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The high-level contribution of this paper is a simulation-based analysis of the network connectivity, hop 
count and lifetime of the routes determined for ad hoc networks under the following four mobility 
models: Random Waypoint model, Gauss-Markov model, City Section model and the Manhattan model. 
Two kinds of routes are determined: routes with the minimum hop count and routes with the longest 
lifetime. Extensive simulations have been conducted for different conditions of network density and node 
mobility for each of the four mobility models and also for different values of the degree of randomness 
parameter for the Gauss-Markov mobility model. We arrive at rankings of the mobility models with 
respect to network connectivity, hop count of minimum hop routes, lifetime of minimum hop routes, 
lifetime of stable routes and the hop count of stable routes. We also observe a route lifetime–hop count 
tradeoff for all the four mobility models. The general trend of the results is: the more realistic and 
constrained is a mobility model, the larger is the number of hops in the minimum hop routes and smaller 
is the lifetime of the stable routes determined under the mobility model.

Povzetek: Opisana je analiza mrež s štirimi modeli mobilnosti: Random Waypoint, Gauss-Markov, City 
Section in Manhattan.

1 Introduction
A mobile ad hoc network (MANET) is a 

dynamically distributed system of mobile wireless nodes. 
The network bandwidth is limited and the transmitted 
signals are prone to interference and collision as the 
medium is shared. Since the nodes operate with limited 
battery power, the transmission range of a node is often 
limited. As a result, multi-hop routing is a common 
feature in MANETs. As the nodes move, there is unlikely 
to be a single fixed route throughout the duration of a 
source-destination session. MANET routing protocols 
proposed in the literature can be of two types [1]: 
proactive and reactive. Proactive routing protocols tend 
to predetermine routes between any pair of nodes in the 
network through periodic exchange of route-information 
bearing control packets among the nodes in the network. 
Reactive routing protocols use a broadcast query-reply 
cycle to determine routes between a pair of nodes only 
when required. In dynamic environments, reactive 
routing has been preferred over proactive routing as the 
on-demand routing protocols incur a relatively lower 
control overhead [2]. 

Vehicular ad hoc networks (VANETs) are one of the 
most promising application areas of MANETs. VANET 
communication is normally accomplished through 
special electronic devices placed inside each vehicle so 

that an ad hoc network of the vehicles is formed on the 
road. A vehicle equipped with a VANET device should 
be able to receive and relay messages to other VANET-
device equipped vehicles in its neighborhood. VANET 
applications can be broadly classified into two 
categories: safety applications and comfort applications 
[3]. An example of a safety application is on-board active 
safety systems to assist drivers with information (like 
accidents, road surface conditions, intersections, highway 
entries and etc) about the road ahead. Comfort 
applications are those applications that can provide non-
critical services like weather information, gas station or 
restaurant locations, mobile e-commerce, Internet access, 
music downloads and etc.

VANETs resemble MANETs with respect to the 
dynamically and rapidly changing network topologies 
due to fast moving vehicles. However, the mobility of the 
vehicles is normally constrained by predefined roads and 
speed limitations. Mobility of the vehicles is also 
affected due to traffic congestion in the roads and the 
traffic control mechanisms (like stop signs and traffic 
lights). Route stability is an important design criterion to 
be considered in the design of MANET and VANET 
routing protocols. The routing protocols should be able to 
dynamically adapt to the rapidly changing network 
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topologies while taking into consideration the layout of 
the roads. The commonly used route discovery approach 
of flooding the Route-Request (RREQ) packets can 
easily lead to congestion in the network and also 
consume the battery charge of the nodes. Frequent route 
changes can also result in out-of-order packet delivery, 
causing high jitter in multi-media, real-time applications. 
For safety applications, it is better to route all the critical 
data packets through the same path so that the receiver 
can reassemble the packets and get a consistent view of 
the network condition.

In an earlier work [4], we proposed an algorithm 
called OptPathTrans to determine the sequence of stable 
routes between a given source-destination pair over the 
duration of a communication session. Given the complete 
knowledge of the future topology changes over the entire 
duration of the communication session between a source 
s and destination d, algorithm OptPathTrans operates as 
follows: Whenever an s-d path is required at a time 
instant t, choose the longest-living s-d path from t. The 
above strategy is repeated over the duration of the s-d
session. The sequence of such longest living stable paths 
is called the Stable Mobile Path (SMP). The performance 
of algorithm OptPathTrans has been largely studied 
under the commonly used Random Waypoint (RWP) 
mobility model [5] for MANETs. Note that throughout 
this paper, we use the terms ‘path’ and ‘route’ 
interchangeably. They mean the same. Similarly, the 
terms ‘vehicle’ and ‘node’ are used interchangeably, but 
mean the same.

In this paper, we study the performance of algorithm 
OptPathTrans with respect to the commonly used City 
Section mobility model [6] and the Manhattan mobility 
model [7] for VANETs, in addition to the Random 
Waypoint mobility model and the Gauss-Markov 
mobility model [8] used in MANETs. Most of the 
simulation studies in MANETs use the RWP model as 
the node mobility model. Even though the RWP model is 
easy to simulate, it has some unrealistic assumptions 
about node movement [9]: sharp turns and sudden stop. 
Sharp turns occur whenever a node changes its direction 
after travelling for a random amount of time and sudden 
stops occur when the node decides to stop at a particular 
time instant and changes directions. During a direction 
change, the speed chosen by a node is totally 
independent of the previous speed. The Gauss-Markov 
mobility model proposed by Liang and Haas [8] is more 
realistic compared to the RWP model. It eliminates the 
twin problems of sharp turns and sudden stops by 
considering the past speed and direction to influence the 
future speed and direction. But, the Gauss-Markov 
mobility model has been very rarely used in MANET 
simulation studies, mainly due to the relatively larger 
complexity involved in simulating it compared to the 
Random Waypoint model.

We use the OptPathTrans algorithm to compute the 
sequence of stable paths (the Stable Mobile Path) and the 
Dijkstra algorithm [10] to compute the sequence of 
minimum hop paths (called the Minimum Hop Mobile 
Path). For different conditions of network density and 
node mobility considered, we compute the Minimum 

Hop Mobile Path and the Stable Mobile Path and rank 
the four mobility models (Random Waypoint mobility 
model, Gauss-Markov mobility model, City Section 
mobility model and the Manhattan mobility model) with 
respect to three critical metrics: (i) network connectivity 
(ii) path hop count and (iii) route lifetime. In all of the 
simulations, we observe a route lifetime – hop count 
tradeoff for each of the four mobility models considered. 
Routes with longer lifetime have larger hop count and 
routes with smaller hop count have shorter lifetime. We 
could not find any such comprehensive evaluation study 
in the literature about the impact of the four mobility 
models on the network connectivity, lifetime of stable 
paths and the hop count of minimum hop paths.

The rest of the paper is organized as follows: Section 
2 briefly discusses the working of the Random Waypoint, 
City Section, Manhattan and the Gauss-Markov mobility 
models and also discusses the simulation methodology 
adopted for each model. Section 3 describes related work 
with regards to studying the impact of mobility models 
on the performance of the routing protocols. Section 4
provides an overview of the OptPathTrans algorithm 
used to determine the sequence of long-living stable 
paths in ad hoc networks. Section 5 illustrates the 
simulation results and compares the four mobility models 
with respect to the results obtained for network 
connectivity, route lifetime and hop count. Section 6
summarizes the results of the simulations and Section 7 
concludes the paper.

2 Mobility models and their 
simulation methodology

In this section, we first provide a brief overview of 
the four mobility models studied in this paper. All the 
four mobility models assume the network is confined 
within fixed boundaries. The Random Waypoint mobility 
model assumes that the nodes can move anywhere within
a network region. Under the Gauss-Markov mobility 
model, a node periodically updates its speed and 
direction of movement with a certain degree of Gaussian 
randomness and based on the past speed and direction of 
movement. The City Section and the Manhattan mobility 
models assume the network to be divided into grids: 
square blocks of identical block length. The network for 
these two VANET mobility models is thus basically 
composed of a number of horizontal and vertical streets. 
Each street has two lanes, one for each direction (north/ 
south direction for vertical streets, east/ west direction for 
horizontal streets). A node is allowed to move only along 
the grids of horizontal and vertical streets. For all the 
four mobility models, the mobility profile for each node, 
spanning the entire simulation time period, is created 
offline. The mobility profiles of the nodes are then input 
to the routing algorithm. 

2.1 Random waypoint mobility model
Initially, the nodes are assumed to be placed at 

random locations in the network. The movement of each 
node is independent of the other nodes in the network. 
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The mobility of a particular node is described as follows: 
The node chooses a random target location to move. The 
velocity with which the node moves to this chosen 
location is uniform-randomly selected from the interval 
[vmin,…,vmax]. The node moves in a straight line (in a 
particular direction) to the chosen location with the 
chosen velocity. After reaching the target location, the 
node may stop there for a certain time called the pause 
time. The node then continues to choose another target 
location and moves to that location with a new velocity 
chosen again from the interval [vmin,…,vmax]. The 
selection of each target location and a velocity to move 
to that location is independent of the current node 
location and the velocity with which the node reached 
that location.

Simulation Methodology: The nodes are uniform-
randomly distributed throughout the network. The 
mobility profile for a node is updated each time the node 
changes its direction and randomly chooses a new target 
location to move. The mobility profile for a node i 
comprises of a sequence of tuples, each of which contain 

the following information: [ a
it , b

it , ( a
i

a
i yx , ), 

( b
i

b
i yx , ), ba

iv  ] where a
it is the time instant that node i is 

at location ( a
i

a
i yx , ), changes its direction to move to a 

randomly selected location ( b
i

b
i yx , ) with a randomly 

chosen velocity ba
iv  [ maxmin ,...,vv ] and reaches the 

chosen location at time instant b
it . The above process is 

independently repeated for each node until the simulation 
time period. We assume the pause time for a node to be 
zero in all of our simulations. Whenever the routing 
algorithm needs to compute a graph at a particular time 

instant, say st , we determine the location of each node in 
the network using the mobility profile for the node. For 
example, to determine the location of node i at time 

instant st , we index into the sequence of tuples 
constituting the mobility profile of node i and choose the 

entry whose two time instants a
it , b

it are such that a
it ≤ 

st ≤ b
it . The location ( s

i
s
i yx , ) of node i at time 

instant st is basically given by: 
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2.2 City section mobility model
Initially, the nodes are assumed to be randomly 

placed in the street intersections. Each street (i.e., one 
side of a square block) is assumed to have a particular 
speed limit. Based on this speed limit and the block 
length, one can determine the time it would take to move
in the street. Each node placed at a particular street 

intersection chooses a random target street intersection to 
move. The node then moves to the chosen street 
intersection on a path that will incur the least amount of 
travel time. If two or more paths incur the least amount 
of travel time, the tie is broken arbitrarily. After reaching 
the targeted street intersection, the node may stay there 
for a pause time and then again choose a random target 
street intersection to move. This procedure is repeated 
independently by each node.

Simulation Methodology: The nodes are uniform-
randomly distributed on the street intersections. More 
than one node may be placed at a street intersection. The 
mobility profile for a node is updated each time the node 
moves from a street intersection to a randomly selected 
street intersection through a path that will incur the 
minimum number of street intersections. The mobility 
profile for a node i comprises of a sequence of tuples, 
each of which contain the following information: 

[ a
it , b

it , ba
ip  ( a

i
a
i yx , ), ( b

i
b
i yx , ), iv ] where a

it is the 

time instant that node i is at street intersection ( a
i

a
i yx , ) 

and chooses to move to a randomly selected street 

intersection ( b
i

b
i yx , ) with a velocity vi through the 

shortest path ba
ip  that will have the minimum number of 

street intersections between ( a
i

a
i yx , ) and ( b

i
b
i yx , ). 

Node i reaches ( b
i

b
i yx , ) at time instant b

it . The above 

process is independently repeated for each node until the 
simulation time period. We assume the pause time for a 
node to be zero in all of our simulations. 

To determine the location of node i at time instant st , 
we index into the sequence of tuples constituting the 
mobility profile of node i and choose the entry whose 

two time instants a
it , b

it are such that a
it ≤ st ≤ b

it . The 

location ( s
i

s
i yx , ) of node i then at time instant st is 

determined as follows: Let the shortest 

path ba
ip  between street intersections ( a

i
a
i yx , ) and 

( b
i

b
i yx , ) be represented as ( a

i
a
i yx , ), ( 11 , k

i
k
i yx ), 

( 22 , k
i

k
i yx ), ……, ( kh

i
kh
i yx , ),( b

i
b
i yx , ); where h is the 

number of intermediate street intersections; k1, k2, k3, 
…………kh are the intermediate street intersections 

constituting the shortest path ba
ip  and 1k

it , 2k
it , ……, 

kh
it represent the time instants the node i is at these 

intermediate street intersections respectively. We find the 

two time instants kl
it and 1kl

it such that kl
it ≤ st ≤ 1kl

it

where 1 ≤ l ≤ h. The location ( s
i

s
i yx , ) of node i then at 

time instant st is basically given by: 
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2.3 Manhattan mobility model
Initially, the nodes are assumed to be randomly 

placed in the street intersections. The movement of a 
node is decided one street at a time. To start with, each 
node has equal chance (i.e., probability) of choosing any 
of the streets leading from its initial location. After a 
node begins to move in the chosen direction and reaches 
the next street intersection, the subsequent street in which 
the node will move is chosen probabilistically. If a node 
can continue to move in the same direction or can also 
change directions, then the node has 50% chance of 
continuing in the same direction, 25% chance of turning 
to the east/north and 25% chance of turning to the 
west/south, depending on the direction of the previous 
movement. If a node has only two options (this occurs 
when the node is in one of the four bounding streets of 
the network), then the node has an equal (50%) chance of 
exploring either of the two options. If a node has only 
one option to move (this occurs when the node reaches 
any of the four corners of the network), then the node has 
no other choice except to explore that option.

Simulation Methodology: The mobility profile for a 
node is updated each time the node moves from a street 
intersection to an adjacent street intersection. The 

movement is decided as follows: Let ( a
i

a
i yx , ) be the 

street intersection of node i at time instant a
it . 

Let a
isetSI  be the set of all neighbouring street 

intersections of ( a
i

a
i yx , ). If there exists only one entry 

in a
isetSI  , say a

isetSI  = [( E
i

E
i yx , )], then the 

adjacent street intersection ( b
i

b
i yx , ) to which node i

moves at time instant b
it is basically ( E

i
E
i yx , ). If there 

are two possible candidate adjacent street intersections 

in a
isetSI  , say a

isetSI  = [( E
i

E
i yx , ), ( F

i
F
i yx , )], 

then we generate a random number a
ir from 0 to 1. If 

a
ir < 0.5, then we assign ( b

i
b
i yx , ) = ( E

i
E
i yx , ); 

otherwise, we set ( b
i

b
i yx , ) = ( F

i
F
i yx , ). If there are 

three possible candidate adjacent street intersections 

in a
isetSI  , say a

isetSI  = [( E
i

E
i yx , ), ( F

i
F
i yx , ), 

( G
i

G
i yx , )], where let ( E

i
E
i yx , ) be the street 

intersection that is in the same axis as that of ( a
i

a
i yx , ) 

and let ( F
i

F
i yx , ) and ( G

i
G
i yx , ) be the street 

intersections that are not in the same axis as that of 

( a
i

a
i yx , ). We generate a random number a

ir from 0 to 1. 

If a
ir < 0.5, then we assign ( b

i
b
i yx , ) = ( E

i
E
i yx , ); if 0.5 

≤ a
ir < 0.75, we assign ( b

i
b
i yx , ) = ( F

i
F
i yx , ) and 

for a
ir ≥ 0.75, we set ( b

i
b
i yx , ) = ( G

i
G
i yx , ). We then add 

the tuple [ a
it , b

it , ( a
i

a
i yx , ), ( b

i
b
i yx , ), iv ] to the 

mobility profile of node i, where iv is the velocity with 

which node i moves from ( a
i

a
i yx , ) to ( b

i
b
i yx , ). The 

above process is independently repeated for each node 
until the simulation time period. We assume the pause 
time for a node to be zero in all of our simulations. 

To determine the location of node i at time instant st , 
we index into the sequence of tuples constituting the 
mobility profile of node i and choose the entry whose 

two time instants a
it , b

it are such that a
it ≤ st ≤ b

it . The 

location ( s
i

s
i yx , ) of node i at st is basically given by: 
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2.4 Gauss-Markov mobility model
Initially, the nodes are placed at random locations in 

the network. The movement of a node is independent of 
the other nodes in the network. Each node i is assigned a 

mean speed, iS , and mean direction, i of movement. 

For every constant time period, a node calculates the 
speed and direction of movement based on the speed and 
direction during the previous time period, along with a 
certain degree of randomness incorporated in the 
calculation. The node is assumed to move with the 
calculated speed and in the calculated direction during 
every fixed time period. For a particular time 

instant, 1a
it , the speed and direction of a node i is 

calculated as follows:

 a
i

G
i

a
i

a
i tSSSS *1*)1(* 21  

 a
i

G
i

a
i

a
i t  *1*)1(* 21 

      The parameter α (0 ≤ α ≤ 1) is used to incorporate the 
degree of randomness while calculating the speed and 
direction of movement for a time period. The degree of 
randomness decreases as we increase the value of α from 
0 to 1. When α is closer to 0, the degree of randomness is 
high, which may result in sharper turns. When α is closer 
to 1, the speed and direction during the previous time 
period are given more importance (i.e., the model is more 
temporally dependent) and the node prefers to move in a 
speed and direction closer to what it has been using so 
far. Thus, the movement of a node gets more linear as the 

value of α approaches unity. The terms )( a
i

G tS and 
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)( a
i

G t are random variables chosen independently by 

each node from a Gaussian distribution with mean 0 and 

standard deviation 1. If ( a
i

a
i yx , ) are the co-ordinates of 

node i at time instant a
it , the co-ordinates ( 11 ,  a

i
a
i yx ) 

of the node at time instant 1a
it are given by: 

)]cos(*[1 a
i

a
i

a
i

a
i SXX 

)]sin(*[1 a
i

a
i

a
i

a
i SYY 

3 Related work
In addition to the mobility models described in 

Section 2, we now discuss few other relevant mobility 
models that have also been proposed for ad hoc 
networks. These include the Random Walk model [6], 
Random Direction model [6], Random Trip model [13], 
Freeway model [7] and the Random Point Group (RPG) 
model [6]. 

3.1 Review of other mobility models
The Random Walk model is a slight variation of the 

Random Waypoint model: a node moves in a randomly 
chosen direction and speed until the network boundary is 
reached. After reaching the network boundary, the node 
chooses another random direction and speed to move. 
The Random Trip mobility model is also a slight 
variation of the Random Waypoint mobility model: at a 
trip transition instant, a node selects a random direction, 
trip duration and speed and moves in the chosen direction 
with the chosen speed for the chosen trip duration. If the 
node reaches the boundary of the network during the trip,
the node is reflected. After the expiration of the chosen 
trip duration, another set of random direction, trip 
duration and speed values is chosen and the movement is 
continued. In the Random Waypoint, Random Walk and 
Random Trip mobility models, the random speed 
selected by a node is chosen from a pre-specified range. 
In the Random Direction model, a node moves in a 
randomly chosen direction and travels to the border of 
the simulation area in that direction. As soon as the 
network boundary is reached, the node stops for a certain 
period of time and then moves by choosing another 
angular direction (between 0 and 180 degrees).

The Freeway model can be used to emulate the 
movement of nodes in a freeway. A freeway is assumed 
to comprise of one or more lanes, in both directions. The 
movement of a node is however restricted to a particular 
lane of the freeway and there can be no lane changes. 

The velocity of a node i at time instant t+1, 1t
iV is 

dependent on the velocity of the node at time instant t, 
t

iV and the maximum possible acceleration/deceleration 

for a unit time, t
ia . If node i travels behind node j and the 

distance between them at time instant t is within the 

Safety Distance (SD), then t
iV < t

jV . Thus, the Freeway 

model has high spatial and temporal dependence. 

The RPG mobility model works as follows: Nodes 
move as a group with each group having a group leader 
(a logical centre for the group) whose movement 
determines the group’s mobility pattern. Because of this 
property, the mobility pattern of the nodes under the 
RPG model is expected to have high spatial dependence. 
Initially, each group member is assumed to be uniform-
randomly distributed in the neighbourhood of the group 
leader. For every time instant, the speed and direction of 
a node is derived by randomly deviating from that of the 
group leader. 

3.2 Literature review
In [14], the authors study the impact of the three 

Randomness-based mobility models (Random Waypoint, 
Random Direction and the Random Walk models) on the 
minimum-hop based Ad hoc On-demand Distance 
Vector (AODV) [15] routing protocol. Simulation results 
show that AODV incurred the lowest hop count for its 
routes when simulated under the Random Waypoint 
mobility model. The Random Direction mobility model 
generated the maximum routing overhead (ratio of the 
number of control packets sent to the number of data 
packets sent) and the Random Waypoint model generated 
the minimum routing overhead. The Random Waypoint 
mobility model also yielded the maximum packet 
delivery ratio and throughput. 

In [16], the authors compare the performance of the 
proactive Destination Sequenced Distance Vector 
(DSDV) routing protocol [17] and the on-demand 
Dynamic Source Routing (DSR) [18] and the AODV 
routing protocols with respect to the Random Waypoint 
and Random Trip mobility models. The end-to-end delay 
per data packet for all the three routing protocols was 
found to be lower when simulated with the Random 
Waypoint model compared to the Random Trip model. 

In [19], the authors compare the performance of 
DSR and DSDV protocols under the Random Waypoint 
model, Random Point Group model, Freeway model and 
the Manhattan model. The throughput obtained with 
DSR was greater than that obtained with DSDV under all 
the four mobility models. For smaller node velocities, 
DSR yielded a higher throughput under the Freeway 
mobility model. For moderate and higher node velocities, 
DSR yielded a higher throughput under the Random 
Waypoint model, closely followed by the Manhattan 
model. As the mobility of the nodes increased, the 
throughput of both DSR and DSDV decreased drastically 
under the Freeway model.

In [20], the authors study the impact of the Random 
Waypoint model, the RPG mobility model and its 
variants on the performance of DSDV, AODV and DSR. 
DSR had the highest packet delivery ratio, followed by 
DSDV and then AODV. Routes under the RPG model 
are more likely to exist for a longer time as nodes are in 
the close vicinity of each other. Hence, the routing 
protocols incurred a lower routing overhead as well as a 
larger throughput with the RPG model compared to the 
Random Waypoint model. The packet delivery ratio of 
the routing protocols was strongly influenced by the 
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distribution of the nodes within the network. There were 
erratic variations of the packet delivery ratios of the 
routing protocols with respect to the RPG model and its 
variants; whereas, there was less variation in the packet 
delivery ratios of the routing protocols under the Random 
Waypoint model. Under the Random Waypoint model, 
nodes are more likely to be homogeneously distributed 
throughout the network all the time.

In [21], the authors compare the performance of 
DSR, DSDV and the AODV under the Random 
Waypoint model, Freeway model, Manhattan model and 
the RPG model. Each of the three routing protocols 
achieved the highest throughput and the least overhead 
with the RPG model and incurred high overhead and low 
throughput with both the Freeway and Manhattan 
models. The relative rankings of the routing protocols 
with respect to different performance metrics varies with 
the mobility model used. 

3.3 Motivation for our research
All of the above work study the performance impact 

of the mobility models on the minimum-hop based 
routing protocols. None of the work studied the 
performance impact of the mobility models on the 
stability-based routing algorithms and protocols. As a 
first step in this direction, in this paper, we study the 
impact of the Random Waypoint, City Section model, 
Manhattan and the Gauss Markov mobility models on the 
OptPathTrans algorithm (algorithm to find the sequence 
of most stable paths in an ad hoc network) and compare 
the performance with that of the algorithm to find the 
sequence of minimum hop paths. The next step in our 
research would be to study the impact of the four 
mobility models on the stable path MANET routing 
protocols such as the Flow-Oriented Routing Protocol 
(FORP) [22], Associativity Based Routing (ABR) 
protocol [23] and the Route-lifetime Assessment Based 
Routing Protocol (RABR) [24] and compare their
performance with that of the minimum-hop based routing 
protocols such as DSR, AODV and DSDV.

4 Algorithm to determine the 
optimal number of path 
transitions

In this section, we briefly review the OptPathTrans
algorithm, recently proposed by us in [4], to determine 
the optimal number of path transitions in ad hoc 
networks. The algorithm uses the notions of mobile 
graph to record the sequence of network topology 
changes and mobile path to record the sequence of paths 
in a mobile graph.

4.1 Mobile graph
A mobile graph [11] is defined as the sequence GM = 

G1G2 … GT of static graphs that represents the network 
topology changes over some time scale T. In the simplest 
case, the mobile graph GM = G1G2 … GT can be extended 
by a new instantaneous graph GT+1 to a longer sequence 

GM = G1G2 … GT GT+1, where GT+1 captures a link change 
(either a link comes up or goes down). But such an 
approach has very poor scalability. In this paper, we 
sample the network topology periodically for every 0.25 
seconds, which could, in reality, be the instants of data 
packet origination at the source.

4.2 Mobile path
A mobile path [11], defined for a source-destination 

(s-d) pair, in a mobile graph GM = G1G2 … GT is the 
sequence of paths PM = P1P2 … PT, where Pi is a static 
path between the same s-d pair in Gi = (Vi, Ei), Vi is the 
set of vertices and Ei is the set of edges connecting these 
vertices at time instant ti. That is, each static path Pi can 
be represented as the sequence of vertices v0v1 … vl, such 
that v0 = s and vl = d and (vj-1,vj)  Ei for j = 1,2, …, l. 
The timescale of T normally corresponds to the duration 
of a session between s and d.

The Stable Mobile Path (SMP) for a given mobile 
graph and s-d pair is the sequence of static s-d paths such 
that the number of route transitions (change from one 
static s-d  path to another) is as minimum as possible. In 
other words, the constituent static paths of an SMP have 
the longest possible route lifetime. A Minimum Hop 
Mobile Path (MHMP) for a given mobile graph and s-d
pair is the sequence of minimum hop static s-d paths. The 
SMP for an s-d pair on a given mobile graph is 
determined by using algorithm OptPathTrans. The 
MHMP for an s-d pair on a given mobile graph is
determined by repeatedly running the minimum path 
weight Dijkstra algorithm on the static graphs. We follow 
the Least Overhead Routing Approach (LORA) [12] for 
ad hoc networks. Accordingly, a minimum hop s-d path 
determined by running Dijkstra algorithm on a static 
graph Gi is assumed to be used in the subsequent static 
graphs Gi+1, Gi+2, …., as long as the path exists in these 
static graphs.

4.3 Algorithm OptPathTrans
Algorithm OptPathTrans (pseudo code given in 

Figure 1) operates on the following greedy strategy: 
Whenever a path is required, select a path that will exist 
for the longest time. Let GM = G1G2 … GT be the mobile 
graph generated by sampling the network topology at 
regular instants t1, t2, …, tT of an s-d session. When an s-d
path is required at sampling time instant ti, the strategy is 
to find a mobile sub graph G(i, j) = GiGi+1… Gj

such that there exists at least one s-d path in G(i, j) and 
no s-d path exists in G(i, j+1). A minimum hop s-d path 
in G(i, j) is selected. Such a path exists in each of the 
static graphs Gi, Gi+1, …, Gj. If sampling instant tj+1 ≤ tT, 
the above procedure is repeated by finding the s-d path 
that can survive for the maximum amount of time since 
tj+1. A sequence of such maximum lifetime static s-d
paths over the timescale of a mobile graph GM forms the 
stabile mobile s-d path in GM. The run-time complexity 
of the algorithm is O(n2T), where n is the number of 
nodes in the network and T is the number of static graphs 
in a mobile graph (T is thus a measure of the timescale of 
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the network communication session between the source s
and destination d). 

Input: GM = G1G2 … GT, source s, destination d
Output: PS              // Stable-Mobile-Path
Auxiliary Variables: i, j
Initialization: i=1; j=1; PS = Φ

Begin OptPathTrans

1    while (i ≤ T) do
2    Find a mobile graph G(i, j) = Gi  Gi+1  …  

Gj such that there exists at least one s-d path in G(i, 
j) and {no s-d path exists in G(i, j+1) or j = T}     

3        PS = PS U {minimum hop s-d path in G(i, j) }
4         i = j + 1               
5     end while

6 return PS

End OptPathTrans

Figure 1: Pseudo code for algorithm OptPathTrans.

5 Simulations
The network dimensions are 1000m x 1000m. The 

Random Waypoint and Gauss-Markov mobility models 
work by assuming an open network field without any 
grid constraints. For the City Section and Manhattan 
mobility models, we assume the network is divided into 
grids: square blocks of length (side) 100m. The network 
for the two VANET mobility models is thus basically 
composed of a number of horizontal and vertical streets. 
Each street has two lanes, one for each direction (north 
and south direction for vertical streets, east and west 
direction for horizontal streets). A node is allowed to 
move only along the grids of horizontal and vertical 
streets. The wireless transmission range of a node is 
250m. The network density is varied by performing the 
simulations with 25 (low), 50 (moderate) and 75 (high) 
nodes. The node velocity values used for each of the four 
mobility models are 5 m/s (about 10 miles per hour), 15 
m/s (about 35 miles per hour) and 30 m/s (about 65 miles 
per hour), representing levels of low, moderate and high 
node mobility respectively. For the Gauss-Markov 
mobility model, these velocity values represent the mean 
speed S for a node and for the other three mobility 
models, these values represent the velocity of every node 
in the network. Note that, in the case of the Random 
Waypoint model, for a given mobility level, we let all the 
nodes in the network to move in the same velocity by 
letting vmin = vmax. The pause time is 0 seconds; so, all the 
nodes are constantly in motion.

In the case of the Gauss-Markov mobility model, 
each node is assigned a random value for the mean 
direction of movement, , chosen from the range 
[0…360˚]. When a node travels beyond the boundaries of 
the simulation field, the mean direction of movement of 

the node is forced to flip 180 degrees so that the node can 
remain within the boundary of the simulation field. The 
constant time period for updating the speed and direction 
of movement of the nodes under the Gauss-Markov 
mobility model is 1 second.

We obtain a centralized view of the network 
topology by generating mobility trace files for 1000 
seconds under each of the four mobility models. The 
network topology is sampled for every 0.25 seconds to 
generate the static graphs and the mobile graph. Two 
nodes a and b are assumed to have a bi-directional link at 
time t, if the Euclidean distance between them at time t
(derived using the locations of the nodes from the 
mobility trace file) is less than or equal to the wireless 
transmission range of the nodes. Each data point in 
Figures 2 through 12 is an average computed over 5 
mobility trace files and 20 randomly selected s-d pairs 
from each of the mobility trace files. The starting time of 
each s-d session is uniformly distributed between 1 to 20 
seconds. 

5.1 Performance metrics
The following performance metrics are evaluated:

 Percentage Network Connectivity: Percentage 
network connectivity indicates the probability of 
finding an s-d path between any two nodes in the 
network for a given network density and level of 
node mobility. Measured over all the s-d sessions, 
this metric is the ratio of the number of static graphs 
in which there is an s-d path to the total number of 
static graphs in the mobile graph.

 Average Route Lifetime: The average route lifetime 
is the average of the lifetime of all the static paths of 
an s-d session, averaged over all the s-d sessions.

 Average Hop Count: The average hop count is the 
time averaged hop count of a mobile path for an s-d
session, averaged over all the s-d sessions. The time 
averaged hop count for an s-d session is measured as 
the sum of the products of the number of hops for the 
static s-d paths and the corresponding lifetime of the 
static s-d paths divided by the number of static 
graphs in which there existed a static s-d path. For 
example, if a mobile path comprises of a 2-hop static 
path p1, a 3-hop static path p2, and a 2-hop static path 
p3, existing in static graphs 1-2, 3-5 and 6-10 
respectively, then the time-averaged hop count of the 
mobile path would be (2*2 + 3*3 + 2*5) / 10 = 2.3.

Note that for a given condition of network density 
and node mobility, the values reported for the 
performance metrics under the Gauss-Markov mobility 
model in figures 7 through 12 are the average of the 
performance metric values obtained for different values 
of α.
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5.2 Impact of the degree of randomness 
parameter in the Gauss-Markov 
mobility model

In moderate and high-density networks, there is no 
significant influence of parameter α on network 
connectivity. As we add more nodes, randomness or the 
absence of it, has no significant impact on network 
connectivity. The network connectivity obtained in low-
density networks seems to slightly depend on the value 
of α used. As seen in Figure 2, the highest network 

connectivity for low-density networks is obtained when α 
= 0, corresponding to the scenario in which the mobility 
of the nodes is totally random and not dependent on the 
past history. As nodes move randomly without restricting 
to a fixed path, the connectivity of the nodes can be 
guaranteed for a longer time, especially in low-density 
networks. Otherwise, if nodes move on a linear path for a 
long time, it is likely that they fall out of the range of 
each other after a while, thus reducing the connectivity of 
any two nodes in the network. Nevertheless, the standard

     2.1: Node Velocity = 5m/s                 2.2: Node Velocity = 15m/s                  2.3: Node Velocity = 30m/s

Figure 2: Gauss-Markov Model: Percentage Network Connectivity Vs Degree of Randomness 

            3.1: Node Velocity = 5m/s                 3.2: Node Velocity = 15m/s                   3.3: Node Velocity = 30m/s

Figure 3: Gauss-Markov Model: Average Hop Count per Minimum Hop Path Vs Degree of Randomness.

             4.1: Node Velocity = 5m/s                4.2: Node Velocity = 15m/s                   4.3: Node Velocity = 30m/s

Figure 4: Gauss-Markov Model: Average Lifetime per Minimum Hop Path Vs Degree of Randomness.

        5.1: Node Velocity = 5m/s              5.2: Node Velocity = 15m/s            5.3: Node Velocity = 30m/s

Figure 5: Gauss-Markov Model: Average Lifetime per Stable Path Vs Degree of Randomness.

        6.1: Node Velocity = 5m/s              6.2: Node Velocity = 15m/s            6.3: Node Velocity = 30m/s

Figure 6: Gauss-Markov Model: Average Hop Count per Stable Path Vs Degree of Randomness.
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deviation of the network connectivity in low-density 
networks is not more than 5% of the mean network 
connectivity obtained for different α values.

With respect to the influence of the degree of 
randomness parameter α on the hop count of the 
minimum hop paths, we observe that the maximum 
difference in the minimum hop count of the paths 
obtained for different values of α for a given condition of 
node mobility and network density is 0.3, while the 
average hop count of the paths under the Gauss-Markov 
model is in the range of 3.0 to 3.6. In more statistical 
terms, the standard deviation of the minimum hop counts 
is not even 3% of the average of the minimum hop 
counts obtained for different values of α. So, we can very 
well conclude that the degree of randomness in the 
Gauss-Markov model does not significantly influence the 
hop count of the minimum hop paths in the network. We 
also observe that the lifetime of the minimum hop paths 
do not significantly differ from each other for different 
values of α. Similar to the observation made for the hop 
count, the standard deviation of the lifetime of the 
minimum hop paths is not even 4% of the average of the 
lifetime of the minimum hop paths obtained for different 
values of α. The above observations are consistent with 
the simulation results obtained in [9], wherein it has been 
concluded that the degree of randomness parameter in 
the Gauss-Markov model has no significant influence on 
the throughput and end-to-end delay per data packet.

With respect to the influence of the degree of 
randomness parameter α on the lifetime of the stable 
paths, we observe that it is possible to determine long-
living routes by adopting larger intermediate values of α 
(i.e., α values of 0.6 to 0.8), when the model is 
considered to give higher weight to the speed and 
direction of movement in the previous time period while 
determining the speed and direction of movement for the 
subsequent time period. But, there is still a degree of 
randomness associated with the determination of speed 
and direction (note that we are not letting α to approach 
1). Such a small level of randomness is required to 
occasionally deflect nodes from their linear path so that 
the nodes continue to remain as neighbours with a larger 
probability and do not move far away from each other. If 
the nodes strictly take a linear path, it is possible for 
them to move away from each other relatively sooner. A 
certain degree of randomness is required for the nodes to 
get deflected and move in the vicinity of each other for 
relatively little longer. From Figures 6.1 through 6.3, we 
can observe that the lifetime of the stable routes 
determined with α value of 0.6 can be sometimes about 
20% more than the lifetime of the stable routes 
determined with α value of 1.0. For lower values of α, 
the degree of randomness increases and the number of 
link changes increases significantly. Nevertheless, the 
lifetime of stable routes determined for lower values of α 
is not significantly lower than those obtained for α values 
in the range of 0.6 to 0.8 and is almost close to the 
lifetime values obtained when α is unity. The standard 
deviation of the lifetimes of stable routes is still below 
10% of the mean of the lifetime of the stable routes 

computed over the different values of α for a particular 
condition of network density and node mobility.

Similarly, the standard deviation of the hop counts 
of stable routes is within 10% of the mean of the hop 
counts of stable routes computed over different α values 
for a given network density and node mobility.

The above observations justify the usage of the 
average of the values of a performance metric for 
different values of α as a measure of the performance 
under the Gauss-Markov mobility model in figures 7 
through 12 that compare the performance under the 
different mobility models.

5.3 Network connectivity
The Random Waypoint mobility model provided the 
maximum network connectivity for any combination of 
network density and node mobility. In low-density and 
moderate-density networks, for all levels of node 
mobility, the RWP model is the only mobility model to 
provide a connectivity of at least 90% and 99% 
respectively. In high-density networks, for any level of 
node mobility, each of the four mobility models provided
connectivity of at least 99.5%. The following ranking can 
be observed for the four mobility models in decreasing 
order of network connectivity in low and moderate 
density networks: Random Waypoint model, City 
Section model, Gauss-Markov model and the Manhattan 
model. Note that the network connectivity values plotted 
in Figures 7.1 through 7.3 is an average of those obtained 
for the Minimum Hop Mobile Path and Stable Mobile 
Path.

In low density networks, the lower network 
connectivity obtained with the two VANET mobility 
models can be attributed to the constrained motion of the 
nodes only along the streets of the network. In the case of 
the Manhattan mobility model, the probabilistic nature of 
direction selection after reaching each street intersection 
is also a reason behind the lowest network connectivity 
observed for this mobility model among all the four 
mobility models. The number of nodes distributed in the 
streets of the network may not be sufficient enough to 
connect any pair of source-destination nodes all the time. 
In the case of the Gauss-Markov mobility model, the 
direction of movement of the nodes is restricted close to 
the initially assigned mean direction of movement. Note 
that, we assign each node a mean direction of movement 
randomly chosen from [0…360˚]. But, still, when there 
are few nodes in the network, the restricted movement of 
the nodes close to the mean direction of movement is a 
limiting factor for network connectivity. As we increase 
the number of nodes in the network, both the VANET 
mobility models and the Gauss-Markov mobility model 
demonstrate a significant increase in network 
connectivity, for all levels of node mobility. This 
illustrates the fact that the randomness associated with 
the mobility models assures that any pair of nodes will 
remain connected, provided we have at least a reasonably 
larger number of nodes (like moderate density networks), 
irrespective of the different levels of node mobility.
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        7.1: Node Velocity = 5m/s                7.2: Node Velocity = 15m/s               7.3: Node Velocity = 30m/s

Figure 7: Percentage Network Connectivity under the Different Mobility Models.

        8.1: Node Velocity = 5m/s                8.2: Node Velocity = 15m/s                8.3: Node Velocity = 30m/s

Figure 8: Average Hop Count per Minimum Hop Path under the Different Mobility Models.

        9.1: Node Velocity = 5m/s                9.2: Node Velocity = 15m/s               9.3: Node Velocity = 30m/s

Figure 9: Average Lifetime per Minimum Hop Path under the Different Mobility Models.

5.4 Minimum hop mobile path
We now discuss the time averaged hop count per 

minimum hop path (refer Figure 8) and the average route 
lifetime (refer Figure 9) of the minimum hop paths 
determined as the constituent paths of the Minimum Hop 
Mobile Path under the four mobility models.

5.4.1 Average hop count per minimum hop 
path

The average hop count per minimum hop path 
determined for the two VANET mobility models and the 
Gauss-Markov model is considerably larger than the hop 
count per minimum hop path determined for the Random 
Waypoint mobility model. The relatively larger hop 
count can be attributed to the constrained mobility of the 
nodes under these three mobility models. The minimum 
hop paths in the street networks are most likely not to 
exist on or close to the straight line between source and 
destination nodes. Similarly, due to the temporal 
dependency associated with the Gauss-Markov mobility 
model, one cannot always find minimum hop paths lying 
on a straight line connecting the source and destination 
nodes. Based on our observations in Figures 8.1 through 
8.3, we can arrive at the following ranking of the four 
mobility models in the increasing order of the magnitude 
of the hop count for the minimum hop paths: Random 
Waypoint model, City Section model, Gauss-Markov 
model and the Manhattan model. This ranking holds 

good for all the simulated conditions of network density 
and levels of node mobility.

For a given node velocity, the average hop count per 
minimum hop path under the City Section mobility 
model, Gauss-Markov mobility model and the Manhattan 
mobility model is respectively about 14%, 17% and 19% 
more than that incurred for the Random Waypoint 
mobility model in low-density networks. In moderate and 
high-density networks, the average hop count per 
minimum hop path under the City Section, Gauss-
Markov and Manhattan mobility models is respectively 
about 18%, 25% and 40% more than that incurred for the 
Random Waypoint mobility model. We also observe that 
with increase in network density, the average hop count 
per minimum hop path for the Random Waypoint 
mobility model, City Section mobility model and the 
Gauss-Markov mobility model decreases (by a factor of 
5%-10%). On the other hand, with increase in network 
density, the average hop count per minimum hop path for 
the Manhattan mobility model remained the same or 
even sometime increases up to 14%. This can be 
attributed to the significant increase in the network 
connectivity for the Manhattan mobility model with 
increase in network density, but at the cost of increase in 
hop count. Given the extremely constrained and random 
nature of node movement under the Manhattan mobility 
model, in order to connect the source and destination, 
more intermediate nodes have to be accommodated in the 
source-destination paths.
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5.4.2 Average lifetime per minimum hop path
When we aim for minimum hop count in the paths 

and determine the Minimum Hop Mobile Path by 
repeated application of the Dijkstra algorithm on the 
static graphs, we observe that the minimum hop paths 
determined under the City Section mobility model are 
relative more stable (i.e., have a larger route lifetime) 
compared to the minimum hop paths determined under 
the other three mobility models. We even observe that 
the minimum hop paths determined under the Manhattan 
mobility model in low-density networks are relatively 
more stable than those determined under the Random 
Waypoint and the Gauss-Markov mobility models. In 
low-density networks, the average lifetime of the 
minimum hop paths determined under the Manhattan 
mobility model is only about 3% less than the average 
lifetime of the minimum paths determined under the City 
Section mobility model. But, as we increase the network 
density, the number of hops in the minimum hop paths 
determined under the Manhattan mobility model 
increased to provide better network connectivity. 
However, such minimum hop paths have been observed 
to be relatively unstable.

For a given level of node mobility, in low-density 
networks, the average lifetime of the minimum hop 
routes determined under the Manhattan model, Random 
Waypoint model and the Gauss-Markov model is about 
3%, 10% and 25% less than the average lifetime of 
minimum hop routes determined under the City Section 
mobility model. But, as we increase the network density, 
we observe that the magnitude of this difference 
increases further. For a given level of node mobility, in 
moderate and high-density networks, the average lifetime 
of the minimum hop routes determined under the 
Manhattan model, Random Waypoint model and the 
Gauss-Markov model is about 10%-15%, 10%-15% and 
30%-34% less than the average lifetime of minimum hop 
routes determined under the City Section mobility model. 
The relatively poor lifetime of minimum hop routes 
determined under the Gauss-Markov mobility model can 
be attributed to the temporal dependency of the nodes in 
choosing their direction of movement. When we attempt 
to optimize the number of hops, it may be possible to 
obtain paths with lower hop count. But, such paths may 
have links whose constituent nodes are on the verge of 
moving away from each other, travelling in different 
directions.

We also observe that with increase in network 
density, the average lifetime of the minimum hop routes 
decreases for all the four mobility models. This can be 
attributed to the decrease in the hop count of the 
minimum hop routes as we increase the number of nodes 
in the network. It gets possible to reduce the number of 
hops by choosing the intermediate nodes from a larger 
pool of available nodes. But, the physical distance 
between the constituent nodes of the links in such 
minimum hop paths tends to be close to or even more 
than 80% of the transmission range of the nodes at the 
time of route selection itself. Such routes are bound not 
to last longer. Thus, with a small reduction in the 

minimum hop count of the paths, we incur a significant 
reduction in the lifetime of the minimum hop routes. 
Note that for the Manhattan mobility model, even though 
the hop count of the minimum hop routes increases with 
increase in network density, the lifetime of the minimum 
hop routes decreases with increase in network density. In 
the case of the Manhattan mobility model, the network 
connectivity was very low in low-density networks. So, 
as we increased the network density, the network 
connectivity improved but more intermediate nodes have 
to be added, even if we aim for minimum hop paths. 

The following ranking can be assigned for the four 
mobility models in the decreasing order of lifetime of 
minimum hop routes for the different network densities, 
irrespective of the level of node mobility:

 Low-density networks: City Section model, 
Manhattan model, Random Waypoint model, 
Gauss-Markov model

 Moderate and High-density networks: City 
Section model, Random Waypoint model, 
Manhattan model and Gauss-Markov model

5.5 Stable mobile path
We now discuss the average route lifetime (refer 

Figure 10) per stable path and the time averaged hop 
count per stable path (refer Figure 11) as we determine 
the constituent stable paths of the Stable Mobile Path 
under all the four mobility models.

5.5.1 Average lifetime per stable path
For all the four mobility models, algorithm 

OptPathTrans was able to determine stable paths by 
adding more intermediate nodes to the path such that the 
average physical distance between the constituent nodes 
of the links in the stable path is only about 60%-70% of 
the transmission range of the nodes. Thus, the long-living 
routes are determined at the cost of an increase in the hop 
count. This is a tradeoff that cannot be avoided. We also 
observe that for each of the four mobility models, for a 
given level of node mobility, the lifetime of the stable 
routes increased as we increase the network density. This 
is because algorithm OptPathTrans gets a larger pool of 
nodes to select from by looking ahead at the future. 
Nevertheless, we do see an increase in the hop count of 
the stable routes in moderate and high-density networks 
vis-à-vis low-density networks, an observation again 
vindicating the tradeoff between route lifetime and hop 
count in ad hoc networks. 

Overall, the lifetime of stable routes obtained under 
the Random Waypoint model was the largest in all of the 
simulated scenarios. This can be attributed to the 
unconstrained mobility of the nodes and algorithm 
OptPathTrans faces no restrictions in choosing the 
intermediate nodes that form the stable paths. With the 
other three mobility models, due to the constrained 
mobility of the nodes in one way or the other, algorithm 
OptPathTrans faces restrictions in choosing the 
intermediate nodes for the stable paths. As a result, the 
stable paths determined under these mobility models with 
restricted node movement have a relatively lower 
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lifetime when compared to those incurred under the 
RWP model.

The following rankings can be assigned for the four 
mobility models in the decreasing order of the lifetime of 
the stable paths for the different network density and 
node mobility scenarios:

 High network density, High node mobility: 
Random Waypoint model, City Section model, 
Gauss-Markov model and Manhattan model

 All other conditions of network density and node 
mobility: Random Waypoint model, City 
Section model, Manhattan model and Gauss-
Markov model

In high-density networks with high level of node 
mobility, the Gauss-Markov model yielded stable routes 
with a slightly larger lifetime than the Manhattan 
mobility model. This can be reasoned as follows: In 
high-density networks, due to the temporal dependency 
on the direction of movement of the nodes, it is possible 
to find stable paths involving nodes that are travelling in 
the same direction or at least not moving away from each 
other. With the Manhattan model, it is less likely that the
algorithm OptPathTrans can find nodes travelling in the 
same direction as the direction of movement of the nodes 
is probabilistically decided at each street intersection. 

As we increase network density from low to high, 
the two VANET mobility models experience a relatively 
smaller increase in the lifetime of stable routes compared 
to the Random Waypoint and Gauss-Markov mobility 
models. This can be attributed to the constrained mobility 
of the nodes in the street networks. As discussed above, 
the Gauss-Markov model makes the most use of increase 
in the number of nodes in the network, as it becomes 
increasingly possible to find nodes travelling in a similar 
direction. Since the nodes moving under Gauss-Markov 
model are temporally dependent on the previous 
direction of movement and the mean direction of 
movement, algorithm OptPathTrans has good chance of 
finding a stable path that will involve nodes travelling in 
a similar direction and that the link between the 

constituent nodes of such a path will exist for a relatively 
longer time.

5.5.2 Average hop count per stable path
As discussed in Section 4.5.1, algorithm 

OptPathTrans determines paths with a relatively longer 
lifetime than the minimum hop paths, but the hop count 
of such stable paths is larger than the minimum hop 
count possible for the same operating conditions of 
network density and node mobility. Such a lifetime-hop 
count tradeoff exists for all the four mobility models.

The hop count of the stable routes determined under 
the City Section mobility model is the smallest for most 
of the operating scenarios. The hop count of the stable 
routes determined under the Random Waypoint mobility 
model is larger than those determined under the City 
Section mobility model by at most 10%-15%. But as we 
observed in Section 4.5.1, algorithm OptPathTrans was 
able to find long-living routes under the Random 
Waypoint model. The lifetime of such stable routes can 
be as large as 30% compared to those incurred with the 
City Section mobility model. This observation again 
illustrates the tradeoff between lifetime and hop count. 
The hop count of the stable routes determined with the 
Gauss-Markov and the Manhattan mobility models are 
almost the same for most of the operating scenarios, with 
the Manhattan mobility model having a slightly larger 
hop count in networks with low node mobility. But the 
hop count of the stable routes determined under these 
two models is considerably larger than those determined 
under the City Section and the Random Waypoint 
mobility models. 

As we increase the level of node mobility, the 
lifetime of the links decreases, forcing algorithm 
OptPathTrans to determine stable routes with a relatively 
smaller lifetime compared to those determined in 
networks of low node mobility. The hop count of the 
stable routes determined under conditions of high node 
mobility does mostly get smaller compared to those 
determined under conditions of low node mobility. 

          10.1: Node Velocity = 5m/s              10.2: Node Velocity = 15m/s                  10.3: Node Velocity = 30m/s

Figure 10: Average Lifetime per Stable Path under the Different Mobility Models.

       11.1: Node Velocity = 5m/s            11.2: Node Velocity = 15m/s                 11.3: Node Velocity = 30m/s

Figure 11: Average Hop Count per Stable Path under the Different Mobility Models
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Nevertheless, as we increase the level of node mobility 
from 5 m/s to 30 m/s, for all of the four mobility models, 
the reduction in the hop count of stable paths is more in 
low-density networks compared to that incurred in high-
density networks. This is because, as we increase the 
level of node mobility, the rate of decrease in the lifetime 
of stable routes in low-density networks is relatively 
larger than the rate of decrease of the lifetime of stable 
routes in high-density networks under each of the four 
mobility models.

5.6 Route lifetime – hop count tradeoff
We observe a tradeoff between the objectives of 

optimizing the route lifetime and the hop count per path 
for all the four mobility models. Both of these 
performance metrics cannot be optimized at the same 
time. For a given simulation condition of network density 
and node mobility, the average hop count of a Minimum 
Hop Mobile Path is smaller than the average hop count 
of a Stable Mobile Path; the average route lifetime of a 
Stable Mobile Path is more than the average route 
lifetime of a Minimum Hop Mobile Path. We capture the 
route lifetime-hop count tradeoff in terms of the lifetime 
ratio and the hop count ratio. The lifetime ratio is the 
ratio of the average lifetime per stable path in the Stable 
Mobile Path to that of the average lifetime per minimum 
hop path in the Minimum Hop Mobile Path. The hop 
count ratio is the ratio of the average hop count per stable 
path in the Stable Mobile Path to that of the average hop 
count per minimum hop path in the Minimum Hop 
Mobile Path. The range of values of the lifetime ratios 
and hop count ratios observed for the four mobility 
models in low and high-density networks is illustrated in 
Figures 12.1 and 12.2.

One can observe from the figures that largest values 
for both the lifetime and hop count ratios are incurred 
with the Random Waypoint mobility model. This 
illustrates that under the Random Waypoint mobility 
model, it is possible to determine stable paths with 
relatively a very longer lifetime compared to the lifetime 
of the minimum hop paths, but there is a corresponding 
increase in the hop count of the stable paths. 
Nevertheless, the increase in the hop count ratio is not 
proportional and is sub-linear compared to the increase in 
the lifetime ratio. For example, the lifetime ratio for 
RWP model is in the range of 2.6-2.9 and 8.2-8.9 in low 
and high density networks respectively, where as the hop 
count ratio for the RWP model is in the range of 1.4-1.75 
and 2.5-2.75 in low and high-density networks 
respectively.

The lifetime ratio for the Gauss-Markov mobility 
model is the lowest of all the four mobility models in 
low-density networks. But, in high-density networks, we 
observe that the lifetime ratio for the Gauss-Markov 
mobility model is above that of the City Section and 
Manhattan mobility models. This supports our earlier 
reasoning that in high-density networks, algorithm 
OptPathTrans manages to find more nodes travelling in 
the same direction under the Gauss-Markov mobility 
model and hence can find long-living stable paths 

involving those nodes. Of course, there is a 
corresponding increase in the hop count ratio for the 
Gauss-Markov mobility model in high-density networks. 
The increase in the lifetime ratio for the City Section and 
Manhattan mobility models is relatively modest and this 
can be attributed to the constrained mobility of the nodes 
in the street networks. Similar to the RWP model, the 
increase in the hop count ratio for the other three 
mobility models is also sub-linear compared to the 
increase in the lifetime ratio.

Figure 12.1: Lifetime Ratio.

Figure 12.2: Hop Count Ratio.

Figure 12: Route Lifetime – Hop Count Tradeoff.
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6 Summary of results
The performance of the Gauss-Markov mobility 

model for different values of the degree of randomness 
parameter α can be summarized as follows: In moderate 
and high-density networks, there is no significant 
influence of parameter α on network connectivity. The 
highest network connectivity for low-density networks is 
obtained when α = 0, corresponding to the scenario in 
which the mobility of the nodes is totally random and not 
dependent on the past history. The degree of randomness 
does not significantly influence the hop count and 
lifetime of the minimum hop paths in the network. We 
also observe that one can determine long-living routes by 
adopting larger intermediate values of α (i.e., α values of 
0.6 to 0.8). 

The following ranking can be observed for the four 
mobility models in the decreasing order of network 
connectivity in low and moderate density networks: 
Random Waypoint model, City Section model, Gauss-
Markov model and the Manhattan model. In high-density 
networks, for any level of node mobility, all the four 
mobility models provided a connectivity of at least 
99.5%. As we increase the number of nodes in the 
network, both the VANET mobility models and the 
Gauss-Markov mobility model demonstrate a significant 
increase in network connectivity, for all levels of node 
mobility. 

The minimum hop paths in the street networks are 
most likely not to exist on or close to the straight line 
between the source and destination nodes. Similarly, due 
to the temporal dependency associated with the Gauss-
Markov mobility model, one cannot find minimum hop 
paths lying on a straight line connecting the source and 
destination nodes. For any condition of network density 
and node mobility, we can arrive at the following ranking 
for the four mobility models in the increasing order of 
the magnitude of the hop count for the minimum hop 
paths: Random Waypoint model, City Section model, 
Gauss-Markov model and the Manhattan model.  

The minimum hop paths determined under the City 
Section mobility model are relatively more stable (i.e., 
have a larger route lifetime) compared to the minimum 
hop paths determined under the other three mobility 
models. The following rankings can be assigned for the 
four mobility models in the decreasing order of lifetime 
of minimum hop routes for the different network 
densities, irrespective of the level of node mobility: (i) 
Low-density networks – City Section model, Manhattan 
model, Random Waypoint model, Gauss-Markov model 
and (ii) Moderate and High-density networks – City 
Section model, Random Waypoint model, Manhattan 
model and Gauss-Markov model.

The lifetime of stable routes obtained under the 
Random Waypoint mobility model was the largest in all 
of the simulated scenarios. The following rankings can 
be assigned for the four mobility models in the 
decreasing order of the lifetime of the stable paths for the 
different network density and node mobility scenarios: (i) 
High network density, High node mobility – Random 
Waypoint model, City Section model, Gauss-Markov 

model and Manhattan model (ii) All other conditions of 
network density and node mobility – Random Waypoint 
model, City Section model, Manhattan model and Gauss-
Markov model. 

The hop count of the stable routes determined under 
the City Section mobility model is the smallest for most 
of the operating scenarios. The hop count of the stable 
routes determined under the Random Waypoint mobility 
model is larger than those determined under the City 
Section mobility model by at most 10%-15%. The hop 
count of the stable routes determined under the 
Manhattan and Gauss-Markov mobility models are closer 
to each other, but are considerably larger than those 
determined under the City Section and the Random 
Waypoint mobility models. 

As we aim for stable routes, the increase in the hop 
count of the paths is only sub-linear to the increase in the 
lifetime compared with that of the minimum hop paths. 
The Random Waypoint model provided the maximum 
increase in the path lifetime as well as the maximum 
increase in the hop count vis-à-vis the minimum hop 
paths. The City Section and Manhattan mobility models 
provided only a modest increase in the path lifetime and 
also incurred only a correspondingly modest increase in 
the hop count compared with that of the minimum hop 
paths. The Gauss-Markov mobility model too provided 
only a modest increase in the path lifetime and hop count 
in low-density networks. But, as we increase the network 
density, the improvement in the path lifetime is 
significantly high accompanied by a reasonably larger 
increase in the hop count of the stable paths vis-à-vis the 
minimum hop paths.

7 Conclusions
In conclusion, the general trend is: the more realistic 

is a mobility model, the larger is the number of hops in 
the minimum hop routes and smaller is the lifetime of 
stable routes determined under the mobility model. The 
Random Waypoint model yielded the lowest hop count 
for minimum-hop routes and the largest lifetime for 
stable routes. On the other hand, more realistic mobility 
models such as the Gauss-Markov model and the 
Manhattan model yield a relatively larger number of 
hops for minimum-hop routes and a relatively smaller 
lifetime for stable routes. 

We observe a tradeoff between the objectives of 
optimizing the route lifetime and the hop count per path 
for all the four mobility models. Both of these 
performance metrics cannot be optimized at the same 
time. For a given simulation condition of network density 
and node mobility, the average hop count of a Minimum 
Hop Mobile Path is smaller than the average hop count 
of a Stable Mobile Path; the average route lifetime of a 
Stable Mobile Path is more than the average route 
lifetime of a Minimum Hop Mobile Path. 
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