n,k)(X) ×
MS(n,k)(X) → R+ is called a similarity measure of mul-
tiple sets, if S satisfies the following axioms;

1. S(A,B) = S(B,A) for all A,B ∈MS(n,k)(X).

2. S(D, D̄) = 0 for all D ∈ ξ(n,k)(X).

3. S(C, C) = max
A,B∈MS(n,k)(X)

S(A,B) for all C ∈

MS(n,k)(X).

4. For all A,B, C ∈ MS(n,k)(X), if A ⊆ B ⊆ C, then
S(A,B) ≥ S(A, C) and S(B, C) ≥ S(A, C)

In the following, we propose two similarity measures be-
tween multiple sets, one is based on the similarity measure
of fuzzy sets; other is based on similarity measure of fuzzy
sets and a fuzzy aggregation operator.
Let S be any similarity measure of fuzzy sets satisfying the
Definition 2.9. For multiple sets A and B in MS(n,k)(X),
denote

S(A,B) =

n∑
i=1

max
j=1,2,...,k

S(Aj
i , B

j
i ) (3.1)

Theorem 3.2. S(A,B) is a similarity measure between the
multiple sets A and B in X .

Proof. Axioms (1) and (2) are obvious, respectively, from
axioms (1) and (2) of Definition 2.9 for fuzzy similarity
measure S.
Axiom(3): Let C be any multiple set in MS(n,k)(X).
Clearly, we have

S(C, C) ≤ max
A,B∈MS(n,k)(X)

S(A,B) (3.2)

Now, for any multiple sets A,B ∈ MS(n,k)(X), from ax-
iom (3) of Definition 2.9 for fuzzy similarity measure S,
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we have S(Cj
i , C

j
i ) ≥ S(Aj

i , B
j
i ) for every j = 1, 2, ..., k

and i = 1, 2, ..., n. Therefore,

max
j=1,2,...,k

S(Cj
i , C

j
i ) ≥ max

j=1,2,...,k
S(Aj

i , B
j
i )

for every i = 1, 2, ..., n, which implies

n∑
i=1

max
j=1,2,...,k

S(Cj
i , C

j
i ) ≥

n∑
i=1

max
j=1,2,...,k

S(Aj
i , B

j
i )

So, we have S(C, C) ≥ S(A,B) for all A,B ∈
MS(n,k)(X). Therefore,

S(C, C) ≥ max
A,B∈MS(n,k)(X)

S(A,B) (3.3)

Combining inequalities (3.2) and (3.3), it follows that

S(C, C) = max
A,B∈MS(n,k)(X)

S(A,B)

Axiom(4): Suppose A,B and C are multiple sets in
MS(n,k)(X) such that A ⊆ B ⊆ C. Then Aj

i ⊆ Bj
i ⊆ Cj

i

for every j = 1, 2, ..., k and i = 1, 2, ..., n. Then, from
axiom (4) of Definition 2.9 for fuzzy similarity measure S,
we have S(Aj

i , B
j
i ) ≥ S(Aj

i , C
j
i ) for every j = 1, 2, ..., k

and i = 1, 2, ..., n. Therefore,

n∑
i=1

max
j=1,2,...,k

S(Aj
i , B

j
i ) ≥

n∑
i=1

max
j=1,2,...,k

S(Aj
i , C

j
i )

and hence S(A,B) ≥ S(A, C). In a similar way, we can
prove that S(B, C) ≥ S(A, C). That is, S(A,B) satisfies
all the axioms of Definition 3.1. Thus S(A,B) is a similar-
ity measure between the multiple sets A and B in X .

Example 3.3. Let X = {x1, x2, x3} be the universal set
and A and B be multiple sets in MS(3,3)(X) given by the
following membership matrices;

A(x1) =

0.9 0.9 0.8
0.5 0.5 0.5
0.3 0.2 0.1

 A(x2) =

0.9 0.5 0.5
0.6 0.5 0.3
0.5 0.4 0.3



A(x3) =

0.8 0.7 0.7
0.6 0.5 0.3
0.8 0.7 0.6

 B(x1) =

0.9 0.5 0.5
0.8 0.5 0.5
0.5 0.5 0.2


B(x2) =

0.8 0.5 0.5
0.6 0.6 0.4
0.6 0.5 0.2

 B(x3) =

0.9 0.7 0.5
0.8 0.6 0.5
0.7 0.5 0.3


Consider 3 similarity measures S1, S2 and S3 of fuzzy sets,
given by the equations 2.10, 2.11 and 2.12, respectively.
Then, from simple mathematical calculations, we have the
similarity measures S(A,B) between multiple sets A and
B based on similarity measure S1 is 2.584, based on S2 is
2.733 and based on S3 is 2.677.

Using the properties of fuzzy similarity measure and def-
inition of similarity measure of multiple set the following
properties can be proved easily:

Theorem 3.4. LetA andB be multiple sets inMS(n,k)(X)
andM be the multiple set in MS(n,k)(X) for which mem-
bership matrices for each x ∈ X is [0.5]n×k. Then, sim-
ilarity measure S(A,B) defined in equation (3.1) satisfies
the following properties:

1. Suppose fuzzy similarity measure S satisfies the prop-
erty A = B ⇔ S(A,B) = 1. Then A = B ⇒
S(A,B) = n.

2. Suppose fuzzy similarity measure S satisfies the prop-
erty A ∩ B = φ ⇔ S(A,B) = 0. Then A ∩ B =
Φ⇔ S(A,B) = 0.

3. Suppose fuzzy similarity measure S satisfies the prop-
erties A = M ⇔ S(A, Ā) = 1 and 0 ≤ S(A,B) ≤
1. Then A =M⇒ S(A, Ā) = n.

4. Suppose fuzzy similarity measure S satisfies the prop-
erty S(A, Ā) = 0 ⇔ A = I or A = 0. Then
S(A, Ā) = 0⇔ A ∈ ξ(n,k)(X).

Remark 3.5. 1. Converse of (1) in Theorem 3.4 need
not be true. For example, let X = {x1, x2, x3} be
the universal set and A and B be multiple sets in
MS(3,3)(X) given by the following membership ma-
trices;

A(x1) =

0.8 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.1


A(x2) =

0.9 0.5 0.5
0.6 0.5 0.5
0.5 0.5 0.3


A(x3) =

0.8 0.5 0.4
0.5 0.5 0.2
0.6 0.5 0.2



B(x1) =

0.9 0.5 0.5
0.5 0.5 0.4
0.5 0.5 0.2


B(x2) =

0.8 0.5 0.5
0.6 0.5 0.5
0.6 0.5 0.2


B(x3) =

0.8 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.1


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations, we obtain
S(A,B) = 3. But, here A 6= B.

2. Converse of (3) in Theorem 3.4 need not be true. Con-
sider the multiple setA given in above example. Then
complement of A is given by the following member-
ship matrices;

Ā(x1) =

0.5 0.5 0.2
0.5 0.5 0.5
0.9 0.5 0.5
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Ā(x2) =

0.5 0.5 0.1
0.6 0.5 0.5
0.7 0.5 0.5


Ā(x3) =

0.6 0.5 0.2
0.8 0.5 0.5
0.8 0.5 0.4


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations, we obtain
S(A, Ā) = 3. But, here A 6=M.

Based on the similarity measure of fuzzy sets and fuzzy
aggregation operator, we give a similarity measure formula
for multiple sets as follows:
Let S be any similarity measure of fuzzy sets satis-
fying Definition 2.9 and H be any fuzzy aggregation
operator[62]. For multiple sets A and B in MS(n,k)(X),
denote

SH(A,B) =
n∑

i=1

S
(
H(A1

i , A
2
i , ..., A

k
i ),

H(B1
i , B

2
i , ..., B

k
i )
) (3.4)

Theorem 3.6. SH(A,B) is a similarity measure between
the multiple sets A and B in X .

Proof. Axioms (1) and (2) are obvious, respectively, from
axioms (1) and (2) of Definition 2.9 for fuzzy similarity
measure S.
Axiom(3): Clearly, we have

SH(C, C) ≤ max
A,B∈MS(n,k)(X)

SH(A,B) (3.5)

Now, for any A,B ∈ MS(n,k)(X), we have

S(H(C1
i , C

2
i , ..., C

k
i ), H(C1

i , C
2
i , ..., C

k
i )) ≥

S(H(A1
i , A

2
i , ..., A

k
i ), H(B1

i , B
2
i , ..., B

k
i ))

for every i = 1, 2, ..., n. Therefore∑n
i=1 S(H(C1

i , C
2
i , ..., C

k
i ), H(C1

i , C
2
i , ..., C

k
i )) ≥∑n

i=1 S(H(A1
i , A

2
i , ..., A

k
i ), H(B1

i , B
2
i , ..., B

k
i ))

So we have SH(C, C) ≥ SH(A,B) for all A,B ∈
MS(n,k)(X). Therefore,

SH(C, C) ≥ max
A,B∈MS(n,k)(X)

SH(A,B) (3.6)

Combining equations (3.5) and (3.6), it follows that

SH(C, C) = max
A,B∈MS(n,k)(X)

SH(A,B)

Axiom(4): Suppose A,B, C ∈ MS(n,k)(X), such that
A ⊆ B ⊆ C. Then Aj

i ⊆ B
j
i ⊆ C

j
i for every j = 1, 2, ..., k

and i = 1, 2, ..., n. Then, from axiom (4) of Definition 2.9
for fuzzy similarity measure S, we have

S(H(A1
i , A

2
i , ..., A

k
i ), H(B1

i , B
2
i , ..., B

k
i )) ≥

S(H(A1
i , A

2
i , ..., A

k
i ), H(C1

i , C
2
i , ..., C

k
i ))

for every i = 1, 2, ..., n. Therefore,

n∑
i=1

S(H(A1
i , A

2
i , ..., A

k
i ), H(B1

i , B
2
i , ..., B

k
i )) ≥

n∑
i=1

S(H(A1
i , A

2
i , ..., A

k
i ), H(C1

i , C
2
i , ..., C

k
i ))

and hence SH(A,B) ≥ SH(A, C). In a similar way, we
can prove that SH(B, C) ≥ SH(A, C). That is, S(A,B)
satisfies all the axioms of Definition 3.1. Thus SH(A,B)
is a similarity measure between the multiple sets A and B
in X .

Example 3.7. Let A and B be multiple sets given in ex-
ample (3.3). Consider 3 similarity measures S1, S2 and S3

of fuzzy sets, given by the equations 2.10, 2.11 and 2.12,
respectively. Here we consider three fuzzy aggregation op-
erators H = avg, max or min. Then, the similarity mea-
sures S(A,B) between multiple sets A and B based on
similarity measures S1, S2 or S3 of fuzzy sets and fuzzy
aggregation operators H = avg, max or min are given in
Table 1.

- avg max min
S1 2.405 2.487 2.117
S2 2.645 2.633 2.566
S3 2.503 2.568 2.136

Table 1: similarity measures S(A,B) between multiple sets A
and B given by the Definition (3.4).

Using the properties of fuzzy similarity measure and def-
inition of similarity measure of multiple set the following
properties can be proved easily:

Theorem 3.8. LetA and B be multiple sets in MS(n,k)(X)
and M be the multiple set in MS(n,k)(X) for which
the membership matrix for each x ∈ X is [0.5]n×k
. Let H denotes the fuzzy aggregation operators
average,maximum or minimum. The similarity mea-
sure SH(A,B) defined in equation (3.4) satisfies the fol-
lowing properties:

1. Suppose fuzzy similarity measure S satisfies the prop-
erty A = B ⇔ S(A,B) = 1. Then A = B ⇒
SH(A,B) = n.

2. Suppose fuzzy similarity measure S satisfies the prop-
erty A ∩ B = φ ⇔ S(A,B) = 0 and H =
max or avg. Then A ∩ B = Φ ⇔ SH(A,B) =
0. Moreover, if H = min, then A ∩ B = Φ ⇒
SH(A,B) = 0.

3. Suppose fuzzy similarity measure S satisfies the prop-
erties A = M ⇔ S(A, Ā) = 1, 0 ≤ S(A,B) ≤
1 and H = max or min. Then A = M ⇔
SH(A, Ā) = n. Moreover, if H = avg, then A =
M⇒ SH(A, Ā) = n.

4. Suppose fuzzy similarity measure S satisfies the prop-
erty S(A, Ā) = 0 ⇔ A = I or A = 0 and H =
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max or avg. Then SH(A, Ā) = 0⇔ A ∈ ξ(n,k)(X).
Moreover, if H = min, then A ∈ ξ(n,k)(X) ⇒
S(A, Ā) = 0.

Remark 3.9. 1. Converse of (1) in Theorem 3.8 need
not be true. For example, let X = {x1, x2, x3} be
the universal set and A and B be multiple sets in
MS(3,3)(X) given by the following membership ma-
trices;

A(x1) =

 0.8 0.5 0.5
0.5 0.5 0.5
0.6 0.5 0.1


A(x2) =

 0.9 0.5 0.4
0.6 0.5 0.5
0.5 0.5 0.3


A(x3) =

 0.8 0.5 0.4
0.8 0.5 0.2
0.6 0.5 0.2



B(x1) =

 0.8 0.6 0.4
0.5 0.5 0.5
0.6 0.4 0.2


B(x2) =

 0.9 0.5 0.4
0.6 0.5 0.5
0.5 0.5 0.3


B(x3) =

 0.8 0.5 0.4
0.8 0.5 0.2
0.6 0.4 0.3


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations we obtain;
Smax(A,B) = 3 and Savg(A,B) = 3. But, here
A 6= B. Now, let C be a multiple set in MS(3,3)(X)
given by the following membership matrices;

C(x1) =

 0.8 0.6 0.5
0.5 0.5 0.5
0.6 0.4 0.1


C(x2) =

 0.9 0.5 0.4
0.6 0.5 0.5
0.5 0.5 0.3


C(x3) =

 0.8 0.5 0.4
0.8 0.5 0.2
0.6 0.4 0.2


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations we obtain,
Smin(A, C) = 3. But, here A 6= C.

2. Smin(A,B) = 0 need not imply A ∩ B = Φ. For
example, let X = {x1, x2, x3} be the universal set
and A and B be multiple sets in MS(3,3)(X) given by
the following membership matrices;

A(x1) =

 0.8 0.5 0.5
0.5 0.3 0.0
0.6 0.5 0.0



A(x2) =

 0.2 0.2 0.0
0.1 0.1 0.0
0.5 0.5 0.3


A(x3) =

 0.8 0.5 0.5
0.8 0.5 0.4
0.3 0.2 0.0



B(x1) =

 0.4 0.2 0.0
0.5 0.5 0.5
0.6 0.4 0.2


B(x2) =

 0.9 0.5 0.5
0.6 0.5 0.5
0.5 0.2 0.0


B(x3) =

 0.1 0.1 0.0
0.0 0.0 0.0
0.6 0.4 0.3


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations we obtain,
Smin(A,B) = 0. But, here A ∩ B 6= Φ.

3. Savg(A, Ā) = n need not imply A =M . For exam-
ple, let X = {x1, x2, x3} be the universal set and A
be multiple set in MS(3,3)(X) given by the following
membership matrices;

A(x1) =

 0.8 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.1


A(x2) =

 0.9 0.5 0.5
0.6 0.5 0.5
0.5 0.5 0.3


A(x3) =

 0.8 0.5 0.4
0.5 0.5 0.2
0.6 0.5 0.2


Then, the complement of A is obtained as follows;

Ā(x1) =

 0.5 0.5 0.2
0.5 0.5 0.5
0.9 0.5 0.5


Ā(x2) =

 0.5 0.5 0.1
0.6 0.5 0.5
0.7 0.5 0.5


Ā(x3) =

 0.6 0.5 0.2
0.8 0.5 0.5
0.8 0.5 0.4


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations we obtain,
Savg(A, Ā) = 3. But, here A 6=M.

4. Smin(A, Ā) = 0 need not imply A ∈ ξ(n,k)(X). For
example, let X = {x1, x2, x3} be the universal set
and A be multiple set in MS(3,3)(X) given by the fol-
lowing membership matrices;
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A(x1) =

 0.3 0.2 0.0
0.1 0.1 0.0
0.0 0.0 0.0


A(x2) =

 0.2 0.2 0.0
0.1 0.1 0.0
0.5 0.3 0.0


A(x3) =

 0.0 0.0 0.0
0.4 0.3 0.0
0.3 0.2 0.0


Then, the complement of A is obtained as follows;

Ā(x1) =

 1.0 0.8 0.7
1.0 0.9 0.9
1.0 1.0 1.0


Ā(x2) =

 1.0 0.8 0.8
1.0 0.9 0.9
1.0 0.7 0.5


Ā(x3) =

 1.0 1.0 1.0
1.0 0.7 0.6
1.0 0.8 0.7


Choose the fuzzy similarity measure S1 given by the
equation (2.10). From simple calculations we obtain,
Smin(A, Ā) = 0. But, here A /∈ ξ(3,3)(X).

4 Applications of similarity
measures to pattern recognition

The capability of recognizing and classifying patterns is
one of the most fundamental characteristics of human in-
telligence. Pattern recognition may be defined as a process
by which we search for structures in data and classify these
structures into categories such that the degree of associa-
tion is high among structures of the same category and low
between structures of different categories.
There are three fundamental problems in pattern recogni-
tion. The first one is sensing problem which is concerned
with the representation of input data obtained by measure-
ments on objects that are to be recognized. In general, each
object is represented by a vector, known as pattern vector,
in which each component represents a particular charac-
teristic of the object. The second problem is feature ex-
traction problem, which concerns the extraction of charac-
teristic features from the input data in terms of which the
dimensionality of pattern vectors can be reduced. The fea-
tures should be characterizing attributes by which the given
pattern classes are well discriminated. The third problem
is classification of given patterns. This is usually done by
defining an appropriate discrimination function for each
class, which assigns a real number to each pattern vec-
tor. Individual pattern vectors are evaluated by these dis-
crimination functions, and their classification is decided by
the resulting values. Each pattern vector is classified to
that class whose discrimination function yields the largest
value. Pattern recognition systems have found vast appli-
cations in many areas such as handwritten character and

word recognition; automatic screening and classification of
X-ray images; electrocardiograms, electroencephalograms,
and other medical diagnostic tools; speech recognition and
speaker identification; fingerprint recognition; classifica-
tion of remotely sensed data; analysis and classification of
chromosomes; image understanding; classification of seis-
mic waves; target identification and human face recogni-
tion.
The utility of fuzzy set theory in pattern recognition was
already recognized and the literature dealing with fuzzy
pattern recognition is now quite extensive. In their posi-
tion paper[63], Mitra et al. gave an outline to the contribu-
tion of fuzzy sets to pattern recognition. They mentioned
that the concept of fuzzy sets can be used at the feature
level in representing input data as an array of membership
values denoting the degree of possession of certain proper-
ties; in representing linguistically phrased input features for
their processing; in weakening the strong commitments for
extracting ill-defined image regions, properties, primitives,
and relations among them. Also, fuzzy sets can be used at
the classification level, for representing class membership
of objects, and for providing an estimate (or representation)
of missing information in terms of membership values.
As mentioned above, fuzzy sets are very effective in rep-
resenting different patterns in pattern recognition. Since
multiple set is a generalization of fuzzy sets and it has the
capability to represent numerous features simultaneously,
they are well suited to model patterns. In this section, we
establish a new procedure for pattern recognition with the
aid of similarity measure on multiple sets.
Assume that there exist m patterns which are represented
by multiple sets Ar for r = 1, 2, ...m. Suppose that there
be a sample to be recognized which is represented by a
multiple set B. According to the principle of the maxi-
mum degree of similarity between multiple sets, we can
decide that the sample belongs to the patternAr with max-
imum S(Ar,B). In the following, a fictitious numeri-
cal example is given to show application of the similarity
measures to pattern recognition problems. Let three pat-
terns be represented by multiple sets A1,A2 and A3 on
X = {x1, x2, x3}, given by the following membership ma-
trices;

A1(x1) =


0.9 0.8 0.8
0.4 0.4 0.4
0.2 0.2 0.1
0.8 0.8 0.7



A1(x2) =


0.8 0.7 0.6
0.5 0.4 0.2
0.1 0.1 0.0
0.7 0.6 0.6



A1(x3) =


0.7 0.6 0.5
0.4 0.3 0.3
0.2 0.1 0.0
0.7 0.7 0.7
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A2(x1) =


0.7 0.7 0.6
0.5 0.5 0.3
0.2 0.2 0.2
0.9 0.9 0.8



A2(x2) =


0.6 0.5 0.4
0.7 0.6 0.5
0.3 0.3 0.1
0.9 0.8 0.8



A2(x3) =


0.8 0.8 0.7
0.8 0.7 0.6
0.3 0.0 0.0
0.9 0.7 0.7



A3(x1) =


0.2 0.2 0.0
0.5 0.5 0.4
0.8 0.7 0.5
0.5 0.4 0.2



A3(x2) =


0.6 0.2 0.1
0.5 0.5 0.3
0.9 0.8 0.8
0.4 0.4 0.4



A3(x3) =


0.5 0.3 0.2
0.7 0.6 0.6
0.9 0.9 0.9
0.4 0.2 0.2


Consider a sample B in MS(4,3)(X) which will be rec-
ognized, where B is given by the following membership
matrices;

B(x1) =


1.0 0.9 0.9
0.3 0.3 0.3
0.2 0.2 0.1
0.7 0.7 0.6



B(x2) =


0.7 0.6 0.5
0.5 0.4 0.2
0.2 0.2 0.1
0.7 0.7 0.6



B(x3) =


0.7 0.6 0.5
0.5 0.3 0.3
0.3 0.2 0.1
0.7 0.7 0.6


Consider 3 similarity measures S1, S2 and S3 of fuzzy sets,
given by the equations 2.10, 2.11 and 2.12, respectively.
Then the similarity measures S(Ar,B) for r = 1, 2, 3,
given by the Definition (3.1) based on similarity measures
S1, S2 and S3 of fuzzy sets are obtained in Table 2;
Now, the similarity measures S(Ar,B) for r = 1, 2, 3,
given by the Definition (3.4), based on similarity measures
S1, S2 and S3 of fuzzy sets and fuzzy aggregation opera-
tors H = min, max or avg are given in tables 3, 4 and 5.
From the tables 2, 3, 4 and 5, we can see that S(A1,B) has
the maximum value. The important point to note here is

- S1 S2 S3

S(A1,B) 3.522 3.8 3.55
S(A2,B) 3.23 3.5 3.257
S(A3,B) 2.098 2.533 2.068

Table 2: similarity measures S(Ar,B) for r = 1, 2, 3, given by
the Definition (3.1).

- S1 S2 S3

Smin(A1,B) 3.062 3.766 3.069
Smin(A2,B) 2.464 3.366 2.81
Smin(A3,B) 1.428 2.334 1.353

Table 3: similarity measures S(Ar,B) for r = 1, 2, 3, given by
the Definition (3.4) based on H = min.

- S1 S2 S3

Smax(A1,B) 3.455 3.766 3.55
Smax(A2,B) 3.124 3.367 3.136
Smax(A3,B) 2.093 2.5 2.068

Table 4: similarity measures S(Ar,B) for r = 1, 2, 3, given by
the Definition (3.4) based on H = max.

- S1 S2 S3

Savg(A1,B) 3.361 3.765 3.424
Savg(A2,B) 2.884 3.368 3.049
Savg(A3,B) 1.772 2.4 1.728

Table 5: similarity measures S(Ar,B) for r = 1, 2, 3, given by
the Definition (3.4) based on H = avg.

that all formulae of multiple similarity measure mentioned
here, results the same conclusion. Obviously, the sample B
belongs to the pattern represented by the multiple set A1.

5 Conclusion

Similarity measure of fuzzy sets is a mature research field
and has found applications in diverse areas such as pat-
tern recognition, image processing, decision making, etc.
Comparatively, similarity measure of multiple sets is a new
topic. This paper deals with the similarity measure of mul-
tiple sets. Two formulas for similarity measure of multiple
sets are proposed and their properties are investigated. This
new concept is applied to pattern recognition problem and
the suitability of proposed method is demonstrated using
a numerical example. We believe that the concept can be
extended to other applications such as image processing,
decision making, etc. Investigation along these lines will
be considered as a part of future work.
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