
https://doi.org/10.31449/inf.v45i2.3049 Informatica 45 (2021) 231–242 231

Performance Analysis of Test Path Generation Techniques Based on

Complex Activity Diagrams

Walaiporn Sornkliang

Management of Information Technology, School of Informatics

Walailak University, Nakhon Si Thammarat, Thailand

E-mail: vlaiporn@gmail.com

Thimaporn Phetkaew
School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, Thailand

Informatics Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand

E-mail: pthimapo@wu.ac.th, thimaporn.p@gmail.com

Keywords: coverage criteria, software testing, test path generation, concurrency test scenario, UML activity diagram

Received: February 5, 2020

Effort reduction in software testing is important to reduce the total cost of the software development

project. UML activity diagram is used by the tester for test path generation. It is hard to select the

appropriate test path generation technique to diminish the effort of software testing. In the experiment,

we compared the efficiency of 12 commonly-used test path generation techniques with both simple activity

diagrams and the constructed complex activity diagrams. The experimental results summarized in four

aspects. (1) The most appropriate test path generation technique for path testing generates the number of

paths equivalent to the target number of all possible paths. (2) The suitable test path generation technique

for the concurrency test scenario. (3) The techniques that can generate test paths covering basis path

coverage in the case that testing all possible paths for the large or complex object-oriented method is

laborious. (4) To compare the efficiency of test path generation algorithms, the percentage test path

deviation to the target number of all possible paths is calculated for the constructed complex activity

diagrams. We also recommended suitable test path generation methods for each manner of the UML

activity diagram.

Povzetek: Avtorji so analizirali uspešnost dvanajst metod za iskanje poti preverjanja programske opreme

z enostavnimi in kompleksnimi diagrami aktivnosti.

1 Introduction
Software testing is part of the most important phases of the

software development life cycle. Test planning or test

design specifications usually occur at the beginning of the

system development process. The program can be tested

according to the software requirements specification

(SRS), or detailed design documents, which reduces the

time and cost of software development. Today, most

software is developed using Object-Oriented technology

and the Unified Modeling Language (UML). UML

activity diagram describes the workflow of a sequence of

software activities, or concurrent software activities, from

the initial activity to the end. An activity diagram is

flowchart-like that can be used to generate test paths.

According to Linus’s law, given large enough beta-

tester and co-developer bases, almost every problem will

be characterized quickly and the fix will be obvious to

someone [1]. Green software testing takes into

consideration the number of people and the amount of

equipment allocated to test based on predefined test cases

related to energy consumption [2]. Software testing needs

to generate test cases to determine the expected output for

any program path. There are many methods to generate

test paths from a UML activity diagram. Each method is

different and yields distinct results because the paths of

the program can be traversed in a variety of techniques;

thus, selecting the appropriate test path generation method

is challenging. If there are too many test paths. It is the

cause that uses a lot of effort to design test cases and to

execute the program path.

Although general method in the object-oriented

programming is not much complex, in case of we want to

compare the efficiency of test path generation algorithms,

we have to apply those with the complex models of UML

activity diagram. There are many types of the control

structure of the program such as selection control structure

consisting of single-way selection, two-way selection, and

nested selection; iteration control structure consisting of

pre-test loop and post-test loop; and fork-join structure

consisting of simple fork-join, fork-merge concurrent,

part-join concurrent, and no-join concurrent. The complex

UML activity diagrams are constructed to evaluate test

path results of the algorithms by coverage criteria such as

statement coverage, branch coverage, activity path

coverage, basis path coverage, and path coverage.

mailto:vlaiporn@gmail.com

232 Informatica 45 (2021) 231–242 W. Sornkliang et al.

The test path generation techniques from UML

activity diagram usually depend on graph or tree theory:

the test path generation techniques based on tree structure,

such as the Dependent Flow Tree [3], the Fault Success

Tree Analysis [4], and the Activity Tree [5]; the test path

generation techniques based on graph structure, such as

the Intermediate Black Box Model [6], the Activity Graph

[7], the Activity Flow Table [8], the Activity Convert

Grammar [9], the Activity Flow Graph [10], the Test Case

Generation Based on Activity Diagram [11], the Activity

Dependency Graph [12], and the Intermediate Testable

Model [13]. In addition, the test path generation from

UML activity diagram can be used the heuristic algorithm

e.g., ant colony [14].

Currently, the advantages of the test path generation

are applied to several real-world problems, for example,

(1) to generate test data using the neighborhood search

strategy [15] and using the genetic algorithm [16], (2) to

generate test paths for effective chatbot software testing

using customized response [17], (3) to optimize test cases

by generating test path and selecting test data using

Cuckoo search and Bee colony algorithm [18], and (4) to

generate optimized test data for saving both testing cost

and time [19].

To reduce the effort of software testing, the test paths

must be non-redundant, adequate and complete. The

purpose of this study was to compare the current test path

generation techniques using complex UML activity

diagrams constructed by the researcher.

The remainder section of this paper is organized as

follows. Section 2 introduces the software testing, test

path generation, UML activity diagram, coverage criteria,

and literature review. Section 3 explains the experimental

setup for this study. The experimental results and

discussion of this paper are included in Section 4. Finally,

the paper is concluded in Section 5.

2 Background
This section provides a brief overview of software testing,

test path generation, UML activity diagram, coverage

criteria, and research articles related to this study.

2.1 Software testing

Testing is concerned with bugs or errors, defects or faults,

failures, and incidents [20]. Software testing is a crucial

part of software quality assurance; it concerns the

examination of specifications, designs, and codes [21].

Testing aims to find the detects early in system

development. If the fault is found early, then the

computational cost will be lower than if the fault is found

in the implementation phase. The testing is carried out to

assure the quality and reliability of the software. To find

the defect as soon as possible, testing activities should start

as early as the requirements are derived and should

continue until the software is completed [22]. Good test

cases have attributes such as a high probability to find bug;

the test should not be redundant or too simple or complex

[21].

2.2 Test path generation

A test case is a path that covers specific system

requirements and data [23]. A test case is made up of a set

of test inputs, execution conditions, and expected results

developed for the set of objectives [24]. Test cases can be

generated automatically from requirements and

specifications, design, or the source code [25, 26]. A good

test case is a part that has a high probability of finding an

as-yet-undiscovered error [27]. To check if the application

produces correct outputs, a series of test variables are used

as inputs by a tester. Test case generation and also test path

generation are an important issue in the software testing

field.

2.3 UML activity diagram

An activity diagram is importantly a flowchart that

chronologically organizes a set of activities that show the

workflow from a start point to the finish that takes place

over time [28]. An activity diagram shows the flow from

one activity to another. The diagram symbols consist of

activities, initial activity, final activity, transition,

decision, merge, fork, join, and swimlane, as shown in

Table 1.

Symbols Name Description

 Activity The process being modelled

 Initial

activity

The flow starts in the UML

activity diagram

 Final

activity

The final step in the UML activity

diagram

 Transition Control flow

Decision Alternative activities

 Merge Brings together one or more

incoming flows to accept the

single outgoing flow

Fork Split transition into multiple fork

activities

Join The combination of multiple fork

activities

Swimlane Classification of activities' duty

Table 1: The symbols of the UML activity diagram.

(a) Simple

fork-join.

(b) Fork-merge

concurrent.

(c) Part-join

concurrent.

(d) No-join

concurrent.

Figure 1: Types of the concurrent structure in UML

activity diagram.

For a concurrent structure in the UML activity

diagram [6, 13], the most common form is classified into

Performance Analysis of Test Path Generation Techniques... Informatica 45 (2021) 231–242 233

four forms as shown in Figure 1. First, the simple fork-join

in Figure 1(a) is a pair of fork node and join node and all

activity between a fork and join symbol. Second, the fork-

merge concurrent in Figure 1(b) has a merge node that is

placed instead of a join which allows multiple flows. The

paths of the fork node can also be traversed in the same

way as a selection structure. Third, the part-join

concurrent in Figure 1(c) has two parts: the first part, it has

a join node that is used to converge outgoing flows of a

fork node; the second part, it is no converging node at the

end of these flows. And last, the no-join concurrent in

Figure 1(d) is no converging node at the end of these

flows.

2.4 Coverage criteria

The coverage criterion is the degree, expressed as a

percentage or a specified coverage item that needs to be

exercised by a test suite [29]. For concurrency test

scenario, the distinction between paths and their

respective coverage criteria will help to effective effort

estimation and test management [30].

2.4.1 Normal test scenario

The coverage criteria items can be classified into five

items. First, statement coverage requires that all

statements must be executed at least once. This condition

suggests that an error in a statement cannot be revealed

without executing the faulty statement. Second, branch

coverage requires every decision of the program to be

covered by at least one test path. Thus, each decision leads

to two test requirements, the decision is either true or false.

If every method must be called at least once, each method

leads to one test requirement. Third, activity path coverage

is the test path that ensures all activities are tested at least

once, and all possible paths are tested for all activities [5].

An activity path is flow of activities from the start activity

into the final activity in the activity diagram. Fourth, path

coverage is the test path that ensures all paths of the

program work. To determine path coverage, all paths need

to be covered from start to end. And last, basis path

coverage is the test path that ensures the optimal test path

is covered. The number of paths to ensure the basis path

coverage criterion is satisfied can be determined from

Cyclomatic complexity [26]. Cyclomatic complexity is

the quantitative software metric of the complexity in a

program. The cyclomatic complexity value determines the

number of independent paths in a basic program set and

the maximum amount of testing needed to ensure that all

basis paths are covered at least once. Cyclomatic

complexity has a foundation in graph theory and is

computed in one of three ways. By definition, V(G) is the

complexity of the control flow graph. It can be calculated

according to each of the following, as in Equation (1), (2)

[21, 26], and Equation (3) [31].

 ,2)()(+−= NEGV (1)

where E is the number of edges between nodes and N is

the number of nodes.

),1()(+= PGV (2)

where P is the number of predicate nodes in control flow

graph.

),1()(+= RGV (3)

where R is the number of closed regions of control flow

graph.

For the concurrent regions in the UML activity

diagram, all possible paths must be traversed from two

directions that are left-to-right and right-to-left. For the

UML activity diagram in Figure 2(a), there are two

possible paths. In the first path in Figure 2(b), it traverses

from the left thread to the right thread. In the second path

in Figure 2(c), it traverses from the right thread to the left

thread. Each thread is listed from the activity of top-level

to activity of low-level [32].

(a) Concurrent region. (b) First path. (c) Second path.

Figure 2: The all possible paths in the concurrent regions.

2.4.2 Concurrency test scenario

Execution of activities in the concurrent region leads to

concurrency errors if the implementation does not include

required restrictions on some of the interleaving paths by

setting appropriate synchronization primitives [30].

For the Interleaving Activity Path Coverage (IAPC)

criterion [30], let IP be the set of interleaving activity

paths inside a fork-join structure, and TS be the set of test

scenarios generated from the activity diagram. The test set

TS satisfies interleaving activity path coverage, if and only

if, ∀ p ∈ IP, ∃ t ∈ TS such that when the program is

executed using test scenario ‘t’, the interleaving activity

path ‘p’ of the activity diagram is executed, fully or

partially. The interleaving paths are calculated using

Equation (4):

 (∑ 𝑛𝑖
𝑚
𝑖=1)! ∏ (𝑛𝑖!),

𝑚
𝑖=1⁄ (4)

Where m is the number of threads, ni is the number of

activities in thread i.

2.5 Literature review

In software testing, test paths must be generated to test the

software for the expected results. The techniques for test

path generation from UML activity diagrams usually

depend on tree or graph theory, which are listed in the

subsection below.

2.5.1 The test path generation techniques

based on tree structures

A tree is a simple hierarchical graph that links together one

edge between two nodes. It starts from the root node and

234 Informatica 45 (2021) 231–242 W. Sornkliang et al.

ends at the leaf node. Many tree-based test path generation

methods have been developed recently. We describe three

methods that are relevant to this research study.

The Dependent Flow Tree [3] is a method that

generates test paths from the activity diagram by a

constructing dependent flow tree with stores all the

information extracted from the XML file of the diagram

through the help of a parser. The dependency flow tree

consists of nodes and edges. After that, the test paths were

generated by using a Depth First Search algorithm that

visiting all the nodes and edges exactly once. In this study,

the generated test paths include branch coverage and path

coverage.

The Fault Success Tree Analysis [4] is a method that

generates test paths from an activity diagram by

considering the decision of the activity diagram to build a

tree. The classification of each tree is built by considering

all possible decisions and the paths they took before

approaching the next decision. Each decision can pass

conditions on the way to the next decision. If conditions

were found along the way, the decision conditions are

identified in the classification tree and ordered

accordingly before reaching the next decision. Then, the

test paths are generated from the root node to the leaf node.

Next, the fault tree diagram can be generated from the

invalid paths of classification tree and the success tree

diagram can be generated from the valid path of the

classification tree. In this study, the generated test paths

include branch coverage.

The Activity Tree [5] is a method that builds test paths

from activity diagrams. This suggests the test paths

generated from the activity diagrams are transformed into

an ordered test flow tree, from the initial activity to the

final activity. If activity loops are found in the activity tree,

then the activity before the next loop was used as the last

activity at the end of the loop. After that, the possible test

paths were identified by using a Depth First Search

algorithm. If the test paths had loops, this algorithm could

search for test paths from the initial node to the last node

of the test flow tree only once. In this study, the generated

test paths include activity path coverage.

2.5.2 The test path generation techniques

based on graph structures

Graph (G) is made up of a set of ordered pairs, G = (V, E),

where V is set of nodes, and E is the set of edges, which

are the links between nodes. We describe a relevant set of

eight methods that use graphs to generate test paths.

The Intermediate Black Box Model [6] is a method

that generates test paths from unstructured activity

diagrams. The unstructured module is including the loop

structure and fork-join structure. The method begins by

constructing an activity graph from an activity diagram.

Then, the activity graph is classified into a set of groups,

including the loop and fork-join structure. The nodes in

each group are then combined into a single node. The test

paths then searched the graph using the Depth First Search

algorithm. If a node has an iteration structure, then the path

goes through the loop least once. If all nodes in a fork-join

structure, then the path goes through all possible activity.

In this study, the generated test paths include path

coverage.

The Activity Graph [7] is a method that generates test

paths from the activity diagrams. The activity diagram is

transformed into an activity graph. The activity graph is a

direct graph and is replaced by each node of the activity

diagram. The activity graph is ordered using the control

flow from the chronological list of activities, including the

branch, decision, iteration, and fork-join activities. The

test paths then searched the graph using the Depth First

Search algorithm that visiting all the nodes and edges

exactly once. In this study, the generated test paths include

activity path coverage.

The Activity Flow Table [8] is a method that

generates test paths from the activity diagram. The activity

diagram is used to construct the activity flow table that

describes the symbols by numbers given to each activity.

Then an activity flow graph is constructed and used the

symbols ordered on an activity flow table. The activity

flow graph searches all possible paths by using a Depth

First Search algorithm that compares each path to a set of

criteria using basis path coverage. If a node has an

iteration structure, then the path goes through the loop

only once. In this study, the generated test paths include

basis path coverage and activity path coverage.

The Activity Convert Grammar [9] is a method that

generates test paths from activity diagrams and activity

convert grammar by constructing an activity dependency

table and a decision dependency table from the sets of

testing data. Then, the activity dependency table and the

decision dependency table construct test paths using the

grammar method. The grammar is divided into activities

on the Left-Hand Side (LHS) that is used as the dependent

activity and activities on the Right-Hand Side (RHS) that

tests the branch and fork activity. To generate test paths,

the activities are tested chronologically. In the case of a

fork activity, the activities are prioritized from left to right

and right to left. In this study, the generated test paths

include path coverage.

The Activity Flow Graph [10] is a method that

generates test paths from activity diagrams. The activity

diagrams are used to construct the control flow activity

table and values using the conditions of each activity.

Then an activity flow graph is constructed and ordered

using the control flow from the chronological list of

activities including the branch, decision, iteration, and

fork activities. The test paths then searched the graph

using the Depth First Search. If a node has an iteration

structure, then the path goes through the loop only once.

Each test path generates a test path. In this study, the

generated test paths include activity path coverage.

The Test Case Generation Based on Activity Diagram

[11] is a method that generates test paths from activity

diagrams according to the following steps. First, the

activity dependency table is constructed and used to create

an activity dependency graph covering all activities. The

activity dependency graph searches all possible paths by

using a Depth First Search that compares each path to a set

of criteria using basis path coverage. If activity in a loop

structure is encountered, the loop is only traversed once.

Performance Analysis of Test Path Generation Techniques... Informatica 45 (2021) 231–242 235

In this study, the generated test paths include basis path

coverage and path coverage.

The Activity Dependency Graph [12] improves the

test path generation technique from activity diagrams by

constructing an activity dependency table and an activity

dependency graph, respectively. Then, the dependency

graph is improved by removing the activities which have

the same names, decision symbols, fork symbols, join

symbols and merge symbols. The improved activity

dependency graph is used to construct test paths, which

generate the test paths. In this study, the generated test

paths include basis path coverage and branch coverage.

The Intermediate Testable Model [13] studies the

synthesis of testing situations from activity diagrams. The

method begins by constructing a control flow graph from

an activity diagram. Then, the control flow graph is

classified into a set of groups including the selection, loop,

and fork-join structures. The nodes in each group are then

combined into a single node. When generating a test path,

the tester chooses the structure of interest to build sub-

paths. When all the constructs are used to generate the test

paths, then that test paths have covered all possible paths.

In this study, the generated test paths include path

coverage.

The test paths then searched the graph using the Depth

First Search algorithm that visiting all the nodes and edges

exactly once. In this study, the generated test paths include

activity path coverage.

2.5.3 The test path generation techniques

based on heuristic algorithm

Orientation-based Ant Colony algorithm (OBACO) [14]

is proposed to generate test paths for a concurrent segment

of UML activity diagram. Parsing of XMI code takes

UML activity diagram as input and results into individual

sub-queues of activity nodes present under the fork-join

structure. The input of the orientation based ant colony

optimization is sub-queues under the fork-join structure of

an activity diagram is used for generating combinations

between the activity nodes of the sub-queues. The next

activity node in the path is decided by pheromone,

heuristic values, and orientation factor.

3 Experimental setup
This research looks at 12 commonly-used test path

generation techniques. There are three tree-based test path

generation algorithms, which are the Dependent Flow

Tree (DFT) [3], the Fault Success Tree Analysis (FSTA)

[4], and the Activity Tree (ActTree) [5]. There are eight

graph-based test path generation algorithms, which are the

Intermediate Black Box Model (IBM) [6], the Activity

Graph (AG) [7], the Activity Flow Table (AFT) [8], the

Activity Convert Grammar (ACG) [9], the Activity Flow

Graph (AFG) [10], the Test Case Generation Based on

Activity Diagram (TCBAD) [11], the Activity

Dependency Graph (ADG) [12], and the Intermediate

Testable Model (ITM) [13]. And there is one heuristic-

based test path generation algorithm, which is the

Orientation-based Ant Colony algorithm (OBACO) [14].

It is difficult to select the appropriate test path generation

techniques to reduce the effort of software testing. The

researcher has conducted the research by comparing the

test path generation techniques using complex UML

activity diagrams created by the researcher.

3.1 The UML activity diagrams used in the

experiment

To evaluate the test path results of the 12 algorithms, we

used both real-world activity diagram and constructed

activity diagram. The two real-world activity diagrams,

which are a Shopping Mall System activity diagram in

Figure 3 and a Library Management System activity

diagram in Figure 4. The selection criteria are the activity

diagram which describes the daily life work and easy to

understand. Two activity diagrams created by the

researcher are called a Complex Concurrent Structure

activity diagram in Figure 5 and a Complex Control

Structure activity diagram in Figure 6. No previous work

in the literature review generated test paths from the

complex activity diagram. So, we create a complex

activity diagram to compare the efficiency of each

algorithm in terms of the covered coverage criteria. The

control variables of four activity diagrams are the number

of paths covered by path testing and basis path coverage.

The four activity diagrams employed in the experiment are

as follows.

3.1.1 The shopping mall system activity

diagram

Figure 3 shows the Shopping Mall System activity

diagram, applied from [33, 34], which consists of

sequence structure, selection structure, and iteration

structure. In this activity diagram does not has the fork-

join structure. In this system, a user can select the item, the

system can make the billing, and check the member card.

The user can select to pay by cash or card. Besides, the

user can select the gift service or collect stamp.

Figure 3: The Shopping Mall System activity diagram.

236 Informatica 45 (2021) 231–242 W. Sornkliang et al.

3.1.2 The Library Management System activity

diagram

Figure 4 shows the Library Management System activity

diagram, applied from [35, 36], which consists of

sequence structure, selection structure, iteration structure,

and fork-join structure. In this system, the user inserts the

card, inputs the password, and then the system checks the

account. If it is the account created, the system checks the

status of the account, and the user can decide to return or

borrow the book. If it is not the account created, the user

registers the new account. The system checks the

availability of the book. If the book is available, the system

will decrease book availability and increase the number of

the book borrowed.

3.1.3 The Complex Concurrent Structure activity

diagram

Figure 5 shows the Complex Concurrent Structure activity

diagram that is constructed to generated test path focus on

fork-join structure. This activity diagram has control

structure such as sequence structure, selection structure,

and fork-join structure. In this activity diagram does not

has the iteration structure. For the selection structure, there

is a nested selection. For the fork-join structure, we use

fork-join structure classification of the concurrent module

i.e., simple fork-join, fork-merge concurrent, part-join

concurrent, and no-join concurrent.

Figure 4: The Library Management System activity

diagram.

3.1.2 The Complex Control Structure activity

diagram

Figure 6 shows the Complex Control Structure activity

diagram consists of all type of control structure. This

activity diagram is comprised of the sequence structure,

selection structure, iteration structure, and fork-join

structure. For selection structure, there is one-way, two-

way, and nested selection. Iteration structure consisting of

pre-test loop and post-test loop. Within the fork-join

structure, there are one-way selection, two-way selection,

and nested selection, pre-test loop, post-test loop, simple

fork-join, fork-merge concurrent, part-join concurrent,

and no-join concurrent.

Figure 5: The Complex Concurrent Structure activity

diagram.

Figure 6: The Complex Control Structure activity

diagram.

3.2 The target number of test path

To compare the efficiency of test path generation

algorithms, four UML activity diagrams are used to

construct in the form of the control flow graphs (CFG),

and then each control flow graph is searched to find the

target number of all possible path using a Depth First

Search algorithm and to find the number of basis path

using Equation (1). For path coverage in the case of the

concurrent regions, all possible paths must be traversed

Performance Analysis of Test Path Generation Techniques... Informatica 45 (2021) 231–242 237

from two directions that are left-to-right and right-to-left

[32]. The first direction was started from the activity on

the left transition and goes as far as it can down a given

path to reach the join symbol, then backtracks until it finds

an unexplored path, and then explores it. These procedures

are repeated until the entire concurrent region has been

explored. For the second direction, it was started from the

activity on the right transition. For the concurrency test

scenario, the target number of all possible path in the fork-

join structure is calculated by using Equation (4).

4 Experimental results and discussion
In this section, we show the experimental results for 12

test path generation techniques with four activity

diagrams. For simplicity to show the result, we use the

word "Shopping" short for Shopping Mall System activity

diagram, the word "Library" short for Library

Management System activity diagram, "Concurrent" short

for Complex Concurrent Structure activity diagram, and

"Complex" short for Complex Control Structure activity

diagram. The results of test path generation techniques

based on tree structures, graph structures, and heuristic

algorithm are shown in Table 2. The target number of all

possible paths (TAP) and the target number of basis paths

(TBP) are shown in the table to compare with the number

of test paths of each technique. The coverage criterion

used in the experiment are statement coverage (SC),

branch coverage (BC), activity path coverage (AP), basis

path coverage (BP), and path coverage (PC). The symbol

 means the technique found out coverage of that criteria,

whereas symbol means the technique is not satisfied

with that criteria.

For the concurrency test scenario, we show the

experimental results for the Intermediate Black Box

Model (IBM) and the Intermediate Testable Model (ITM)

which are the test path generation methods focused on the

concurrency region. Table 3 shows the coverage

percentage of test path generation techniques for the

interleaving activity path coverage (IAPC) criteria. Both

of the Intermediate Black Box Model (IBM) and the

Intermediate Testable Model (ITM) generate the same

number of paths as the target paths.

Test path generation techniques based on tree structures

Activity

diagram

Target DFT FSTA ActTree

TAP TBP
Test

paths

Coverage criteria Test

paths

Coverage criteria Test

paths

Coverage criteria

SC BC AP BP PC SC BC AP BP PC SC BC AP BP PC

Shopping 49 11 49 49 37

Library 33 17 65 17 10

Concurrent 17 10 14 3 7

Control 565 20 58 73 115

Test path generation techniques based on graph structures

Activity

diagram

Target IBM AG AFT

TAP TBP
Test

paths

Coverage criteria Test

paths

Coverage criteria Test

paths

Coverage criteria

SC BC AP BP PC SC BC AP BP PC SC BC AP BP PC

Shopping 49 11 49 49 34

Library 33 17 5,777 65 33

Concurrent 17 10 139 14 14

Control 565 20 60,505 58 30

Activity

diagram

Target ACG AFG TCBAD

TAP TBP
Test

paths

Coverage criteria Test

paths

Coverage criteria Test

paths

Coverage criteria

SC BC AP BP PC SC BC AP BP PC SC BC AP BP PC

Shopping 49 11 49 50 49

Library 33 17 33 18 65

Concurrent 17 10 17 7 14

Control 565 20 565 173 58

Activity

diagram

Target ADG ITM

TAP TBP
Test

paths

Coverage criteria Test

paths

Coverage criteria

SC BC AP BP PC SC BC AP BP PC

Shopping 49 11 34 49

Library 33 17 26 5,777

Concurrent 17 10 14 139

Control 565 20 24 60,505

Test path generation technique based on heuristic algorithm

Activity

diagram

Target OBACO

TAP TBP
Test

paths

Coverage criteria

SC BC AP BP PC

Shopping 49 11 49

Library 33 17 65

Concurrent 17 10 17

Control 565 20 565

Table 2: A comparison of the result of test path generation techniques.

238 Informatica 45 (2021) 231–242 W. Sornkliang et al.

Activity

diagram

Target IBM ITM

IAPC
Test paths in the

fork-join structures

Interleaving activity path

coverage criteria (%)

Test paths in the

fork-join structures

Interleaving activity path

coverage criteria (%)

Library 5,772 5,772 100 5,772 100

Concurrent 139 139 100 139 100

Control 60,480 60,480 100 60,480 100

Table 3: A comparison of the result of test path generation techniques for the concurrency test scenario.

The percentage deviation (PD) of each test path

results can be calculated to determine how much each

method deviates from all possible paths, generated from

the Complex Concurrent Structure activity diagram and

the Complex Control Structure activity diagram. The

equation to calculate the percentage deviation is listed

below, as in Equation (5).

 ,100x
N

NTP
PD

 −
= (5)

where PD is the percentage deviation, TP is the number of

test paths by each method, and N is the target number of

the all possible paths of the activity diagram.

For example, from Table 2 the Dependent Flow Tree

(DFT) could generate 14 paths of the Complex Concurrent

Structure activity diagram, but the target number of all

possible paths of the Complex Concurrent Structure

activity diagram was 17 paths. So, the percentage

deviation of DFT in Equation (5) is ((14-17)/17) x 100 =

-17.65%, as shown in Table 4. A positive value indicates

that the number of generated test paths is larger than the

target number of all possible paths. A negative value

indicates that the number of generated test paths is smaller

than the target number of all possible paths.

Table 4 shows the percentage deviation of test path

generation techniques for the Complex Concurrent

Structure activity diagram and the Complex Control

Structure activity diagram.

Test path

generation

techniques

Complex Concurrent Structure activity diagram

(TAP=17 paths)

Complex Control Structure activity diagram

(TAP=565 paths)

Number of

test paths

Number of the

different test path

Percentage

deviation (%)

Number of

test paths

Number of the

different test path

Percentage

deviation (%)

DFT 14 -3 -17.65 58 -507 -89.73

FSTA 3 -14 -82.35 73 -492 -87.08

ActTree 7 -10 -58.82 115 -450 -79.65

IBM 139 122 717.65 60,505 59,940 10,608.85

AG 14 -3 -17.65 58 -507 -89.73

AFT 14 -3 -17.65 30 -535 -94.69

ACG 17 0 0.00 565 0 0.00

AFG 7 -10 -58.82 173 -392 -69.38

TCBAD 14 -3 -17.65 58 -507 -89.73

ADG 14 -3 -17.65 24 -541 -95.75

ITM 139 122 717.65 60,505 59,940 10,608.85

OBACO 17 0 0.00 565 0 0.00

Table 4: The percentage deviation of test path generation techniques for the Complex Concurrent Structure activity

diagram and the Complex Control Structure activity diagram.

Figure 7 shows the percentage deviation of test paths

generated of the Complex Concurrent Structure activity

diagram. Figure 8 shows the percentage deviation of test

paths generated of the Complex Control Structure activity

diagram. The positive value indicates that the number of

generated test paths is larger than the target number,

whereas a negative value indicates that the number of

generated test paths is smaller than the target number.

In case of the Complex Concurrent Structure activity

diagram, the percentage deviation of the Intermediate

Black Box Model (IBM), and the Intermediate Testable

Model (ITM) is 717.65%, this means that they generated

excessive test paths. The percentage deviation of the Fault

Success Tree Analysis (FSTA) is -82.35%, this means that

it generated inadequate test paths. The percentage

deviation of the Activity Convert Grammar (ACG) and the

Orientation-based Ant Colony algorithm (OBACO) are

0%, this means that they generate the equivalent test paths.

In case of the Complex Control Structure activity

diagram, the percentage deviation of the Intermediate

Black Box Model (IBM), and the Intermediate Testable

Model (ITM) is 10,608.85%, this means that they

generated excessive test paths. The percentage deviation

of the Activity Dependent Graph (ADG) is -95.75%, this

means that it generates inadequate test paths. The

percentage deviation of the Activity Convert Grammar

(ACG) and the Orientation-based Ant Colony algorithm

(OBACO) are 0%, this means that they generate the same

number of paths as the target paths.

Performance Analysis of Test Path Generation Techniques... Informatica 45 (2021) 231–242 239

Figure 7: A comparison of the percentage deviation between the number of test paths generate from the Complex

Concurrent Structure activity diagram and the target number of all possible paths.

Figure 8: A comparison of the percentage deviation between the number of test paths generate from the Complex Control

Structure activity diagram and the target number of all possible paths.

The difference between the test path results and the

target number of all possible paths is mainly occurred at

the fork-join structure. A fork-join symbol in a UML

activity diagram is a control node that splits a transition

into multiple concurrent transitions. Test path generation

of the activities within the fork-join of the 12 test path

generation techniques is different. The number of test

paths depends on the number of transitions and the number

of activities in each transition. The path traversal to find

test paths for the fork-join structure is shown in Table 5.

The experimental results from Table 2 - 4 can be

summarized into four aspects: (1) the aspect of covering

the path coverage for both simple (real-world) activity

diagrams and our proposed complex activity diagram, (2)

the aspect of covering the interleaving activity path coverage

for the concurrency test scenario, (3) the aspect of

covering the basis path coverage, and (4) the aspect of the

efficiency of test path generation algorithms applying with

the complex activity diagram. And, we also suggested the

proper activity diagram for each test path generation

method, as shown in Table 6.

240 Informatica 45 (2021) 231–242 W. Sornkliang et al.

Test path

generation

techniques

The path traversal in fork-join structure

DFT, AG,

AFT, ADG,

TCBAD

It starts from the top activity on the left thread,

traverses through the activities in the low level

in the same thread till it reaches the join

symbol, and then it goes out of the join

symbol.

ACG There are two directions. In the first direction,

it traverses from the left thread to the right

thread. And in the second direction, it traverses

from the right thread to the left thread. Each

thread is listed from the activity of top-level to

activities of low-level.

FSTA,

ActTree,

AFG

It starts from the top activity on the left thread

and goes as far as it can down a given path to

reach the join symbol, then backtracks until it

finds an unexplored path, and then explores it.

These procedures are repeated until it traverses

through all thread and finally it goes out of the

join symbol.

IBM, ITM The calculation of all possible paths in the

fork-join structure is N!/(n!*n!), where N is

the sum of all activities in the fork-join, and n

is the sum of all activities in each transition.

OBACO The paths in the fork-join structure are

generated through the use of separate ant

agents for performing traversal with the sub-

transition.

Table 5: The path traversal in the fork-join structure in

test path generation techniques.

Test path generation

techniques

Suitable UML activity diagram

DFT, AG, TCBAD Simple activity diagram with

sequence, selection, iteration, or

fork-join structure.

ActTree, AFT, ADG Simple activity diagram with

sequence and selection structure.

FSTA Simple activity diagram with

sequence, selection, and iteration

structure.

AFG Simple or complex activity diagram

focusing on loop testing.

IBM, ITM Simple or complex activity diagram

focusing on concurrency test

scenario in the fork-join structure.

ACG, OBACO Simple or complex activity diagram

with sequence, selection, iteration,

or fork-join structure.

Table 6: UML activity diagrams which are suitable

for the test path generation techniques.

(1) For path coverage in the case of the simple (real-

world) activity diagram, the Dependent Flow Tree (DFT),

the Intermediate Black Box Model (IBM), the Activity

Graph (AG), the Activity Convert Grammar (ACG), the

Test Case Generation Based on Activity Diagram

(TCBAD), the Intermediate Testable Model (ITM), and

the Orientation-based Ant Colony algorithm (OBACO)

could generate the number of test paths that satisfied the

path coverage, while the Fault Success Tree Analysis

(FSTA), the Activity Flow Table (AFT), and the Activity

Flow Graph (AFG) could generate the number of test

paths that occasional satisfied the path coverage. For path

coverage in the case of the constructed complex activity

diagrams, only the Intermediate Black Box Model (IBM),

the Activity Convert Grammar (ACG), the Intermediate

Testable Model (ITM), and the Orientation-based Ant

Colony algorithm (OBACO) could generate the number of

test paths that satisfied the path coverage. There is an

exceptional case for the Activity Tree (ActTree), which

satisfied to activity path coverage and the Activity

Dependency Graph (ADG), which satisfied for basis path

coverage.

(2) For the concurrency test scenario, in both cases of

the simple (real-world) activity diagram and the

constructed complex activity diagrams, the Intermediate

Black Box Model (IBM) and the Intermediate Testable

Model (ITM) could generate the number of test paths that

satisfied 100% interleaving activity path coverage.

(3) In case that it is difficult and take a lot of effort to

test all possible paths for complex activity diagram, the

tester should select the basis paths coverage instead. The

experimental results depict that the Dependent Flow Tree

(DFT), the Intermediate Black Box Model (IBM), the

Activity Graph (AG), the Activity Flow Table (AFT), the

Activity Convert Grammar (ACG), the Test Case

Generation Based on Activity Diagram (TCBAD), the

Activity Dependency Graph (ADG), the Intermediate

Testable Model (ITM), and the Orientation-based Ant

Colony algorithm (OBACO) could generate test paths that

covered the basis paths.

(4) For efficiency comparison of test path generation

algorithms with the constructed complex activity

diagrams., Figure 7 and 8 depict that the Activity Convert

Grammar (ACG) and the Orientation-based Ant Colony

algorithm (OBACO) could generate the equivalent test

paths to the target number of all possible paths. Whereas,

the Intermediate Black Box Model (IBM), and the

Intermediate Testable Model (ITM) could multiply the

number of test paths if there were a lot of activities in the

fork-join structure.

5 Conclusion
This paper presents the performance analysis of test path

generation algorithms. To compare the efficiency of test

path generation algorithms, we applied 12 commonly-

used techniques with both simple (real-world) activity

diagrams and the constructed complex activity diagrams.

In this research, we constructed two complex activity

diagrams, i.e., the Complex Concurrent Structure activity

diagram and the Complex Control Structure activity

diagram.

The experimental results show that to test all possible

paths, the Activity Convert Grammar (ACG) and the

Orientation-based Ant Colony algorithm (OBACO) are

the most appropriate test path generation technique which

can generate the number of paths equivalent to all possible

paths. Besides, other test path generation techniques such

as the Intermediate Black Box Model (IBM) and the

Intermediate Testable Model (ITM) can cover path

coverage, but there are too many test paths. However,

Performance Analysis of Test Path Generation Techniques... Informatica 45 (2021) 231–242 241

these two methods can cover 100% interleaving activity

path coverage for the concurrency test scenario.

Testing all possible paths for the large or complex

object-oriented method is laborious, the tester should

select the basis paths coverage instead. The Dependent

Flow Tree (DFT), the Intermediate Black Box Model

(IBM), the Activity Graph (AG), the Activity Flow Table

(AFT), the Activity Convert Grammar (ACG), the Test

Case Generation Based on Activity Diagram (TCBAD),

the Activity Dependency Graph (ADG), the Intermediate

Testable Model (ITM), and the Orientation-based Ant

Colony algorithm (OBACO) are the appropriate test path

generation techniques that can cover the basis path

coverage of both the simple and complex activity diagram.

References
[1] Matjaž Gams and Tine Kolenik. Relations between

electronics, artificial intelligence and information

society through information society

rules. Electronics, 10(4): 514, 2021.

https://doi.org/10.3390/electronics10040514

[2] Mahdi Dhaini, Mohammad Jaber, Amin

Fakhereldine, Sleiman Hamdan, and Ramzi A.

Haraty. Green computing approaches - A survey.

Informatica, 45(1): 1-12, 2021.

https://doi.org/10.31449/inf.v45i1.2998

[3] Oluwatolani Oluwagbemi and Hishammuddin

Asmuni. Automatic generation of test cases from

activity diagrams for UML based testing (UBT).

Jurnal Teknologi (Science & Engineering), 77(13):

37-48, 2015. https://doi.org/10.11113/jt.v77.6358

[4] Pimthip Paiboonkasemsut and Yachai Limpiyakorn.

Reliability tests for process flow with fault tree

analysis. In 2015 2nd International Conference on

Information Science and Security (ICISS), IEEE, 14-

16 December, Seoul, South Korea, pp. 1-4, 2015.

https://doi.org/10.1109/ICISSEC.2015.7371028

[5] Ranjita Kumari Swain, Vikas Panthi, Durga Prasad

Mohapatra, and Prafulla Kumar Behera. Prioritizing

test scenarios from UML communication and

activity diagrams. Innovations in Systems and

Software Engineering, 10(3): 165-180, 2014.

https://doi.org/10.1007/s11334-013-0228-5

[6] Yufei Yin, Yiqun Xu, Weikai Miao, and Yixiang

Chen. An automated test case generation approach

based on activity diagrams of SysML. International

Journal of Performability Engineering, 13(6): 922-

936, 2017.

https://doi.org/10.23940/ijpe.17.06.p13.922936

[7] Namita Khurana, Rajender Singh Chhillar, and Usha

Chhillar. A novel technique for generation and

optimization of test cases using use case, sequence,

activity diagram and genetic algorithm. Journal of

Software, 11(3): 242-250, 2016.

https://doi.org/10.17706/jsw.11.3.242-250

[8] Ajay Kumar Jena, Santosh Kumar Swain, and Durga

Prasad Mohapatra. A novel approach for test case

generation from UML activity diagram. In 2014

International Conference on Issues and Challenges

in Intelligent Computing Techniques (ICICT), IEEE,

7-8 February, Ghaziabad, India, pp. 621-629, 2014.

https://doi.org/10.1109/ICICICT.2014.6781352

[9] Kanjanee Pechtanun and Supaporn Kansomkeat.

Generation test cases from UML activity diagram

based on AC grammar. In 2012 International

Conference on Computer and Information Science

(ICCIS), IEEE, 12-14 June, Kuala Lumper, Malaysia,

pp. 895-899, 2012.

https://doi.org/10.1109/ICCISci.2012.6297153

[10] Ranjita Kumari Swain, Vikas Panthi, and Prafulla

Kumar Behera. Generation of test cases using

activity diagram. International Journal of Computer

Science and Informatics, 4(1): 35-44, 2014.

https://www.interscience.in/ijcsi/vol4/iss1/8

[11] Chanda Chouhan, Vivek Shrivastava, and Parminder

S Sodhi. Test case generation based on activity

diagram for mobile application. International Journal

of Computer Applications, 57(23): 4-9, 2012.

https://doi.org/10.5120/9436-3563

[12] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed

A. Hashim, and Mohamed F. Tolba. An enhanced

test case generation technique based on activity

diagrams. In The 2011 International Conference on

Computer Engineering & Systems, IEEE, 29

November - 1 December, Cairo, Egypt, pp. 289-294,

2011. https://doi.org/10.1109/ICCES.2011.6141058

[13] Ashalatha Nayak and Debasis Samanta. Synthesis of

test scenarios using UML activity diagram. Software

and Systems Modeling, 10: 63-89, 2011.

https://doi.org/10.1007/s10270-009-0133-4

[14] VinayArora, Maninder Singh, and Rajesh Bhatia.

Orientation-based ant colony algorithm for

synthesizing the test scenarios in UML activity

diagram. Information and Software Technology,

123: 106292, 2020.

https://doi.org/10.1016/j.infsof.2020.106292

[15] Sapna Varshney and Monica Mehrotra. A hybrid

particle swarm optimization and differential

evolution based test data generation algorithm for

data-flow coverage using neighborhood search

strategy. Informatica, 42(3): 417-438, 2018.

https://doi.org/10.31449/inf.v42i3.1497

[16] Aman Jaffari, Aman Jaffari, and Jihyun Lee.

Automatic test data generation using the activity

diagram and search-based technique. Applied

Sciences, 10(10): 3397, 2020.

https://doi.org/10.3390/app10103397

[17] Mani Padmanabhan. Sustainable test path generation

for chatbots using customized Response.

International Journal of Engineering and Advanced

Technology, 8(6): 149-155, 2019.

https://doi.org/10.35940/ijeat.D6515.088619

[18] Lakshminarayana P and T V SureshKumar.

Automatic generation and optimization of test case

using hybrid cuckoo search and bee colony

algorithm. Journal of Intelligent Systems, 30(1): 59-

72, 2021. https://doi.org/10.1515/jisys-2019-0051

[19] Manju Khari and Prabhat Kumar Khari. An effective

meta-heuristic cuckoo search algorithm for test suite

optimization. Informatica, 41(3): 363-377, 2017.

https://doi.org/10.3390/electronics10040514
https://doi.org/10.31449/inf.v45i1.2998
https://doi.org/10.11113/jt.v77.6358
https://ieeexplore.ieee.org/author/37085613852
https://ieeexplore.ieee.org/author/37442707200
https://doi.org/10.1109/ICISSEC.2015.7371028
https://doi.org/10.1007/s11334-013-0228-5
https://doi.org/10.23940/ijpe.17.06.p13.922936
https://doi.org/10.17706/jsw.11.3.242-250
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1109/ICCISci.2012.6297153
https://www.interscience.in/ijcsi/vol4/iss1/8
https://doi.org/10.5120/9436-3563
https://doi.org/10.1109/ICCES.2011.6141058
https://doi.org/10.1007/s10270-009-0133-4
https://doi.org/10.1016/j.infsof.2020.106292
https://doi.org/10.31449/inf.v42i3.1497
https://doi.org/10.3390/app10103397
https://doi.org/10.35940/ijeat.D6515.088619
https://doi.org/10.1515/jisys-2019-0051

242 Informatica 45 (2021) 231–242 W. Sornkliang et al.

http://www.informatica.si/index.php/informatica/art

icle/view/1174/1069

[20] Paul C. Jorgensen. Software testing a craftsman’s

approach. 4th ed., CRC Press, London, 2014.

[21] Roger S. Pressman. Software engineering: a

practitioner’s approach. 7th ed., McGraw-Hill, New

York, NY, 2010.

[22] Subashni, S. and Satheesh Kumar N. Software

testing using visual studio 2010. Packt Publishing,

Birmingham, UK, 2010.

[23] Mahesh Shirole and Rajeev Kumar. UML behavioral

model based test case generation: a survey. ACM

SIGSOFT Software Engineering Notes, 38(4): 1-13,

2013. https://doi.org/10.1145/2492248.2492274

[24] IEEE Computer Society. 829-2008-IEEE standard

for software and system test documentation. The

Institute of Electrical and Electronics Engineers,

New York, NY, pp.1-84, 2008.

https://doi.org/10.1109/IEEESTD.2008.4578383

[25] Itti Hooda and Rajender Chhillar. A review: study of

test case generation techniques. International Journal

of Computer Applications, 107(16): 33-37, 2014.

https://doi.org/10.5120/18839-0375

[26] Md. Abdur Rahman, Md. Abu Hasan, Khaled Shah,

and Md. Saeed Siddik. Multipartite based test case

prioritization using failure history. International

Journal of Advanced Science and Technology, 129:

25-42, 2019.

http://sersc.org/journals/index.php/IJAST/article/vie

w/1353/1084

[27] B.B. Agarwal, S.P. Tayal, and M. Gupta. Software

engineering & testing. Jones and Bartlett, Sudbury,

Massachusetts, pp.157-164, 2010.

[28] Grady Booch, James Rumbaugh, and Ivar Jacobson.

The unified modeling language user guide. Addison-

Wesley Longman, Reading, Massachusetts, pp. 311-

331, 1998.

[29] Mauro Pezz and Michal Young. Software testing and

analysis: process, principles, and techniques. John

Wiley & Sons, Hoboken, NJ, pp. 211-230, 2008.

https://ix.cs.uoregon.edu/~michal/book/Samples/bo

ok.pdf

[30] Mahesh Shirole and Mahesh Shirole. Concurrency

coverage criteria for activity diagram. IET Software,

15(1): 43-53, 2021.

https://doi.org/10.1049/sfw2.12009

[31] Frank Tsui, Orlando Karnal, and Barbara Bernal.

Essentials of software engineering. 4th ed., Jones &

Bartlett Learning, Burlington, Massachusetts, pp.

170-171, 2017.

[32] Farid Meziane and Sunil Vadera. Artificial

intelligence applications for improved software

engineering development: new prospects.

Information Science Reference, Hershey, New York,

NY, pp. 248, 2010.

https://doi.org/10.4018/978-1-60566-758-4

[33] Prateeva Mahali and Prateeva Mahali. Model based

test case prioritization using UML activity Diagram

and evolutionary algorithm. International Journal of

Computer Science and Informatics, 4(2): 76-81,

2014. https://doi.org/10.47893/ijcsi.2014.1177

[34] Sonali Khandai, Sonali Khandai, and Sonali

Khandai. Prioritizing test cases using business

criticality test value. International Journal of

Advanced Computer Science and Applications,

Science and Information Organization, 3(5): 103-

110, 2011.

https://doi.org/10.14569/IJACSA.2012.030516

[35] Oluwatolani Oluwagbemi, Hishammuddin

Asmuni. An approach for automatic generation of

test cases from UML diagram. International Journal

of Software Engineering and Its Applications, 9(8):

87-106, 2015.

https://www.earticle.net/Article/A252751

[36] Monalisha Khandai, Arup Abhinna Acharya, and

Durga Prasad Mohapatra. Test case generation for

concurrent system using UML combinational

diagram. International Journal of Computer Science

and Information Technology, 2(3): 1172-1182,

2011.

http://ijcsit.com/docs/Volume%202/vol2issue3/ijcsi

t2011020344.pdf

http://www.informatica.si/index.php/informatica/article/view/1174/1069
http://www.informatica.si/index.php/informatica/article/view/1174/1069
https://doi.org/10.1145/2492248.2492274
https://doi.org/10.1109/IEEESTD.2008.4578383
https://doi.org/10.5120/18839-0375
http://sersc.org/journals/index.php/IJAST/article/view/1353/1084
http://sersc.org/journals/index.php/IJAST/article/view/1353/1084
https://www.researchgate.net/scientific-contributions/Grady-Booch-25817878
https://www.researchgate.net/scientific-contributions/J-Rumbaugh-2009175960
https://ix.cs.uoregon.edu/~michal/book/Samples/book.pdf
https://ix.cs.uoregon.edu/~michal/book/Samples/book.pdf
https://doi.org/10.1049/sfw2.12009
https://doi.org/10.4018/978-1-60566-758-4
https://doi.org/10.47893/ijcsi.2014.1177
https://www.scimagojr.com/journalsearch.php?q=Science%20and%20Information%20Organization&tip=pub
https://doi.org/10.14569/IJACSA.2012.030516
https://www.earticle.net/Search/Result?sf=3&q=Oluwatolani%20Oluwagbemi
https://www.earticle.net/Article/A252751
http://ijcsit.com/docs/Volume%202/vol2issue3/ijcsit2011020344.pdf
http://ijcsit.com/docs/Volume%202/vol2issue3/ijcsit2011020344.pdf

