
https://doi.org/10.31449/inf.v44i4.3018 Informatica 44 (2020) 437–445 437

A Semi-Supervised Approach to Monocular Depth Estimation, Depth
Refinement, and Semantic Segmentation of Driving Scenes using a Siamese
Triple Decoder Architecture

John Paul T. Yusiong1,2 and Prospero C. Naval, Jr.1
1Computer Vision and Machine Intelligence Group, Department of Computer Science
College of Engineering, University of the Philippines, Diliman, Quezon City, Philippines
2Division of Natural Sciences and Mathematics
University of the Philippines Visayas Tacloban College, Tacloban City, Leyte, Philippines
E-mail: jtyusiong@up.edu.ph; pcnaval@up.edu.ph

Keywords: Siamese triple decoder architecture, depth estimation and refinement, semantic segmentation, semi-
supervised learning methods

Received: November 30, 2019

Depth estimation and semantic segmentation are two fundamental tasks in scene understanding. These two
tasks are usually solved separately, although they have complementary properties and are highly correlated.
Jointly solving these two tasks is very beneficial for real-world applications that require both geometric and
semantic information. Within this context, the paper presents a unified learning framework for generating
a refined depth estimation map and semantic segmentation map given a single image. Specifically, this
paper proposes a novel architecture called JDSNet. JDSNet is a Siamese triple decoder architecture that
can simultaneously perform depth estimation, depth refinement, and semantic labeling of a scene from an
image by exploiting the interaction between depth and semantic information. A semi-supervised method is
used to train JDSNet to learn features for both tasks where geometry-based image reconstruction methods
are employed instead of ground-truth depth labels for the depth estimation task while ground-truth semantic
labels are required for the semantic segmentation task. This work uses the KITTI driving dataset to evaluate
the effectiveness of the proposed approach. The experimental results show that the proposed approach
achieves excellent performance on both tasks, and these indicate that the model can effectively utilize both
geometric and semantic information.

Povzetek: V članku je predstavljena izvirna metoda delno nadzorovanega učenja za raznovrstne vizualne
naloge.

1 Introduction

Scene understanding is crucial for autonomous driving sys-
tems since it provides a mechanism to understand the scene
layout of the environment [1, 2]. Scene understanding in-
volves depth estimation and semantic segmentation, which
facilitates the understanding of the geometric and seman-
tic properties of a scene, respectively. Depth estimation
and semantic segmentation address different areas in scene
understanding but have complementary properties and are
highly correlated.

For semantic segmentation, depth values help improve
semantic understanding by enabling the model to gener-
ate more accurate object boundaries or differentiate ob-
jects having a similar appearance since these values en-
code structural information of the scene. On the other hand,
for depth estimation, the semantic labels provide valuable
prior knowledge to depict the geometric relationships be-
tween pixels of different classes and generate better scene
layout [3, 4, 5, 6]. Thus, these two fundamental tasks in
computer vision can be dealt with in an integrated manner

under a unified framework that optimizes multiple objec-
tives to improve computational efficiency and performance
for both tasks from single RGB images. However, address-
ing depth estimation and semantic segmentation simulta-
neously where the two tasks can benefit from each other
is non-trivial and is one of the most challenging tasks in
computer vision given the peculiarities of each task and the
limited information that can be obtained from monocular
images.

Previous works jointly model these two tasks using tra-
ditional hand-crafted features and RGB-D images [7, 8].
However, the hand-crafted feature extraction process is
quite tedious, and it generally fails to help achieve high
accuracies while RGB-D image acquisition is a costly
endeavor. To overcome the aforementioned issues, re-
searchers employ a unified framework based on deep learn-
ing that enables these two tasks to enhance each other using
single RGB images only, and this approach led to a signif-
icant breakthrough for both tasks [4, 5, 6, 9, 10, 11, 12].
Since these unified frameworks are based on the fully-
supervised learning method, they require vast quantities
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of training images with per-pixel ground-truth semantic la-
bels and depth measurements, and obtaining these ground-
truths is non-trivial, costly, and labor-intensive. An alter-
native approach, as proposed by Ramirez et al. [13], is
to integrate depth estimation and semantic segmentation
into a unified framework using the semi-supervised learn-
ing method. The semi-supervised learning framework re-
quires ground-truth semantic labels to provide supervisory
signals for the semantic segmentation task, while for the
depth estimation task, it employs geometry-based image
reconstruction methods that utilize secondary information
based on the underlying theory of epipolar constraints in-
stead of requiring ground-truth depth measurements during
training. In other words, addressing the problem of scene
understanding assumes that both stereo image pairs and se-
mantic information are available during training since this
framework exploits the relationship between the geometric
and semantic properties of a scene by performing semantic
segmentation in a supervised manner and casting the depth
estimation task as an image reconstruction problem in an
unsupervised manner.

This paper presents another attempt towards addressing
the joint inference problem involving depth estimation and
semantic segmentation from a single image by proposing
to train a novel architecture using a unified learning frame-
work based on a semi-supervised technique. This paper
introduces a novel Siamese triple decoder architecture with
a disparity refinement module and a segmentation fusion
module. The triple decoder architecture consists of one
shared encoder and three parallel decoders. The dispar-
ity refinement module handles visual artifacts and blurred
boundaries to generate better depth maps with no border
artifacts around the image boundary while the segmenta-
tion fusion module generates the semantic segmentation
map. In contrast, previous works apply a non-trainable
post-processing heuristic during testing to refine the depth
estimation outputs of the trained model [13, 14]. Essen-
tially, the proposed method enables the model to simulta-
neously perform depth estimation, depth refinement, and
semantic labeling of a scene from an image by exploiting
the interaction between depth and semantic information in
an end-to-end manner.

The main contributions of this work are the following:

1. It introduces a novel Siamese triple decoder architec-
ture with a disparity refinement module and a segmen-
tation fusion module, referred to as JDSNet, for depth
estimation, depth refinement, and semantic segmenta-
tion.

2. It presents a unified framework for joint depth esti-
mation with depth refinement and semantic segmenta-
tion from a single image based on a semi-supervised
technique and trains JDSNet to simultaneously per-
form depth estimation, depth refinement, and seman-
tic segmentation in an end-to-end manner using rec-
tified stereo image pairs with ground-truth semantic
labels as training data.

3. It describes a training loss function that optimizes
these two tasks concurrently.

4. It demonstrates that the proposed method is capable
of simultaneously addressing these two tasks that are
mutually beneficial to both tasks. The experimental
results prove that jointly solving these two tasks im-
proves the performance of both tasks on various eval-
uation metrics.

The remainder of the paper is arranged as follows. Sec-
tion 2 introduces the related works. Section 3 describes
the proposed semi-supervised learning framework for si-
multaneous monocular depth estimation, depth refinement,
and semantic segmentation. Section 4 discusses the exper-
imental results using a standard benchmark dataset. Lastly,
Section 5 concludes the paper.

2 Related work
This section focuses on the previous works that dealt with
joint depth estimation and semantic segmentation where re-
searchers attempted to develop better-suited models using
different methods, such as traditional hand-crafted feature
extraction techniques and deep learning-based techniques.

The earliest works [7, 8] show the feasibility of jointly
modeling depth estimation and semantic segmentation
from a single RGB image using the supervised learning
method. However, they employ traditional hand-crafted
features for these two tasks. The work of Ladicky et al. [7]
is considered to be the first to jointly perform monocular
depth estimation and semantic segmentation. Using prop-
erties of perspective geometry, they proposed an unbiased
semantic depth classifier and considered both the loss from
semantic and depth labels when training the classifier. They
obtained results that outperformed previous state-of-the-art
traditional methods in both the monocular depth and se-
mantic segmentation domain. But, their model can only
generate coarse depth and semantic segmentation maps be-
cause the predictions are based on local regions with hand-
crafted features. Similarly, Liu et al. [8] carried out these
two tasks in a sequential manner where they first performed
semantic segmentation and then used the predicted seman-
tic labels to improve the depth estimation accuracy. Specif-
ically, they used Markov Random Field (MRF) models for
depth estimation, where a multi-class image labeling MRF
predicts the semantic class for every pixel in the image
and uses the predicted semantic labels as priors to estimate
depth for each class. By incorporating semantic features,
they achieved excellent results with a simpler model that
can take into account the appearance and geometry con-
straints.

Other researchers [6, 12, 13] use deep learning tech-
niques for joint monocular depth estimation and seman-
tic segmentation from a single image to improve the per-
formance of each task. These works [6, 12] performed
depth estimation and semantic labeling using the super-
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vised learning method while Ramirez et al. [13] used the
semi-supervised learning method.

Wang et al. [6] and Mousavian et al. [12] used deep
network architecture to simultaneously perform depth esti-
mation and semantic segmentation and used a Conditional
Random Field (CRF) to combine the depth and seman-
tic information. Specifically, Wang et al. [6] proposed a
two-layer Hierarchical Conditional Random Field (HCRF),
which employs two convolutional neural networks (CNNs)
to extract local and global features and then these fea-
tures are enhanced using CRF. Their proposed approach en-
abled them to obtain promising results in both the monoc-
ular depth and semantic segmentation domain. On the
other hand, Mousavian et al. [12] introduced a multi-scale
CNN to perform depth estimation and semantic segmenta-
tion and combined them using a CRF. As shown in their
work, the proposed model achieved comparable results on
monocular depth estimation but outperformed the state-of-
the-art methods on semantic segmentation. A more recent
work by Ramirez et al. [13] proposed to solve the joint in-
ference problem using a semi-supervised learning method
where they employed a deep network architecture that can
be jointly optimized for depth estimation and semantic
segmentation where ground-truth semantic labels are re-
quired for the semantic segmentation task while geometry-
based image reconstruction methods are employed instead
of ground-truth depth labels for the depth estimation task.
However, the experimental results reveal that their model,
which was jointly trained for depth prediction and seman-
tic segmentation, only improved the depth estimation accu-
racy. Their model failed to obtain better results for seman-
tic segmentation.

This work addresses past design issues to obtain signifi-
cant improvements when simultaneously performing depth
estimation and semantic segmentation using rectified stereo
image pairs with ground-truth semantic labels as training
data. Specifically, to produce better depth estimates and
semantic labeling, the proposed method involves changing
the essential building blocks of the network architecture
and introducing a disparity refinement module and a seg-
mentation fusion module to generate better quality depth
maps and semantic segmentation maps.

3 Proposed method

This section describes the proposed method for simulta-
neous depth estimation, depth refinement, and semantic
segmentation in a semi-supervised manner using rectified
stereo image pairs (IL, IR) with ground-truth semantic la-
bels seggt as training data. Since the training data does
not have ground-truth depth labels, the right images IR to-
gether with the predicted disparitiesDL1 are used to obtain
supervisory signals for the depth estimation task based on
the underlying theory of epipolar constraints during train-
ing. In short, the supervisory signal is generated by warp-
ing one view of a stereo pair into the other view using

the predicted disparity maps. Figure 1 presents the semi-
supervised framework for joint monocular depth estimation
and semantic segmentation using JDSNet. JDSNet is the
proposed Siamese triple decoder architecture with a dispar-
ity refinement module and a segmentation fusion module.
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Figure 1: A semi-supervised framework for joint monocu-
lar depth estimation and semantic segmentation using JD-
SNet, the proposed Siamese triple decoder architecture.

3.1 Network architecture

The semi-supervised framework uses a Siamese architec-
ture with the triple decoder network as the autoencoder.
A Siamese architecture consists of two symmetrical struc-
tures and accepts two distinct images as inputs. An im-
portant feature of a Siamese architecture is that it uses
two copies of the same network, and these two networks
share weight parameters to process the two different inputs
and generate two outputs. The original purpose of using a
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Siamese architecture is for learning similarity representa-
tions, that is, to predict whether the two inputs are similar
or not [15, 16]. However, in this study, the two outputs
of the Siamese network are combined to produce the re-
fined disparity maps through the disparity refinement mod-
ule and a segmentation map through the segmentation fu-
sion module.

JDSNet consists of two triple decoder networks that
share weight parameters. It also has a disparity refinement
module that enables the network to more effectively han-
dle the visual artifacts and blurred boundaries while learn-
ing depth estimation. The disparity refinement module is
the trainable version of the post-processing heuristic intro-
duced by Godard et al. [14]. This module combines and
refines the two pairs of depth maps. The segmentation fu-
sion module combines the outputs from the two semantic
segmentation decoders.

The Siamese triple decoder network receives the origi-
nal left images IL and the horizontally flipped version of
the left input images IflipL as inputs. With these images,
the network is trained to predict depth maps, refine the
predicted depth maps, and generate semantic segmentation
maps.

The horizontally flipped version of the left input images
IflipL is necessary because in reconstructing the left im-
ages from the right images using the predicted disparities,
there are pixels in the left images that are not present in
the right images. Hence, no depth values can be predicted
for these missing pixels. To overcome this limitation, the
horizontally flipped version of the left input images IflipL
enables the network to predict the depth values of the oc-
cluded pixels, and by using the disparity refinement mod-
ule, the predicted disparities from both inputs are combined
to generate a refined disparity map.

A triple decoder network has a shared encoder and three
parallel decoders that can be trained for depth estimation
and semantic segmentation. The shared encoder is based
on the encoder section of the AsiANet network architec-
ture [17]. The encoded feature vectors are forwarded to
the three parallel decoders: two depth decoders and one se-
mantic segmentation decoder. The first depth decoder pre-
dicts the left disparity map and is constructed similar to the
decoder section of AsiANet [17], while the second depth
decoder that predicts the right disparity map and the seman-
tic segmentation decoder are based on the ResNet50 de-
coders described in [13]. However, the last encoder block
is modified due to hardware limitations where the number
of output channels is reduced from 2048 to 1024. Also,
unlike the previous works [13, 17], where a depth decoder
generates two disparity maps when using rectified stereo
image pairs as training data, each depth decoder in the pro-
posed network generates a single disparity map.

The Siamese triple decoder network generates a pair of
refined disparity maps (Dfinal

L , Dfinal
R ) at four different

scales and a semantic segmentation map segfinal at full
resolution only from the left image IL. However, only the
full resolution of the refined left disparity map Dfinal

L and

semantic segmentation map are useful at test time.

3.1.1 Disparity refinement module

The disparity refinement module is based on the post-
processing heuristic introduced by Godard et al. [14]. It
is incorporated as a trainable component of the proposed
Siamese triple decoder network rather than having a refine-
ment step at test time since it decouples the refined dis-
parity maps from the training. This design choice enables
the network to simultaneously learn depth estimation and
refine the predicted depth map in an end-to-end manner.

Essentially, the disparity refinement module performs
three operations: horizontal flip operation, pixel-wise mean
operation, and disparity ramps removal operation. The hor-
izontal flip operation is performed on the disparity maps
(DL2, DR2) to generate (DflipL, DflipR). Afterwards,
the pixel-wise mean operation and the disparity ramps
removal operation are performed on (DL1, DflipL) and
(DR1, DflipR), respectively, to produce the refined dis-
parity maps (Dfinal

L , Dfinal
R ).

3.1.2 Segmentation fusion module

The segmentation fusion module performs a horizontal flip
operation on seg2 to obtain segflip. It then adds the two
layers seg1 and segflip and forwards it to the softmax layer
to output the probabilistic scores for each class and gener-
ate a semantic segmentation map segfinal.

3.2 Loss function
Training the proposed network relies on a loss function that
can be expressed as a weighted sum of two losses, as de-
fined in equation (1); a depth loss and a semantic segmen-
tation loss, and the term is given by

LTotal = αdepthLdepth + αsegLseg, (1)

where Ldepth is the depth loss term, Lseg is the seman-
tic segmentation loss term, and αdepth, αseg are the loss
weightings for each term.

3.2.1 Depth loss term

As defined in equation (2), Ldepth is the sum of the depth
losses at four different scales where Ls is the depth loss at
each scale. Ls is a combination of three terms - appearance
dissimilarity, disparity smoothness, and left-right consis-
tency. This term is given by

Ldepth =

4∑
s=1

Ls, (2)

Ls = αappLapp + αsmLsm + αlrLlr, (3)
Lapp = Lleftapp + Lrightapp , (4)

Lsm = Lleftsm + Lrightsm , (5)

Llr = Lleftlr + Lrightlr , (6)
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where Lapp is the appearance dissimilarity term, Lsm
is the edge-aware disparity smoothness term, Llr is the
left-right consistency term, and αapp, αsm, αlr are the loss
weightings for each term. The depth loss term takes into
account the left and right images where each component
is in terms of the left images (Lleftapp , L

left
sm , Lleftlr ) and right

images (Lrightapp , Lrightsm , Lrightlr ). However, this section pro-
vides details for the left components Lleft only since the
right components Lright are defined symmetrically.

The appearance dissimilarity term, as defined in (7), is
a linear combination of the single-scale structural similar-
ity (SSIM) term [18] and the L1 photometric term. This
term measures the quality of the synthesized target image
by minimizing the pixel-level dissimilarity between the tar-
get image I and the synthesized target image I∗. This term
is also widely used in previous studies [13, 14, 17] and it is
given by

Lleft
app =

1

N

∑
x,y

ω
1− SSIM (IL (x, y) , I∗L (x, y))

2

+ (1− ω) ‖IL (x, y)− I∗L (x, y)‖
(7)

with a 3× 3 box filter for the SSIM term and ω is set to
0.85 similar to [13, 14, 17]. The synthesized target left im-
age I∗L is obtained using a sampler from the spatial trans-
former network [19] that performs the bilinear interpola-
tion. The sampler reconstructs the target left image I∗L us-
ing the right image IR and the predicted left disparity map
DL1.

The edge-aware disparity smoothness term, as defined
in (8), regularizes the predicted disparities in spatially sim-
ilar areas to ensure that the predicted disparities are locally
smooth but can be sharp at the edges. This term is given by

left
sm =

1

N

∑
x,y

((|∂xDL2(x, y)|e−|∂xIflipL(x,y)|

+ |∂yDL2(x, y)|e−|∂yIflipL(x,y)|)

+ (|∂xDfinal
L (x, y)|e−|∂xIL(x,y)|

+ |∂yDfinal
L (x, y)|e−|∂yIL(x,y)|)),

(8)

where Dfinal
L is the refined left disparity map, DL2 is

the second predicted left disparity map, and IflipL is the
horizontally flipped version of the left image IL.

As described in [13, 14, 17], the left-right consistency
term enforces consistency between the left and right dis-
parities as defined in (9). This term is given by

Lleft
lr =

1

N

∑
x,y

|Dfinal
L (x, y)

− (DR1(x−DL1(x, y), y))|,
(9)

where Dfinal
L is the refined left disparity map, DR1 is the

first predicted right disparity map, and DL1 is the first pre-
dicted left disparity map.

3.2.2 Semantic segmentation loss term

The semantic segmentation loss term, as defined in equa-
tion (10), is the standard cross-entropy loss between the

predicted pixel-wise semantic labels segfinal and ground-
truth pixel-wise semantic labels seggt. The semantic seg-
mentation loss is computed using the left images only since
these images have the corresponding ground-truth semantic
labels at full image resolution. This term is given by

Lseg = −
N∑
i=1

P (seggti |seg
final
i ), (10)

where segfinali is the pixel-wise prediction for image
Ii, seg

gt
i is the ground-truth semantic labels for image Ii,

P (y|x) =
∑
j p(yj |xj), and p(yj |xj) is the probability of

the ground-truth semantic label yj at pixel j.

3.3 Datasets and evaluation metrics
Although the Cityscapes dataset [20] and KITTI
dataset [21] contain a large number of training sam-
ples, the proposed semi-supervised learning framework
for simultaneous depth estimation, depth refinement, and
semantic segmentation requires rectified stereo image pairs
with pixel-wise ground-truth semantic labels at training
time. Hence, a subset of the Cityscapes dataset, which
contains 2, 975 finely annotated images and the KITTI
dataset consisting of 200 images with pixel-wise semantic
ground-truth labels are used in this work.

Ramirez et al. [13] introduced a train/test split from the
200 images of the KITTI dataset for joint depth estimation
and semantic segmentation. This dataset was split into 160
samples for the train set and 40 samples for the test set.
The test set of 40 samples was used to quantitatively eval-
uate the proposed method given the distance range of 0-80
meters.

The standard evaluation metrics are used to evaluate the
trained models quantitatively. The standard evaluation met-
rics for depth estimation measure the average errors, where
lower values are better and accuracy scores where higher
values are preferred [14, 22]. The six standard metrics for
depth estimation are absolute relative difference (ARD),
square relative difference (SRD), linear root mean square
error (RMSE-linear), log root mean square error (RMSE-
log), and the percentage of pixels (accuracy score) with
thresholds (t) of 1.25, 1.252, and 1.253. These metrics are
defined in Eq. (11) to Eq.(15).

ARD =
1

N

∑ |dpi − d
g
i |

dgi
(11)

SRD =
1

N

∑ ||dpi − d
g
i ||

2

dgi
(12)

RMSE − linear =

√
1

N

∑
||dpi − d

g
i ||

2 (13)

RMSE − log =

√
1

N

∑
||log(dpi )− log(d

g
i )||

2 (14)

δ < t = percent of d
p
i s.t. max{

dpi
dgi
,
dgi
dpi
} (15)

dg and dp represent the ground-truth and estimated depth,
respectively. N represents the number of pixels with valid
depth value in the ground truth depth map.
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On the other hand, the mean intersection over union
(mIoU) is used to evaluate the semantic predictions of the
model. It is the standard metric for segmentation tasks. The
IoU measures the similarity between the intersection and
union of the predicted pixel-wise semantic labels segfinal

and ground-truth pixel-wise semantic labels seggt, and is
calculated on a per-class basis and then averaged, as de-
fined in (16). It is the ratio between the number of true
positives (intersection) over the sum of true positives (TP),
false positives (FP) and false negatives (FN) (union). This
is given by

mIoU =
1

ncl

∑
c

TPc
TPc + FPc + FNc

, (16)

where ncl is the total number of classes and c ∈ 0...ncl − 1.
Moreover, the pixel accuracy, as defined in (17), was also

used to evaluate the performance of the model on the se-
mantic segmentation task since the previous work [13] used
this metric. This term is given by

pixel accuracy =
1

N

∑
c

TPc, (17)

where TP represents the true positives or correctly pre-
dicted pixels andN is the total number of annotated pixels.

4 Experiments

Tensorflow [23] was used to implement JDSNet. Train-
ing the network was performed on a single Nvidia GTX
1080 Ti GPU with 11 GB of memory. The training pro-
tocol was similar to [13, 14, 17] where the Adam opti-
mizer [24] with β1 = 0.9, β2 = 0.999, and ε = 10−8

optimized the model for 50 epochs using the Cityscapes
dataset and fine-tuned the model for another 50 epochs
using the KITTI 2015 dataset by minimizing the training
loss. For training and fine-tuning the model, the learn-
ing rate was initially set to λ = 10−4 for the first 30
epochs and was reduced by half every 10 epoch until the
process was completed. Moreover, the training phase in-
volved using the same train/test split introduced in [13],
resizing the input images to 256 by 512, using a batch
size of 2, and performing data augmentation on the input
images. The hyper-parameters have the following values:
αdepth = 1.0, αseg = 0.1, αapp = 1.0, αlr = 1.0, and
αsm = 0.1/2s, where s is the down-sampling factor rang-
ing from 0 to 3.

4.1 Results and discussion

This section discusses the results of the experiments con-
ducted to evaluate the proposed method that simultane-
ously performs depth estimation, depth refinement, and se-
mantic segmentation. The model was evaluated using the
publicly available KITTI 2015 dataset [21] based on the

test split introduced in [13]. Each test image has a cor-
responding ground-truth depth and semantic ground-truth
labels.

The experiments involved training three different mod-
els:

1. Depth only model: LTotal = Ldepth,

2. Semantic only model: LTotal = Lseg , and

3. Depth+Semantic model: Equation (1), which is the
proposed training loss function.

In the depth only model, the semantic features are not
considered during training. Hence, the model can only pre-
dict depth maps. In this setup, the two segmentation de-
coders and the segmentation fusion module are disabled.
On the other hand, in the semantic only model, the depth
features are not considered during training. Thus, the
model can only generate semantic segmentation maps since
the four depth decoders and the disparity refinement mod-
ule are disabled. The main experiment involved training a
depth+semantic model using the proposed method where
both the semantic and depth features are considered during
training.

Table 1 and Table 2 report the quantitative results. The
experiment results were compared with the previous meth-
ods by directly using the results reported in [13]. These
results reveal the effectiveness of the proposed method,
which involved training the model to perform depth esti-
mation, depth refinement, and semantic segmentation si-
multaneously.

As shown in Table 1, JDSNet is a better-suited model
for depth estimation even when trained without any seman-
tic information since it outperformed all previous models
that were trained using both depth and semantic informa-
tion based on the different evaluation metrics. The results
also show further improvement when semantic information
was considered in training JDSNet. Moreover, lower errors
indicate that there are few outliers in the predicted depth
maps.

A similar trend can be observed in Table 2, where JD-
SNet outperformed the previous models in terms of the se-
mantic segmentation task when trained using both depth
and semantic information. These results indicate that a
good network design can significantly improve the perfor-
mance of a model for both tasks, and including additional
features during training can lead to better results. Specifi-
cally, simultaneously training the network for both tasks is
more beneficial as the model can achieve better results than
training a separate network for each task.

Although the results showed that the JDSNet-trained
model using both depth and semantic information achieved
high pixel accuracy rating, further validation was neces-
sary since the pixel accuracy metric can be biased by im-
balanced datasets. To overcome this limitation, the Jac-
card index, also referred to as intersection-over-union, was
employed. This evaluation metric takes into consideration
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Method
Error Metric

(Lower Is Better)
Accuracy Metric
(Higher Is Better)

ARD SRD RMSE
(linear)

RMSE
(log) δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [25] 0.286 7.009 8.377 0.320 0.691 0.854 0.929
Mahjourian et al. [26] 0.235 2.857 7.202 0.302 0.710 0.866 0.935
GeoNet [27] 0.236 3.345 7.132 0.279 0.714 0.903 0.950
Godard et al. [14] 0.159 2.411 6.822 0.239 0.830 0.930 0.967
Ramirez et al. (ResNet50) [13] 0.143 2.161 6.526 0.222 0.850 0.939 0.972
Ramirez et al. (ResNet50+pp) [13] 0.136 1.872 6.127 0.210 0.854 0.945 0.976
Ours (JDSNet): Depth only 0.117 1.436 5.526 0.187 0.877 0.956 0.981
Ours (JDSNet): Depth+Semantic 0.108 1.221 5.309 0.178 0.883 0.959 0.985

Table 1: Monocular depth estimation results using the KITTI test split introduced in [13]. The bold values indicate the
best results.
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Figure 2: Qualitative results using the KITTI test split introduced in [13]. The ground-truth depth maps are interpolated
for visualization purposes only. Best viewed in color.

Method PA
Ramirez et al. (ResNet50) [13]: Semantic only 88.18%
Ramirez et al. (ResNet50) [13]: Depth+Semantic 88.19%
Ours (JDSNet): Semantic only 88.40%
Ours (JDSNet): Depth+Semantic 89.57%

Table 2: Semantic segmentation results using the KITTI
test split introduced in [13]. PA means pixel accuracy. The
bold values indicate the best results.

both the false positives and false negatives. Table 3 con-
firms that by incorporating depth information JDSNet per-
formed better in the semantic segmentation task. For in-
stance, when using both depth and semantic information,
JDSNet was very effective in differentiating ambiguous
pairs of classes, such as wall versus fence, sidewalk ver-
sus road, and motorcycle versus bicycle. It also achieved
better results in terms of recognizing a person and segment-
ing distant objects and thin structures such as poles, traffic
lights, and traffic signs.

The qualitative results, as shown in Figure 2, reveal that

the proposed method generated depth maps that captures
and preserves the general scene layout where thin struc-
tures are perceivable. Also, the disparity refinement mod-
ule achieved a similar result to the post-processing heuris-
tic that is performed during testing where the refined depth
maps have no border artifacts on the image boundary. In
addition, the results show that JDSNet can effectively per-
form semantic segmentation, as evidenced by its ability to
capture the geometrical characteristics of the objects in the
scene. For example, JDSNet was able to segment the traffic
light in the third image even if it has a thin structure and an
irregular shape.

5 Conclusion
This work has introduced a semi-supervised learning
framework that simultaneously performs depth estimation,
depth refinement, and semantic segmentation using recti-
fied stereo image pairs with ground-truth semantic labels
during training. The proposed architecture, referred to as
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Method Road Sidewalk Building Wall Fence Pole Traffic light Traffic sign Vegetation Terrain
JDSNet: Semantic only 90.77 47.13 72.86 16.71 11.70 31.73 13.96 19.79 86.38 74.21
JDSNet: Depth+Semantic model 91.43 52.98 78.81 34.82 28.93 36.72 14.05 26.45 86.67 74.08

Method Sky Person Rider Car Truck Bus Train Motorcycle Bicycle mIoU
JDSNet: Semantic only 92.83 7.68 3.09 81.82 5.18 0.00 5.04 0.31 13.88 35.53%
JDSNet: Depth+Semantic model 93.37 16.87 0.74 85.65 5.23 0.00 1.51 1.53 16.85 39.30%

Table 3: Semantic segmentation results using the KITTI test split introduced in [13]. mIoU means mean intersection over
union. The bold values indicate the best results.

JDSNet, is a Siamese triple decoder network architecture
with a disparity refinement module and a segmentation fu-
sion module that is capable of improving on the perfor-
mance of both tasks by sharing the underlying features
representations and utilizing both geometric and semantic
information. Experiment results show that the proposed
method achieved promising results on both depth estima-
tion and semantic segmentation and outperformed previous
methods.
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