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Scalar multiplication is the key operation in hyperelliptic curve cryptosystem. By making use of Euclidean
lengths of algebraic integral numbers in a related algebraic integer ring, we discuss the Frobenius expan-
sions of algebraic numbers, theoretically and experimentally show that the multiplier in a scalar multiplica-
tion can be reduced and converted into a Frobenius expansion of length approximate to the field extension
degree, and then propose an efficient scalar multiplication algorithm. Our method is an extension of the re-
sults given by Müller, Smart and Günther et al. If some (optimal) normal basis is employed, then, for some
hyperelliptic curves over finite fields, our method will make the computations of scalar multiplications be
lessened about fifty-five percent compared with the signed binary method.

Povzetek: Predstavljena je metoda pohitrenega skalarnega množenja.

1 Introduction
Elliptic curve cryptosystems (ECC) have now widely been
studied and applied in e-commerce, e-government and
other secure communications. The practical advantages
of ECC is that it can be realized with much smaller pa-
rameters compared to the conventional discrete logarithms
based cryptosystems or RSA but with the same levels of
security. This advantage is especially important in the en-
vironments with limited processing power, storage space
and bandwidth.

As a natural generalization of elliptic curve cryptosys-
tems, the hyperelliptic curve cryptosystem (HECC) was
first proposed by Koblitz (1; 2). In a hyperelliptic curve
cryptosystem, the rational point group of an elliptic curve,
is replaced by the Jacobian group of a hyperelliptic curve
, and its security is based on the discrete logarithm on this
Jacobian group, that is, based on the hyperelliptic curve
discrete logarithm problems(HECDLP). Since the order of
the Jacobian group can be constructed much large over a
small base field in HECC, HECC has gotten much atten-
tion in cryptography, a lot of work has been done to study
the group structures and operations on the Jacobian groups.

Let q be a power of some prime and Fq be the finite field
of q elements. A hyperelliptic curve C of genus g over Fq
is defined by the equation

v2 + h(u)v = f(u), (1)

where h(u), f(u) ∈ Fq with degu(h) ≤ g and degu(f) =
2g + 1, and there is no solution (u, v) ∈ Fq × Fq which

simultaneously satisfy the equation v2 + h(u)v = f(u)
and the partial derivate equations 2v + h(u) = 0 and
h′(u)v − f ′(u) = 0. If the characteristic of Fq is odd, then
the curve (1) is isomorphic to a hyperelliptic curve with the
corresponding h(u) equal to 0.

A divisor D on C over Fq is defined as a finite formal
sum of rational Fq-points D =

∑
miPi on C with its

degree defined as the integer
∑

mi. The Jacobian group
JC(Fq) of the curve C over Fq is an Abelian group com-
posed of reduced divisors on C. Every element or reduced
divisor D in JC(Fq) can be uniquely expressed by a pair of
polynomials < a(u), b(u) > with the properties

{
degub(u) < degua(u) ≤ g
b(u)2 + h(u)b(u)− f(u) = 0 mod a(u)

, (2)

where a(u), b(u) ∈ Fq[u]. Generally, a(u) is a monic
polynomial of degree g and b(u) is a polynomial of degree
g − 1 with a overwhelming probability. The zero element
of JC(Fq) can be expressed as < 1, 0 >.

In practical hyperelliptic curve cryptosystems, the vi-
tal computation that dominates the whole running time is
scalar multiplication, that is, the computation of the re-
peated divisor adding

D +D + · · ·+D︸ ︷︷ ︸
m

for a given divisor D ∈ J(Fqn) and a positive integer m ≥
1, which is denoted as mD.
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Such as in the hyperelliptic curve Diffie-Hellman key ex-
change protocol(HECDH), suppose Alice and Bob wish to
generate their shared secret key for their secure communi-
cation, then they do the followings:

– First they agree on a positive integer n and a hyperel-
liptic curve C over a finite field Fq, and also a divisor
D ∈ J(Fqn).

– Alice randomly chooses an positive integer mA that
is smaller than ]JC(Fqn), and then compute the scalar
multiplication DA = mAD and send DA to Bob.

– Bob similarly chooses an positive integer mB , com-
pute DB = mBD and send DB to Alice.

– Alice and Bob compute the scalar multiplications
DA,B = mADB and DB,A = mBDA,respectively.

– Since DA,B = mADB = mA(mBD) =
(mAmB)D = (mBmA)D = DB,A, Alice and Bob
get their shared secret key DA,B .

– Using this shared secret key DA,B and some symmet-
ric cryptographic algorithm of their choice, Alice and
Bob can communicate securely.

As the above shown, each of Alice and Bob compute two
scalar multiplications and the scalar multiplication is the
unique operation that involved in HECDH. Also in the
hyperelliptic curve digital signature algorithm(HECDSA),
it takes three dominating scalar multiplications except for
some simple field operations.

A natural algorithm to compute the scalar multiplication
mD is (signed) binary method. In (6; 7), Müller and Smart
employed Frobenius automorphism to compute point scalar
multiplications on elliptic curves over small fields of char-
acteristic even or odd, respectively. In (8), Günther et al
employed Frobenius automorphism to compute scalar mul-
tiplications on two hyperelliptic curves of genus 2. Their
ideas are based on the two facts: One is that, for a point or
divisor D, computing φ(D) is much faster than doubling
D, and the other is that every Z[τ ]-integer can be repre-
sented as Frobenius expansion or τ -adic expansion of finite
lengths, where τ is a root of P (T ). In this paper, we will
extend their methods to compute scalar multiplications on
hyperelliptic curves of general genus.

The remainder of this paper is organized as follows: In
Section 2, we briefly describe the Frobenius endomorphism
on Jacobian groups of hyperelliptic curves over finite fields
and a lemma contributed to Weil’s theorem((5)), and in this
section, we also introduce the Euclidean length in the alge-
braic integral ring Z[τ ] with τ a root of some hyperelliptic
curve’s characteristic polynomial. In Section 3, we discuss
the lengths of τ -adic expansions of algebraic integral num-
bers in Z[τ ] and obtain an upper bound for them. In Sec-
tion 4, we study the cyclic τ -adic expansions and the opti-
mization of the τ -expansions’s lengths. The τ -expansion’s

length of any algebraic integral number is optimized in Sec-
tion 5, An efficient scalar multiplication algorithm is pro-
posed in Section 6, and the last section gives the conclu-
sion.

2 Frobenius endomorphism over
Jacobian groups of hyperelliptic
curves

The Frobenius map φ of Fq is defined as the map x 7−→ xq

for x ∈ Fq . Naturally, φ induces an endomorphism φJ of
JC(Fqn) as follows:

JC(Fqn)
φJ−→ JC(Fqn)

<

g∑
i=0

aix
i,

g−1∑
j=0

bjx
j >

φJ7−→ <

g∑
i=0

aq
ix

i,

g−1∑
j=0

bqjx
j >,

where D =< a(u), b(u) >=<
g∑

i=0

aix
i,

g−1∑
j=0

bjx
j > is a re-

duced divisor or an element of JC(Fqn) with ai, bj ∈ Fqn .
For convenience, φJ is also denoted by φ.

Lemma 1((5)) For any positive integer r, let Mr denote the
number of rational points of the hyperelliptic curve C defined by
Equation (1) over Fqr and ]JC(Fqr ) denotes the order of the Ja-
cobian group JC(Fq). Then

1. The zeta-function Z(t) has the expression

Z(t) = exp(

∞∑
n=1

Mn

n
tn) =

L(t)

(1− t)(1− qt)
,

where L(t) is an integral coefficient polynomial of degree
2g.

2. Let

P (T ) = t2gL(1/T ) =

2g∏
i=1

(T − τi),

then |τi| = √
q, and the roots come in complex conjugate

pairs such that there exists an ordering with τi+g = τ̄i, and
hence, τi+gτi = q.

3. P (T ) is the characteristic polynomial of Frobenius endo-
morphism φ and P (T ) is an integral coefficient polynomial
of the following form

P (T ) = T 2g + a1T
2g−1 + a2T

2g−2 + · · ·+
+agT

g + qag−1T
g−1 + · · ·+ qg−1a1T + qg

. (3)

4. Let a0 = 1, then for 1 ≤ i ≤ g

iai = (Mi − qi − 1)a0 + (Mi−1 − qi−1 − 1)a1

+ · · ·+ (M1 − q − 1)ai−1
.

5. For any positive integer n,

]JC(Fqn) =

2g∏
i=1

(1− τn
i ).
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For cryptographic purposes, in order to resist all possible at-
tacks on the HECDLP, such as Pollardąŕs rho algorithm((3)) and
Pohlig-Hellman algorithm((4) or their improved versions, it is
most desirable that ]JC(Fqn) have a large prime integer factor,
or to the best, ]JC(Fqn) is by itself a large prime or almost large
prime. For the best possibility, the necessary condition is that
P (T ) is irreducible. Hence, P (T ) is assured to be irreducible
here.

3 Euclidean lengths in the algebraic
integral ring Z[τ ]

Let C be a hyperelliptic curve of genus g over Fq with the char-
acteristic polynomial (3). Let τ be a root of P (T ). Then, since
P (T ) is irreducible, every element ξ in Z[τ ] can be uniquely ex-
pressed as the form

x0 + x1τ + · · ·+ x2g−1τ
2g−1.

Let τ = τ1, τ2, · · · , τg be the g roots of P (T ) which are
not conjugate each other. Then, we can define a positive number
N(ξ) corresponding to ξ as the following

N(ξ) =

√√√√|
2g−1∑
i=0

xiτ i
1|2 + · · ·+ |

2g−1∑
i=0

xiτ i
g|2,

where |x| denotes the complex absolute value of x. N(ξ) is often
called the Euclidean length of ξ.

It is clear that N(ξη) ≤ N(ξ)N(η) and N(ξ + η) ≤ N(ξ) +
N(η) hold for any ξ, η ∈ Z[τ ]. And N(ξ)2 is a positive def-
inite quadratic form in the variables x0, x1, · · · , x2g−1, with
the coefficients being integer polynomials of P (T )’s coefficients
ai(1 ≤ i ≤ g).

For g = 1 and ξ = x0 + x1τ , we have

N(ξ)2 = x2
0 − a1x0x1 + qx2

1.

For g = 2 and ξ = x0 + x1τ + x2τ
2 + x3τ

3, we have

N(ξ)2 = 2x2
0 − a1x0x1 + (a2

1 − 2a2)x0x2

−(a3
1 − 3(a1a2 − a1q))x0x3 + 2qx2

1 − a1qx1x2

+(a2
1 − 2a2)qx1x3 + 2q2x2

2 − a1q
2x2x3 + 2q3x2

3

.

In general, let Si =
∑g

j=1(τ
i
j + τ̄ i

j ), X =
(x0, x1, · · · , x2g−1), and let

A =




g S1/2 S2/2 · · · S2g−1/2
S1/2 qg qS1/2 · · · qS2g−2/2
S2/2 qS1/2 q2g · · · q2S2g−3/2

...
...

...
...

...
S2g−1/2 qS2g−2/2 q2S2g−3/2 · · · q2g−1g




Then we can easily prove

N(ξ)2 = XAXT ,

where Si can be computed by the following Newton’s formula:

Si + a1Si−1 + a2Si−2 + · · ·+ ai−1S1 + iai = 0

with a0 = 1 and aj = a2g−jq
j−g for j > g.

4 Convert m into τ -adic expansion
Similar to Lemma 1 in (6), we have

Lemma 2 (Division With Remainder in Z[τ ]) Let m ∈
Z[τ ], then there exists a unique pair of elements m′ and r such
that

m = m′τ + r (4)

with m′ ∈ Z[τ ], r ∈ {−dqg/2e+ 1, · · · , bqg/2c}.

Theorem 1 Let m ∈ Z[τ ], then m can be uniquely represented
as a τ -adic expansion

m =

k−1∑
i=0

riτ
i +m′τk, ri ∈ {−dqg/2e+ 1, · · · , bqg/2c}.

If k ≥ 2 logq
2(

√
q−1)N(m)√

g
, then N(m′) < qg

√
g

2(
√
q−1)

.

Proof Iterate the Division With Remainder inZ[τ ] for m0 = m,
then we have

mi = mi+1τ + ri, ri ∈ {−dqg/2e+ 1, · · · , bqg/2c}.
Hence,

m0 =

j−1∑
i=0

riτ
i +mjτ

j .

Apply triangle inequality for Euclidean length in mi = mi+1τ +
ri, and we will get

N(mj) <
N(m0)√

qj
+

√
g(bqg/2c)√
q − 1

.

Hence, if N(m0)√
qj

≤
√
g

2(
√
q−1)

or

j ≥ 2 logq
2(
√
q − 1)N(m0)√

g
,

then

N(mj) <

√
g(bqg/2c+ 1/2)√

q − 1
=

qg
√
g

2(
√
q − 1)

.

Hence, for k = d2 logq 2(
√
q−1)N(m)√

g
e + 1 and m′ = mk, we

have N(m′) < qg
√
g

2(
√
q−1)

. ¤

Lemma 3 a1 ≤ 2b2√qc. And if a2 = 0, then

|a1| < √
q.

Proof a1 ≤ 2b2√qc holds obviously since every root of P (T )
has the complex absolute value

√
q. If a2 = 0, then |a1| < √

q
follows the facts M2 − q2 − 1 + a2

1 = 0 and M2 > 1.

Lemma 4 If C is a hyperelliptic curve of genus 2 with the irre-
ducible characteristic polynomial P (T ) = T 4+a1T

3+a2T
2+

a1qT + q2, then a2
1 − 4a2 + 8q is non-square and

2|a1|√q − 2q < a2 < a2
1/4 + 2q.

Proof If a2
1 − 4a2 + 8q is square, then P (T ) = (T 2 + 1

2
(a1 ±√

a2
1 − 4a2 + 8q)T+q)(T 2+ 1

2
(a1∓

√
a2
1 − 4a2 + 8q)T+q),

which contradicts our hypothesis that P (T ) is irreducible.
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Due to (9), we have d2|a1|√q − 2qe ≤ a2 ≤ ba2
1/4 + 2qc,

and it follows 2|a1|√q − 2q < a2 < a2
1/4 + 2q. ¤

Theorem 2 Let C be a hyperelliptic curve of genus g and its
irreducible characteristic polynomial P (T ) have a root τ . Let
R = {−dqg/2e+1, · · · , bqg/2c}, and a τ -adic expansion means
a τ -polynomial with the coefficients belong to R. Let ξ ∈ Z[τ ]
with

N(ξ) <
qg
√
g

2(
√
q − 1)

. (5)

1. If g = 2, a1 = a2 = 0, then for every positive integer m, m
has a τ -adic expansion of length about 1

2
blogq mc. (But, in

this case, the curves are supersingular and not suitable for
cryptosystems).

2. If g = 2, and only one of a1 and a2 equal to 0, then ξ has a
τ -adic expansion of length at most 5.

3. If g = 2, and none of a1 and a2 equals to 0, then ξ has a
τ -adic expansion of length at most 8.

4. If g ≥ 3, then ξ has a τ -adic expansion of length l ≤ 2g+4.

Proof Suppose ξ ∈ Z[τ ] satisfying the inequality (5), then

N(ξ)2 <
gq2g

4(
√
q − 1)2

.

1. Since q2 + τ4 = 0 or q2 = −τ4, it obviously follows that
m has a τ -adic expansion of length about 1

2
blogq mc.

2. Suppose a1 = 0. Then |a2| < 2q, and it follows 4q2 −
a2
2 ≥ 4q − 1. Hence,

N(ξ)2

= 2(x2
0 − a2x0x2 + qx2

1 − a2qx1x3 + q2x2
2 + q3x2

3)
= 2((x0 − a2/2x2)

2 + (q2 − a2
2/4)x

2
2 + q(x1 − a2/2x3)

2

+q(q2 − a2
2/4)x

2
3)

= 2((1− a2
2

4q2
)x2

0 + q2(x2 − a2
2q2

x0)
2 + (q − a2

2
4q
)x2

1

+q3(x3 − a2
2q2

x1)
2)

< q4

2(
√
q−1)2

,

(6)
Thus, 




|1− a2
2

4q2
|1/2|x0| < q2

2(
√
q−1)

|1− a2
2

4q2
|1/2|x1| < q2

2(q−√
q)

|q2 − a2
2/4|1/2|x2| < q2

2(
√
q−1)

|q2 − a2
2/4|1/2|x3| < q2

2(q−√
q)

, (7)

and so,
|x0| < q3

(
√
q−1)

√
4q−1

, |x1| < q3

(q−√
q)

√
4q−1

,

|x2| < q2

(
√
q−1)

√
4q−1

, |x3| < q2

(q−√
q)

√
4q−1

.

a) If q ≥ 4, then |x0| ≤ q2 and |x1| ≤ q2/2. Hence, if x0 >
q2/2(similar for x0 < −q2/2), then from (6), we have (2q2x2 −
a2x0)

2 < q6/(
√
q−1)2−q4(4q−1)/4, and so |x2−a2| ≤ |x2−

a2
2q2

x0|+ | a2
2q2

x0−a2| <
√

4q2 − (4q − 1)(
√
q − 1)2/(4(

√
q−

1)) + 3(2q − 1)/4 ≤ q2/2. Thus

ξ = x0 + x1τ + x2τ
2 + x3τ

3

= (x0 − q2) + x1τ + (x2 − a2)τ
2 + x3τ

3 − τ4

is a τ -adic expansion of length at most 5 .
b) If q ≥ 4 and |x0| ≤ q2/2, then ξ is itself a τ -adic expansion

of length 4 .
c) If q = 2, then a2 = ±1. Hence, from (7), we have |x0| ≤ 4,

|x1| ≤ 3, |x2| ≤ 2 and |x3| ≤ 1. If |x0| ≤ 2 and |x1| ≤ 2, then

ξ is itself a τ -adic expansion. If |x0| ≤ 2 and |x1| = 3, then
ξ = x0 + (x1 ± 4)τ + x2τ

2 + (x3 ± 1)τ3 − τ4 is a τ -adic
expansion of length l ≤ 5.

If |x0| = 3, then from (6), we have

9(1− 1/16) + 4(x2 ± 3/8)2 + (2− 1/8)x2
1

+8(x3 − 1/8x1)
2 < 24

4(
√
2−1)2

,
(8)

which implies |x1| ≤ 2. If x1 = 0, then ξ = (x0 ± 4) + (x2 ±
a2)τ

2 + x3τ
3 ± τ4 (if |x2 ± a2| ≤ 2) or ξ = (x0 ± 4) + (x2 ±

a2 ± 4)τ2 + x3τ
3 + (±1 ± a2)τ

4 ± τ6( if |x2 ± a2| = 3) is a
τ -adic expansion of length 5.

If 0 < |x1| ≤ 2 and x3 = 0, then ξ is itself a τ -adic expansion
or ξ = (x0 ± 4) + x1τ + (x2 ± a2 ± 4)τ2 + (±1± a2)τ

4 ± τ6

is a τ -adic expansion of length l ≤ 5.
If 0 < |x1| ≤ 2 and |x3| = 1, then from the equation (8) we

obtain |x2| ≤ 1. Hence, ξ = (x0 ± 4) + x1τ + (x2 ± a2)τ
2 +

x3τ
3 ± τ4 is a τ -adic expansion of length l ≤ 5.

If |x0| = 4, then from (6), we have |x2| <√
26/(

√
2−1)2−15×16

8
+ 4/8 < 2, and so |x2 ± a2| ≤ 2. Hence,

ξ is a τ -adic expansion of length l ≤ 4.
d) If q = 3, then |a2| ≤ 3. From (7), we have |x0| ≤ 7,

|x1| ≤ 4, |x2| ≤ 2 and |x3| ≤ 1. If |x0| ≤ 4, then ξ is itself
a τ -adic expansion of length 4. If |x0| ≥ 5 and |a2| = 3, then
from (6) we have 3x2

0 + (6x2 ± x0)
2 + 9x2

1 + 3(6x3 ± x1)
2 <

34/(
√
3−1)2, which implies x1 = 0 or x3 = 0. Thus, ξ = x0+

x1τ+x2τ
2+x3τ

3 = (x0−9)+x1τ+(x2−a2)τ
2+x3τ

3−τ4

or ξ = (x0−9)+x1τ+(x2−a2±9)τ2+x3τ
3+(1±a2)τ

4±τ6

is a τ -adic expansion of length l ≤ 5.
3. Suppose a2 = 0. Then by Lemma 3, |a1| = 1 for q = 2, 3

and |a1| < √
q for q > 3. Since

N(ξ)2 = 2x2
0 − a1x0x1 + a21x0x2 − (a31 + 3a1q)x0x3

+2qx2
1 − a1qx1x2 + a21qx1x3 + 2q2x2

2
+2q3x2

3 − a1q2x2x3

=
q2(a2

1+8q)

a2
1+4q

x2
2 + 2q(x1 +

a2
1
4
x3 − a1

4q
x0 − a1

4
x2)2

+
q(16q2−a4

1)

8
(x3 +

−3a3
1−12a1q

q(16q2−a4
1)

x0 − a1

4q+a2
1
x2)2

+
(a2

1+8q)(a2
1−q)

q(a2
1−4q)

x2
0

< q4

2(
√
q−1)2

, (9)

it follows that

(a21 − q)

q(a21 − 4q)
x2
0 +

q2

a21 + 4q
x2
2 <

q4

2(
√
q − 1)2(8q + a21)

(10)

and




|x0|<
√
qq2

√
1+ 3q

q−a2
1√

2(
√
q−1)

√
8q+a2

1

<
q2

√
1+ 3q

2
√

q−1

4(
√
q−1)

|x2|< q√
2(

√
q−1)

√
1− 4q

8q+a2
1
<

√
5q

3
√
2(

√
q−1)

. (11)

Similarly, we will get




|x1|< q2√
2(q−√

q)

√
1− 4q

8q+a2
1

<
√
5q2

3
√
2(q−√

q)

|x3|< q√
2(

√
q−1)

√
8q+a2

1

√
1 + 3q

q−a2
1
<

q

√
1+ 3q

2
√

q−1

4(q−√
q)

. (12)

If q ≥ 4 then |xi| ≤ q2/2 for i = 0, 1, 2, 3. Hence, ξ is a
τ -adic expansion of length at most 4.

Let q = 3, then from (9), (10),(11) and (12), we have |x0| ≤ 7,
|x1| ≤ 3, |x2| ≤ 1 and |x3| ≤ 1. Without loss of generality,
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suppose a1 = 1 and x0 > 0, then

ξ= x0 + x1τ + x2τ
2 + x3τ

3( if |x0| ≤ 4)

= (x0 − 9) + (x1 − 3)τ + x2τ
2 + (x3 − 1)τ3 − τ4

( if |x0| > 4 and |x1 − 3| ≤ 4)

= (x0 − 9) + (x1 − 3 + 9)τ + (x2 + 3)τ2 + (x3 − 1)τ3 + τ5

( if |x0| > 4 and x1 − 3 < −4)

is a τ -adic expansion of length at most 5.
Similar discussion will show that ξ can also be represented as

a τ -adic expansion of length at most 5 for q = 2.
4. Suppose a1 6= 0 and a2 6= 0. Then for ξ = x0 + x1τ +

x2τ
2 + x3τ

3, we have

N(ξ)2 =

2q3(x3 − a1
4q x2 +

a2
1−2a2

4q2
x1 − a1(a2

1−3a2+3q)

4q3
x0)

2

+
q(16q−a2

1)

8 (x2 +
a1(a2

1−2a2−4q)

q(16q−a2
1)

x1 +
−a4

1+3a2
1a2+qa2

1−8qa2

q2(16q−a2
1)

x0)
2

+
−a4

1+6a2
1a2−4qa2

1−8a2
2+32q2

16q−a2
1

(x1−
a1(16q2−14qa2

1−2a4
1+13a2

1a2−20a2
2+32qa2)

2q(−a4
1+6a2

1a2−4qa2
1−8a2

2+32q2)
x0)

2

+
qa4

1− 1
4
a2
1a2

2−5qa2
1a2+7q2a2

1+a3
2+2qa2

2−4q2a2−8q3

q2(a2
1−2a2−4q)

x2
0

= 2q2(x2 − a1
4 x3 +

a2
1−2a2

4q2
x0 − a1

4q x1)
2

+
q2(16q−a2

1)

8 (x3 +
−3a3

1+10a1a2−12a1q

q2(16q−a2
1)

x0 +
3a2

1−8a2

q(16q−a2
1)

x1)
2

+
(4a2−8q−a2

1)(a4
1−3a2

1a2+3a2
1q−2a2q−4q2)

q2(16q−a2
1)

(x0+

a1q(14a2
1q+2a4

1−32a2q−13a2
1a2−16q2+20a2

2)

2(4a2−8q−a2
1)(a4

1−3a2
1a2+3qa2

1−2qa2−4q2)
x1)

2

+
qa4

1− 1
4
a2
1a2

2−5qa2
1a2+7q2a2

1+a3
2+2qa2

2−4q2a2−8q3

a4
1−3a2

1a2+3a2
1q−2a2q−4q2

x2
1

< q4

2(
√

q−1)2

.

(13)

Let




F =−qa4
1 +

1
4
a2
1a

2
2 + 5qa2

1a2 − 7q2a2
1 − a3

2 − 2qa2
2

+4q2a2 + 8q3

G =−a4
1 + 3a2

1a2 − 3a2
1q + 2a2q + 4q2

H =−a2
1 + 2a2 + 4q

.

Since |a1| ≤ 2b2√qc and 2|a1|√q − 2q < a2 < a2
1/4 + 2q,

we have F ≥ 1, G > 0 and H > 0. Hence from (13) we get
|x0| <

√
2q3

2(
√
q−1)

√
H/F and |x1| <

√
2q2

2(
√
q−1)

√
G/F . Similarly,

we will get |x2| <
√
2q2

2(q−√
q)

√
G/F and |x3| <

√
2q2

2(q−√
q)

√
H/F .

That is, 



|x0| <
√
2q3

2(
√
q−1)

√
H/F

|x1| <
√
2q2

2(
√
q−1)

√
G/F

|x2| <
√
2q2

2(q−√
q)

√
G/F

|x3| <
√
2q2

2(q−√
q)

√
H/F

. (14)

If a2 = 2q + a2
1/4 or a1 = ±(2q + a2)/(2

√
q), then F = 0,

which contradicts F ≥ 1. While, it is very likely that H/F or
G/F takes maximal values at a2 = 2q + a2

1/4 − θ or −2q +
2|a1|√q+δ, where θ = 1 or 1/4 , δ = 1 or d2|a1|√qe−2|a1|√q.

According to (10), if C is a curves with a2 = 2q+(a2
1−1)/4,

then it may not be a hyperelliptic curve. Thus, we do not consider
this case.

i) Let a2 = 2q + a2
1/4 − 1. Then, if a1 6=

±(4
√
q − 2), H/F and G/F are strictly increasing or de-

creasing with a1 > 0 or a1 < 0. Hence, if q is
a square, then H/F and G/F reach their maximal values

at a1 = ±(4
√
q − 4), that is, 2(48q−56

√
q+128q3/2−15)

3(−160q+9+256q2)

and 2(−1872q2+8q3/2+1152q5/2+1353q−368
√
q−168)

3(−160q+9+256q2)
, respectively.

Thus, H/F < 3
5
q−1/2 and G/F < 3

√
q. If q is non-square,

without loss of generality, suppose a1 ≥ 2. Because both H/F
and G/F are strictly increasing functions of a1 except in a neigh-
borhood of a1 = 4

√
q−2, they will reach their possible maximal

values at a1 = 2(2
√
q − ε) − 2 since a1 ≤ 2b2√qc and a1 is

even, where ε = 2
√
q−b2√qc. Replace a1 and a2 in H/F with

2(2
√
q − ε) − 2 and 2q + a2

1/4 − 1, respectively. Then, since
ε = 2

√
q − b2√qc > 3

2b2√qc+1
> 3

5
√
q

, we get

H/F =
−2(−4

√
qε−4

√
q+ε2+2ε+2)

ε(4ε+ε3+4ε2−8
√
qε2−24

√
qε−16

√
q+16qε+32q)

≈ 1
4
√
qε

< 1
4
√
q
· 5

√
q

3
< 5

12
.

Similarly, we have G/F ≈ 9
√
q

4ε
<

9
√
q

4
· 5

√
q

3
< 15q

4
.

ii) Let q be square and a2 = −2q + 2|a1|√q + 1. Without
loss of generality, suppose a1 ≥ 1. Since a2 < a2

1/4 + 2q, it
follows a1 ≤ 4

√
q − 3. It is easy to show that H/F is strictly

increasing for 1 ≤ a1 ≤ 4
√
q − 3. Hence, H/F will reach

its maximal value at a1 = 4
√
q − 3, and so, H/F < 4

5
q−1/2.

Similar discussion will induce G/F < 27
5
q1/2.

iii) Let a2 = −2q + 2|a1|√q + δ with δ =
d2|a1|√qe − 2|a1|√q (q is non-square). Still suppose
a1 ≥ 1. Then, a1 < 4

√
q− 2

√
δ. Let a1 = 4

√
q− 2+ ε , where

0 < ε < 1 such that a1 is an integer, that is, a1 = d4√q−2e. Re-
place a1 and a2 in H/F with 4

√
q−2+ε and −2q+2a1

√
q+δ,

respectively. Then, since δ = d2a1
√
qe − 2a1

√
q > 1

4
√
q

, we

have H/F ≈ −4q1/2
−8

√
q

δ64q3/2
= 1

2δ
√
q
< 2. Similar discussion

will induce G/F ≈ 9
2

√
qδ−1 < 18q.

From all the discussion above, we conclude that if a2 6= 2q +
(a2

1 − 1)/4, then

H/F <

{
4
5
q−1/2 if q is square

2 if q is non-square
,

and

G/F <

{
18
5
q1/2 if q is square

18q if q is non-square.
.

Hence, if q is square, we have




|x0| < 2√
5
q9/4

|x1| <
√
36√
5
q7/4

|x2| <
√
36√
5
q5/4

|x3| < 2√
5
q3/4

,

and if q is non-square, we have




|x0| < 2q5/2

|x1| <
√
36q2

|x2| <
√
36q3/2

|x3| < 2q

.

In the following discussions, without loss of generality, we as-
sure a1 > 0 and x0 > 0. And, for the worst case, we also assume
that all xi is near to its upper bound. Then, if q is a square no less
than 49 and a2 > 0(similar discussion for a2 < 0), we have

ξ= x0 + x1τ + x2τ
2 + x3τ

3 + x4τ
4

= (x0 − d0q
2) + (x1 − d0a1q)τ + (x2 − d0a2)τ

2

+(x3 − d0a1)τ
3 − d0τ

4

= (x0 − d0q
2) + (x1 − d0a1q + d1q

2)τ + (x2 − d0a2

+d1a1q)τ
2 + (x3 − d0a1 + d1a2)τ

3 + (−d0 + d1a1)τ
4

+d1τ
5

= (x0 − d0q
2) + (x1 − d0a1q + d1q

2)τ + (x2 − d0a2

+d1a1q + d2q
2)τ2 + (x3 − d0a1 + d1a2 + d2a1q)τ

3

+(−d0 + d1a1 + d0a2)τ
4 + (d1 + d2a1)τ

5 + d2τ
6,
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which implies that ξ is a τ -adic expansion of length at most 7, where
d0 is an integer close to 2√

5
q1/4 such that |x0 − d0q

2| ≤ q2/2.
d1 = 0,−1 if x1 > 0, or d1 = 1, 2 if x1 < 0. d2 = 0 if
d1 = 0, 1, or d2 = 0, 1 if d1 = −1, or d2 = −1 if d1 = 2.

By almost the same discussions, we will show that ξ can be
expressed as a τ -adic expansion of length at most 8 if q is a non-
square no less than 37.

If q is a square smaller than 25 or a non-square smaller than 31,
then ξ may go to a cyclic τ -adic expansion with the coefficients
in R. But, we can easily show that if a2 6= 2q + (a2

1 − 1)/4 and
ξ does not go to a cyclic τ -adic expansion, then ξ will be a τ -adic
expansions of length at most 8.

Our discussions and results above can be naturally generalized
to the curves of genus g ≥ 3, though it will be a bit more burden-
some for high genus. In general, there exist fixed integers ki and
li non-related to q such that

|xi| <
{

kiq
(5g−2i−1)/4 if q is square

liq
(3g−i−1)/2 if q is non-square

(15)

hold for i = 0, 1, · · · , 2g − 1. And, every element ξ ∈ Z[τ ] can
be represented as a τ -adic expansion of length at most 2g + 4 as
long as the related characteristic polynomial P (T ) will not lead
to cyclic τ -adic expansions. ¤

5 Cyclic τ -adic expansions in Z[τ ]
Let q = 9. Then, a1 = M1−9−1 ≤ 9, 6a1−18 < a2 ≤ a2

1/4+
18. If a1 = 9, then a2 = 37 or 38, and hence, P (T ) = T 4 +
9T 3+37T 2+81T+81 or P (T ) = T 4+9T 3+38T 2+81T+81.
We have

81 =−a2τ
2 + (a2 − 9)τ3 + ((89− a2)τ

4 + (a2 − 8)τ5

+8τ6 + τ7)

=−a2τ
2 + (a2 − 9)τ3 +−(a2 − 8)τ4

−τ((89− a2)τ
4 + (a2 − 8)τ5 + 8τ6 + τ7),

which implies that 81 can only be expressed in a cyclic τ -adic
expansion, that is, both P (T ) = T 4 + 9T 3 + 37T 2 + 81T + 81
and P (T ) = T 4 +9T 3 +38T 2 +81T +81 lead to cyclic τ -adic
expansions.

If a1 = 8, then 31 ≤ a2 ≤ 33. If a2 = 32, 33,
then ξ has a τ -adic expansion of length at most 8. If
a2 = 31, then we can only get a cyclic τ -adic expansion
for ξ = 81. Thus, for the curves with the characteristic
polynomial P (T ) = T 4 ± 8T 3 + 31T 2 ± 72T + 81, we
can not get a finite τ -adic expansion for 81 with the coeffi-
cients in {−dq2/2e+ 1, · · · , bq2/2c}. But if we add ±41 to the
coefficient set, then 81 will have a τ -adic expansion of length five.

Theorem 3 Let C is a hyperelliptic curve of genus g over
Fq and

P (T ) = T 2g + a1T
2g−1 + · · ·+ agT

g + · · ·+ a1q
g−1T + qg

be its characteristic polynomial with a root τ . If there exists
ξ ∈ Z[τ ] such that ξ can only be expressed in a cyclic τ -adic
expansion, then we call that P (T ) leads to cyclic τ -adic expan-
sions.

Let C̃ be a quadratic twist of the hyperelliptic curve C and its
characteristic polynomial P̃ (T ) as

T 2g − a1T
2g−1 + · · ·+ (−1)gagT

g + · · · − a1q
g−1T + qg

with a root of τ̃ . Then,
1) P (T ) leads to cyclic τ -adic expansions if and only if the

following inequality (16) holds.

]JC(Fq) ≤ bqg/2c or ]JC̃(Fq) ≤ bqg/2c. (16)

2) There exists an element ξ ∈ Z[τ ] which has only a cyclic
τ -adic expansion if and only if there exists an element ξ̃ ∈ Z[τ̃ ]
which has only a cyclic τ̃ -adic expansion, that is, P (T ) leads
to cyclic τ -adic expansions if and only if P̃ (T ) leads to cyclic
τ̃ -expansion.

Proof 1). Suppose ξ can only be expressed as a cyclic τ -adic
expansion and

ξ = x0 + x1τ + x2τ
2 + x3τ

3

= r0 ± τ(x0 + x1τ + x2τ
2 + x3τ

3),

x0 > bq2/2c, |r0| ≤ bq2/2c.
Let x0 − r0 = dq2, then x0 = ±(x1 − da1q), x1 = ±(x2 −

da2), x2 = ±(x3 − da1) and x3 = ∓d. and hence, x0 =
−d− da1 − da2 − da1q = d(q2 − ]JC(Fq)) when x3 = −d, or
x0 = −d+da1−da2+da1q = d(q2− ]JC̃(Fq)) when x3 = d.

It follows r0 = −d ]JC(Fq) and d ]JC(Fq) ≤ bq2/2c, or
r0 = −d ]JC̃(Fq) and d ]JC̃(Fq) ≤ bq2/2c. Hence

]JC(Fq) = |r0|/d ≤ bq2/2c
or

]JC̃(Fq) = |r0|/d ≤ bq2/2c.
Suppose ξ can be expressed as the following cyclic τ -adic ex-

pansion and

ξ = x0 + x1τ + x2τ
2 + x3τ

3

= r0 + r1τ + τ2(x0 + x1τ + x2τ
2 + x3τ

3),

x0 > bq2/2c, |ri| ≤ bq2/2c, i = 0, 1.

Let x0 − r0 = dq2 and x1 − da1q − r1 = eq2, then we have
x0 = x2 − da2 − ea1q, x1 = x3 − da1 − ea2, x2 = −d− ea1

and x3 = −e.
Thus, x0 = dq2 + r0 = −d − ea1 − da2 − ea1q and x1 =

da1q + eq2 + r1 = −e− da1 − ea2, which implies

r0 + r1 = −(d+ e) ]JC(Fq). (17)

Hence, if |d+ e| ≥ 2, then

]JC(Fq) ≤ (|r0|+ |r1|)/|d+ e| ≤ bq2/2c.
If d+ e = 0, then r0 = −d ]JC̃(Fq), and so,

]JC̃(Fq) ≤ |r0|/d ≤ bq2/2c/d ≤ bq2/2c.
If d+ e = ±1, then for ξ̃ = x0 − x1τ̃ + x2τ̃

2 − x3τ̃
3, we have

ξ̃ = r0 − r1τ̃ + τ̃2(x0 − x1τ̃ + x2τ̃
2 − x3τ̃

3).

It follows
r0 − r1 = (−2d+ 1) ]JC̃(Fq). (18)

From the equations (17) and (18) we deduce that

]JC(Fq) ≤ bq2/2c or ]JC̃(Fq) ≤ bq2/2c. (19)

Similarly, we can easily show that Inequality (19) also holds if ξ
has a longer period expression.

On the other hand, we suppose ]JC(Fq) ≤ bq2/2c(similar dis-
cussion for ]JC̃(Fq) ≤ bq2/2c), and let
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x0 = a1q + a2 + a1 + 1
x1 = a2 + a1 + 1
x2 = a1 + 1
x3 = 1

Then, we have

ξ = x0 + x1τ + x2τ
2 + x3τ

3

= ]JC(Fq) + τ(x0 + x1τ + x2τ
2 + x3τ

3)

is a cyclic τ -adic expansion.
2). Suppose

ξ = x0 + x1τ + x2τ
2 + x3τ

3

= r0 + τ(x0 + x1τ + x2τ
2 + x3τ

3)

(with x0 > bq2/2c, |r0| ≤ bq2/2c)
is a cyclic τ -adic expansion, then

ξ̃ = x0 − x1τ̃ + x2τ̃
2 − x3τ̃

3

= r0 − τ̃(x0 − x1τ̃ + x2τ̃
2 − x3τ̃

3)

is is a cyclic τ̃ -adic expansion.
Similar discussions will show that Theorem 3 still holds for

the hyperelliptic curve of genus g > 2. ¤

For example, The curves with P (T ) = T 4 ± 9T 3 + 38T 2 ±
81T + 81, P (T ) = T 4 − 5T 3 + 15T 2 − 25T + 25 or P (T ) =
T 6−7T 5+21T 4−49T 3+147T 2−343T+343 will lead to cyclic
τ -adic expansions. For q = g = 2, only the non-supersingular
curves with P (T ) = T 4 ± 2T 3 +2T 2 ± 4T +4 lead to cyclic τ -
adic expansions. For q = 3 and g = 2, only the non-supersingular
curves with P (T ) = T 4 ± 2T 3 + 2T 2 ± 6T + 9 or T 4 ± T 3 −
2T 2 ± 3T + 9 or T 4 ± 3T 3 + 5T 2 ± 9T + 9 will lead to cyclic
τ -adic expansions.

Based on Hasse-Weil Theorem, that is, (
√
q − 1)2g ≤

]JC(Fq) ≤ (
√
q+1)2g , if q is an integer such that (

√
q−1)2g ≥

qg/2, then, the corresponding hyperelliptic curves will not lead to
cyclic expansion. For g = 2, 3 and 4, we have q ≥ 37, 83 and
139, respectively.

If the curve C with P (T ) leads to cyclic expansion, then by
Theorem 3, P (1) ≤ bqg/2c or P (−1) ≤ bqg/2c, hence we
can add ±(P (1) − qg) or ±(P (−1) − qg) to the coefficient
set to make the expansion finite. For example, if the coefficient
set is {0,±1, · · · ,±39,±40}⋃{±51}, then for the hyperellip-
tic curves with P (T ) = T 4±9T 3+38T 2±81T +81, all τ -adic
expansions are finite.

6 Optimizing the length of the
τ -expansion

Let β = b0 + b1τ + · · ·+ b2g−1τ
2g−1 ∈ Z[τ ], then since P (T )

is irreducible, P (T ) and B(T ) = b0 + b1T + · · ·+ b2g−1T
2g−1

are coprime. Hence, there exist polynomials U(T ), V (T ) ∈ Z[T ]
such that

U(T )B(T ) + V (T )P (T ) = 1.

Replace T with τ , we have β−1 = U(τ) ∈ Z[τ ]. That is, we can
use the extended Euclidean algorithm to compute the inverse of
any element of Z[τ ].

For any divisor D ∈ J(Fqn), we have φn(D) = D. Further-
more, by Lemma 1, we have

]J(Fqn) =

2g∏
i=1

(1− τn
i ) =

2g∏
i=1

(1− τi)

2g∏
i=1

(

n−1∑
j=0

τ j
i ).

If for some D ∈ J(Fqn), φ(D) = D, that is, (1 − τ)D =<
1, 0 >, then

∏2g
i=1(1 − τi)D =< 1, 0 >, that is, ]J(Fq)D =<

1, 0 >. For practical cryptosystems, the divisor D should be
chosen to be of large order. Hence, ]J(Fq)D =< 1, 0 > gen-
erally does not hold. Thus, for a large multiplier m, we can
obtain the divisor multiplication mD by computing m̄D with
m̄ = m mod (τn − 1) or m mod ( τ

n−1
τ−1

).
Similar to Theorem 3.1 in (8), we have the following Lemma 5.

Lemma 5 For any positive integers n and m, there exists m̄ ∈
Z[τ ], such that

1. m̄ = m mod (τn − 1),
2. N(m̄) ≤

√
g(qg−1)(

√
qn+1)

2(
√
q−1)

.

We can prove this lemma by letting s = m/(τn − 1) =
2g−1∑
i=0

siτ
i ∈ Q[τ ], r =

2g−1∑
i=0

bsi+1/2cτ i and m̄ = m−r(τn−1).

By letting α = m(τ − 1)/(τn − 1) =
2g−1∑
i=0

αiτ
i ∈ Q[τ ],

γ =
2g−1∑
i=0

bαi+1/2cτ i ∈ Z[τ ] and m̄ = m−γ(τn−1)/(τ−1),

we can prove the following Lemma 6.

Lemma 6 For any positive integers n and m, there exists m̄ ∈
Z[τ ], such that

1. m̄ = m mod ((τn − 1)/(τ − 1)),
2. N(m̄) ≤

√
g(qg−1)(

√
qn−1)

2(
√
q−1)2

.

Thus, by Theorem 1, Theorem 2, Lemma 5 and Lemma 6, we
obtain the following Theorem 4.

Theorem 4 Let C be a hyperelliptic curve of genus g over Fq ,
and let τ be a root of C’s irreducible characteristic polynomial
P (T ). If C does not lead to cyclic τ -adic expansions, then for
a large positive integer m, m is congruent, modulo τn − 1 or
(τn−1)/(τ−1), to a τ -adic expansion of length at most n+4g+5
or n+4g+4, respectively. If C leads to cyclic τ -adic expansions,
then this conclusion still holds if P (−1) − qg or P (1) − qg is
added to the coefficient set.

7 An efficient scalar multiplication
algorithm

According to the above discussion, we can obtain an efficient
scalar multiplication algorithm. This algorithm is composed of
the four steps: pre-computing, reducing the multiplier, converting
the reduced multiplier into Frobenius expansion and computing
scalar multiplications.

Let a0 = 1, P [i] = aiq
g−i and P [g + i] = ag−i for

i = 1, . . . , g.

Algorithm 1 Compute scalar multiplication by τ -adic Ex-
pansion
Input: a large positive integer multiplier m and a divisor D ∈
J(Fqn).
Output: mD.
I) Pre-computing :1. For 0 < r ≤ bqg/2c, compute rD by (signed) binary

method and store it as Dr .
2. For −dqg/2e+ 1 ≤ r < 0, set

rD :=< x((−r)D),−y((−r)D)− h(u) >



234 Informatica 34 (2010) 227–236 L. You et al.

and store it as Dr , where x((−r)D) and y((−r)D) denote
the first polynomial and the second polynomial of the divisor
(−r)D, respectively.

II) Computing m mod (τn − 1) :
1. Find integers s[i] such that

s =

2g−1∑
i=0

s[i]τ i = τn − 1 :

1) Initialize s[i] := −P [i] for 0 ≤ i ≤ 2g − 1.
2) For k from 1 to n− 2g, do

(a) ∆ := s[2g − 1].

(b) For i from 1 to 2g − 1, set
s[i] := s[i− 1]− P [i]∆, and s[0] := −P [0]∆.

3) Set s[0] := s[0]− 1.

4) Set s :=
2g−1∑
i=0

s[i]τ i.

2. Applying Extended Euclidean Algorithm, there exist t, u ∈
Z[τ ] with degτ t ≤ 2q − 1, such that

t · s+ u · P (τ) = 1.

3. For t :=
∑2g−1

i=0 tiτ
i, set

α :=

2g−1∑
i=0

bm · ti + 1/2cτ i.

4. Set m̄ := m− sα mod P (τ).

III) Supposing m̄ =
∑2g−1

i=0 m̄iτ
i and converting m̄ into a τ -

adic expansion:

1. j := 0; k := 0.

2. If m̄ 6= 0, then do

(a) Select
rj ∈ {−dqg/2e+ 1, . . . ,−1, 0, 1, . . . , bqg/2c}
such that qg|(m̄0 − rj).

(b) Set d := (m̄0 − rj)/q
g .

(c) Set m̄ :=
2g−2∑
i=0

(m̄i+1 − P [i+ 1]d)τ i − dτ2g−1.

(d) Set j := j + 1 and k := k + 1, and go back.

IV) Computing m̄D :

1. Initialize B := Drk−1 .

2. For i from k − 2 downto 0 do

(a) Set B := φ(B).

(b) Set B := B +Dri .

V) Output B as mD.
Since the multiplier m can also be reduced by modulo (τn −

1)/(τ − 1), Steps 1 in Step II) can be replaced by the following
steps:

Step II*) Computing m mod (τn − 1)/(τ − 1):

1. Find integers s[i] such that

s =
2g−1∑
i=0

s[i]τ i = (τn − 1)/(τ − 1):

1) Initialize 0 ≤ i ≤ 2g − 1, set s[i] := 1 − P [i] and
t[i] := −P [i];
2) For k from 1 to n− 2g − 1 do

(a) Set ∆ := t[2g − 1] and t[0] := −P [0]∆;

(b) For i from 1 to 2g − 1, set t[i] := t[i − 1] − P [i]∆
and s[i] := s[i] + t[i];

3) Set s :=
2g−1∑
i=0

s[i]τ i;

Note that if P (1) ≤ bqg/2c or P (−1) ≤ bqg/2c, then add
P (1) − qg or P (−1) − qg to the coefficient set. Take P (1) <
qg/2 for example, we only make some minor modifications in
Algorithm 1 as follows:

First, add the computation of ±(qg−P (1))D in the precompu-
tation step; Second, change the step (a)-(b) in Step III) as follows:

(a*) If |m̄0| ≤ bqg/2c or m̄0 = P (1)−qg , then set rj := m̄0,
otherwise, go to the next step:

(b*) Select
rj ∈ {P (1) − qg ,−dqg/2e + 1, · · · ,−1, 0, 1, · · · , bqg/2c} such

that qg|(m̄0 − rj).
We implement Step II)-III) in Algorithm 1 in Maple for five

hyperelliptic curves and get the Table 1. Table 1 lists five hyper-
elliptic curves and the bits of the orders of their corresponding
Jacobian groups, the average lengths and densities of the τ -adic
expansions of the multipliers approximate to the Jacobian group
orders, and the average lengths (1)-(2) and densities (1)-(2) of
the τ -adic expansions of the multipliers after reduced by modulo
(τn − 1)/(τ − 1) or (τn − 1), respectively. The density means
the ratio of the number of the non-zero coefficients to the length
in a τ -adic expansion.

The corresponding characteristic polynomials of the five hy-
perelliptic curves in Table 1 are T 4 + 2T 3 + 3T 2 + 4T + 4,
T 4 − 2T 3 + 2T 2 − 6T + 9, T 6 + 2T 4 − 2T 3 + 4T 2 + 8,
T 4 − 4T 3 +11T 2 − 20T +25, and T 6 +2T 5 +4T 4 +14T 3 +
20T 2 + 50T + 125, respectively.

Table 1 shows that, when the multipliers are reduced by mod-
ulo (τn − 1)/(τ − 1) or τn − 1, the average lengths of the τ -adic
expansions are between n − 2 and n + g, or between n + 1 and
n + g + 1, respectively. It also shows that, if the multipliers are
not reduced, then the average length of τ -adic expansions is about
qg times of the extension degree of the field. While their average
densities are almost the same whether the multipliers are reduced
or not.

Suppose the multiplier m ∼ qgn(near to the Jacobian or-
der). Then, to compute mD, the binary method needs on aver-
age ng

3
log2 q divisor additions and ng log2 q divisor doublings.

While according to our experiments, Algorithm 1 needs on aver-
age n+ g

2
divisor additions and g log2 q−1 divisor doublings, plus

about n + g
2

divisor evaluations of Frobenius endomorphism. If
we implement Algorithm 1 in some normal basis, then the Frobe-
nius evaluation cost can be considered free. Hence, according to
Theorem 14 in (11), Algorithm 1 will cost about 55% less than
the signed binary method for the curves listed in Table 1. It fol-
lows that our algorithm will greatly speed up the implementation
of hyperelliptic curve cryptosystems since the divisor scalar mul-
tiplication is the most time-consuming operation.

8 Conclusion
In this paper, we have applied Frobenius endomorphism and Eu-
clidean length to reduce the multipliers in divisor scalar multi-
plications by modulo τn − 1 or (τn − 1)/(τ − 1), and show
that the upper bound of the lengths of the reduced multipliers’
τ -adic expansions is n+ 4g + 5. In addition, our experiment re-
sults show that the lengths of the multipliers’ τ -adic expansions
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bits reduced reduced reduced reduced
Hyperelliptic curves q n of average average average average average average

orders length density length(1) density(1) length(2) density(2)
61 122 242.125 0.749 62.000 0.761 62.833 0.756
67 134 264.250 0.738 64.667 0.732 68.000 0.733

v2 + (u2 + u+ 1)v = u5 + u4 + u3 + u 2 73 146 291.000 0.758 70.500 0.756 73.000 0.752
89 178 355.000 0.736 87.833 0.784 87.500 0.760
113 226 451.000 0.741 110.667 0.768 112.333 0.712
61 194 244.000 0.832 61.833 0.865 62.000 0.869
67 213 267.500 0.828 67.667 0.872 68.167 0.905

v2 = u5 + u4 − u3 + u2 − u+ 2 3 97 308 386.833 0.844 97.667 0.887 99.500 0.901
103 327 412.333 0.826 104.500 0.890 105.333 0.889
113 359 452.000 0.824 112.667 0.873 114.667 0.903
29 87 168.400 0.828 30.333 0.890 29.667 0.832
37 111 210.000 0.861 37.667 0.858 38.333 0.878

v2 + v = u7 + u6 + u5 2 43 129 254.000 0.867 42.833 0.883 45.500 0.865
59 177 352.000 0.845 60.500 0.859 59.833 0.847
67 201 398.000 0.865 67.167 0.868 70.000 0.877
61 284 246.000 0.906 62.167 0.949 64.000 0.958
67 312 270.000 0.916 68.667 0.973 70.500 0.962

v2 = u5 + u4 + 2u3 + u2 + u+ 2 5 71 330 285.600 0.936 72.167 0.972 74.167 0.951
79 367 318.000 0.936 81.167 0.955 81.667 0.943
83 386 334.000 0.930 84.500 0.955 85.167 0.967
29 203 174.000 0.986 31.667 0.984 33.500 0.985
31 216 186.000 0.985 33.667 0.980 34.833 0.990

v2 = u7 + u5 + u3 + u− 1 5 37 258 222.000 0.998 40.833 0.988 40.333 0.979
43 300 258.000 0.979 44.167 0.985 47.333 0.986
53 370 318.000 0.991 55.167 0.988 57.667 0.991

Figure 1: Average Lengths and Densities of τ -adic Expansions

are actually between n − 2 and n + g + 1. While Günther et
al(8) did experimentally show that the two hyperelliptic curves
v2 + uv = u5 + αu2 + 1 (α = 0, 1) have some τ -adic expan-
sions of length about n + 4

3
(which are near to our experimental

result, but they did not give a theoretical proof.
In practical hyperelliptic curve cryptosystems, since the pa-

rameters q, g, n and the basic divisor D are relatively fixed,
we can pre-compute φi(rjD) for 1 ≤ i ≤ n + 4g + 4 and
−bqg/2c + 1 ≤ j ≤ bqg/2c and then store the results as a ta-
ble. If we employ this table, then our algorithm only needs at
most n + 4g + 4 divisor additions, which is approximately one
third computation expense that the binary method does. In addi-
tion, based on the Proposition 3.4 in (12), the elliptic curve ra-
tional point group EC(Fqn) is isomorphic to the Jacobian group
JC(Fqn) under their group law definitions when the curve C’s
genus g = 1, hence, our Algorithm 1 is also applicable to the
scalar multiplication computations on EC(Fqn).
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