
https://doi.org/10.31449/inf.v44i2.3083 Informatica 44 (2020) 127–138 127

Cycle Time Enhancement by Simulated Annealing for a Practical Assembly
Line Balancing Problem

Mai Huong Dinh∗

Hanoi University of Science and Technology, Hanoi, Vietnam
Hanoi University of Industry, Hanoi, Vietnam
E-mail: huongdm@haui.edu.vn

Viet Dung Nguyen∗, Van Long Truong, Phan Thuan Do∗, Thanh Thao Phan and Duc Nghia Nguyen
Hanoi University of Science and Technology, Hanoi, Vietnam
E-mail: dungnv@soict.hust.edu.vn, long.tv166391@sis.hust.edu.vn,
{thuan.dophan, thao.phanthanh}@hust.edu.vn, in the memory of Professor Duc Nghia Nguyen

Keywords: assembly line balancing, simulated annealing, meta-heuristic

Received: March 15, 2020

In the garment industry, assembly line balancing is one of the most significant tasks. To make a product, a
manufacturing technique called assembly line is utilized, where components are assembled and transferred
from workstation to workstation until the final assembly is finished. Assembly line should always be as
balanced as possible in order to maximize efficiency. Different types of assembly line balancing problems
were introduced along with many proposed solutions. In this paper, we focus on an assembly line bal-
ancing problem where the upper bound of the number of workers is given, tasks and workers have to be
grouped into workstations so that the cycle time is minimized, the total number of workers is minimized
and balance efficiency is maximized. With unfixed number of workstations and many other constraints,
our problem is claimed to be novel. We propose three different approaches: exhaustive search, simulated
annealing and simulated annealing with greedy. Computational results affirmed that our simulated anneal-
ing algorithm performed extremely good in terms of both accuracy and running time. From these positive
outcomes, our algorithms clearly show their applicability potential in practice.

Povzetek: Problem uravnoteženja proizvodne poti je predstavljen odprto, brez omejitev npr. števila
delavcev, zato je izviren. Avtorji testirajo več algoritmov in predlagajo najboljšega.

1 Introduction

The assembly line consists of a set of workstations ar-
ranged along a material transport system. Parts of the
clothes are assembled on workstations, which are trans-
ported from workstation to workstation in one direction
until the final product is completed. Workers perform a
number of tasks in each workstation to create the product.
The assembly line rhythm, which is called the cycle time, is
the average time for each workstation to complete its tasks
before transferring the product’s subassembly to the next
workstation. After that, the workstations receive new sub-
assembles and repeat the assigned work.

In the fashion industry, patterns of clothing are ever-
changing, each product has a set of tasks to assemble the
details of clothes together. Each task has unique time to
be performed on a specific type of machine or done man-
ually. Among tasks there are precedence relationships,
where some tasks must be performed before some other
tasks to create a certain clothing product. Different prod-
ucts will have different numbers of tasks and the prece-

* Corresponding authors

dence relationships among tasks will be different. The or-
der of execution between tasks is a directed graph with no
cycles.

The assembly line balancing problem (ALBP) is to as-
sign tasks to workstations so that one or more objectives
are optimized while ensuring that the precedence relation-
ship among tasks are satisfied. Bryton [3] was the first to
propose the ALBP in 1954, while Salveson [24] first pub-
lished it in a mathematical form in 1955.

There are many ways to classify an ALBP. It is classi-
fied into simple and generalized problems [2, 26, 19]. The
simple assembly line balancing problem (SALBP) is for
straight single, dedicated lines, the duration of the task is
determined and the only goal is to optimize line efficiency.
SALBP according to the research objectives has been clas-
sified by Scholl and Becker [26] into 4 categories: SALBP-
1, SALBP-2, SALBP-E, SALBP-F. SALBP-1 objective is
minimizing the number of workstations given the cycle
time [27]. SALBP-2 goal is to minimize the cycle time
given the number of workstations [21]. SALBP-E relates
to maximizing line efficiency while simultaneously consid-
ering the relationship between the number of workstations
and the cycle time [11]. SALBP-F is a feasibility study to

128 Informatica 44 (2020) 127–138 M.H. Dinh et al.

determine if there is a balanced assembly line when fixing
both the number of workstations and the cycle time. How-
ever researchers usually want to challenge with more real-
istic problems than SALBP. These problems consider rele-
vant factors including equipment selection, parallel work-
stations, mixed-model production, processing alternatives,
etc. All of them form a very large class of problems called
generalized ALBP (GALBP) [1].

The ALBP is usually based on a number of assumptions
such as: only one type of product is produced on the line,
the processing time of each task is determined and given,
the processing sequence of tasks is subject to priority con-
straints (precedence relations), each task is only assigned
to one worker, the maximum processing time of a task is
less than the cycle time, etc. [12, 1]. When we assume
that the maximum processing time of a task is less than
the cycle time, the production speed of the assembly line is
limited by that maximum processing time. This problem is
solved by creating parallel workstations, which consist of
two or more copies of the workstation performing the same
group of tasks. The purpose of creating parallel worksta-
tions is to speed up production and balance time between
workstations. However the number of tasks performed by
each worker increases then and they require higher skills
from workers. In order to control this process, several stud-
ies have set conditions when forming parallel workstations.
Sarker and Shanthikumari [25] limited the number of par-
allel workstations. Buxey [4] limits the number of tasks
per worker. McMullen et al. [22] allowed to form parallel
workstations so that the processing time of workstations is
closest to the cycle time. Vilarinho and Simaria [29] al-
lowed the creation of parallel workstations when the max-
imum processing time of the tasks did not exceed twice of
the cycle time and there is no more than two parallel work-
stations.

Since an ALBP usually falls into the NP-hard class of
combinatorial optimization problems [13], heuristic algo-
rithms are constantly being developed to estimate optimal
solutions. Methods such as Hoffmann [15], Helgeson-
Birnie [14], Kilbridge-Wester [17] have been applied to
ALBP and have certain results, but the solution may fall
into the local optimization area. To explore the optimal so-
lution area, meta-heuristic methods were applied. Chiang
[7], Lapierre et al. [20] applied the Tabu search method to
solve type 1 of SALBP. Ponnambalam et al. [23] applied
the multi-target genetic algorithm (GA) to consider differ-
ent criteria such as number of workstations, line efficiency,
the maximum difference between the processing time of
workstations and CPU.

ALBP studies in the garment industry have been devel-
oped with the goals and constraints of various actual pro-
duction models. Kayar and Akyalçin [16] have applied a
number of heuristic methods to balance the line given the
cycle time. Chen et al. [6] used GA to solve the ALBP
with the goal of minimizing the number of workstations
given the cycle time, while taking into consideration the
influence of the skill level of each worker. Eryürük uti-

lized heuristic methods to balance the assembly line in the
garment industry in articles [9, 10] and compared the line
efficiency of the methods applied when the cycle time was
constant.

In this paper, we solve a GALBP in economic production
conditions of Dong Van Garment Factory of Hanoi Textile
and Garment Corporation, Vietnam. This problem is close
to the SALBP of type 2, since its main objective is to min-
imize the cycle time. In our problem, the upper bound of
number of workers (operators) is fixed. The factory mainly
produces knitting products, each worker is trained to be
able to carry out up to 3 different tasks, which requires not
too many skills for workers in the garment industry. We
have built a model of ALBP where given the upper bound
of number of workers, the minimum cycle time has to be
determined while ensuring numerous conditions. Having
the minimum cycle time, we also need to determine the
minimum number of workers and the maximum balance
efficiency achievable. We deal with this GALBP by ap-
plying the result of our existing paper [8] which solved
another GALBP where the minimum number of workers
needs to be determined given the cycle time. Our GALBP
has many similarities with the ALBP mentioned in [21],
where the minimum cycle time has to be determined given
the number of workers and parallel workstations. However,
our problem has many different points compared to the one
in [21]. While they fixed the number of workers on the
assembly line, we allow it to be not greater than a certain
number. Moreover, we allow each workstation to complete
its tasks in a longer period of time than the cycle time, but
not longer than the upper limit of the cycle time which will
be mentioned later. Specifically, our research contributions
are consistent with actual production in the following char-
acteristics:

– The number of workers is not fixed, but the upper bound
is given. This constraint is a very new factor, which is
much more flexible in real conditions when the factory
has a fixed budget for hiring labors or when they do not
need to use all of their workers.

– Each workstation is allowed to have up to three workers
and perform up to three tasks.

– There are up to two devices under specific constraints in
each workstation.

– The processing time R (or cycle time) of each worksta-
tion should deviate by approximately±∆R from the cy-
cle time. Depending on the level of organization of the
line, one of the following values is assigned to ∆: 5%,
10% or 15%. This is a very different case compared to
other studies. The value R + ∆R is called the upper
limit of the cycle time, the cycle time of each worksta-
tion must not be greater than this value. The interval
[R − ∆R,R + ∆R] is called the balanced cycle time
interval, and workstations having cycle time within the
balanced cycle time interval are called balanced work-

Cycle Time Enhancement by Simulated Annealing for a. . . Informatica 44 (2020) 127–138 129

stations. These balanced workstations are the key factor
to increase balance efficiency.

Tasks are combined into groups and assigned to work-
stations with the primary objective of minimizing the cycle
time, which means maximizing production speed. The sec-
ondary goal is to minimize the total number of workers on
the assembly line in order to reduce labor costs and save
labor for other jobs in the factory. The tertiary goal is to
maximize the proportion of balanced workstations out of
all workstations created, thus maximize balance efficiency.
In our solutions, binary search is used and proven to be cor-
rect to find the optimal cycle time, total number of work-
ers and balance efficiency. Within each iteration of the bi-
nary search process, a meta-heuristic method is applied for
approximate calculations. We propose three different ap-
proaches: exhaustive search, simulated annealing (SA) and
simulated annealing with greedy. The proposed algorithms
have been evaluated on the actual data set of Dong Van
Garment Factory, Hanoi Textile and Garment Joint Stock
Corporation, Vietnam. Computational results affirmed that
our SA algorithm performed extremely good in terms of
both correctness and time. From positive outcomes of this
paper, our algorithms clearly show their applicability po-
tential in practice.

2 Problem formulation

2.1 Notations

Throughout the paper, the following notations listed in Ta-
ble 1 are used.

Table 1: Notation list

Tasks Set of all tasks
M Number of tasks in Tasks

N̂ Upper bound of number of workers
N Total number of workers
ti Processing time of task i
R Cycle time
R′ Upper limit of the cycle time
∆ Deviation coefficient of cycle time
Si Set of all tasks in workstation i

Ti
Total processing time of all tasks in work-
station i

ni Number of workers in workstation i
Ri Cycle time of workstation i
k Total number of workstations
k′ Number of balanced workstations
H Balance efficiency

2.2 Problem statement
Our GALBP has the primary goal of minimizing the cycle
time given the upper bound of number of workers. The
secondary goal is minimizing the total number of workers
on the assembly line. Then the last goal is determining
the maximum balance efficiency. Since its main goal is
minimizing the cycle time which is also the objective of
SALBP type 2, we denote our problem as GALBP-2. Some
particular characteristics of it are described below.

– There is a set Tasks of M tasks. The ith task consumes
ti processing time performed by a machine or by manual
work. These M tasks need to be assigned to worksta-
tions. Each task will be done in only one workstation.

– There are 3 types of tasks: Type 1 includes tasks using
common machines, Type 2 includes tasks using special
machines which requires a large investment while having
short processing time and Type 3 is manual work.

– On the assembly line of a factory, each workstation can
have up to three tasks. In a workstation, if two or three
tasks use the same kind of machine, it is counted as one
machine only. Machines/manual works assigned into a
workstation must match with one of the three cases be-
low:

+ All are manual works.
+ There is exactly one machine and other machines/-

manual works, if there are any, are all manual works.
+ There are exactly two special machines (from Type 2

tasks).

– The precedence relations are represented as a directed
acyclic graph. This precedence graph is used to deter-
mine the execution order of tasks during the assembly
process. Some tasks must be done before other tasks.
If there is an edge from task u to task v, it means that
task u must be done before task v. As a consequence, a
task u must be done before task v if there is a path from
u to v on the precedence graph. Furthermore, between
two different workstations X and Y , if there is a task
u ∈ X and a task v ∈ Y such that umust be done before
v, then there must not exist a task u′ ∈ X and a task
v′ ∈ Y such that v′ must be done before u′, otherwise
the product cannot be made.

– Workstations run in parallel.

– In each workstations, all workers do the same task at the
same time before moving to another task. Therefore, the
processing time (or cycle time) of each workstation i to
finish all of its tasks, denoted by Ri, is equal to sum of
processing time of all of its tasks (Ti) divide by the num-
ber of workers in it (ni). After all tasks in a workstation
are done, the process is operated again with the same set
of tasks.

– The total number of workers in all workstations, denoted
by N , must not exceed N̂ .

130 Informatica 44 (2020) 127–138 M.H. Dinh et al.

– The cycle time (or rhythm), denoted by R, is the time
limit for each workstation to complete the assigned tasks
before transferring the product to another workstation.
The sum of all tasks’ processing time in a workstation
must not exceed 3(R+ ∆R). The cycle time Ri of each
workstation i must not be greater than R + ∆R, where
∆ is given and takes one of the following values: 5%,
10% or 15%.

– If Ri lies within the balanced cycle time interval [R −
∆R,R + ∆R], then workstation i is called a balanced
workstation.

– Balance efficiency, denoted by H, is the percentage of
the number of workstations having their cycle time lies
within [R−∆R,R+ ∆R].

2.3 Optimization formulation
In addition with the problem statement, here are some
induced constraints and formulas which completes the
definition of our problem:

GALBP-2 objectives:

Primary: minimize R

Secondary: minimize N

Tertiary: maximize H

Input: Tasks, N̂ ,∆ (∆ ∈ {5%, 10%, 15%})

Definitions:

M = |Tasks| =
k∑
i=1

|Si| (1)

N =

k∑
i=1

ni (2)

H =
k′

k
.100(%) (3)

R′ = R+ ∆R (4)

∀i, 1 ≤ i ≤ k : Ti =
∑
j∈Si

tj (5)

∀i, 1 ≤ i ≤ k : ni =

1, Ti ≤ R′ (6a)

2, R′ < Ti ≤ 2R′ (6b)

3, 2R′ < Ti ≤ 3R′ (6c)

∀i, 1 ≤ i ≤ k : Ri =
Ti
ni

(7)

Constraints:

∀i, 1 ≤ i ≤ k : |Si| ≤ 3 (8)

∀i, j, 1 ≤ i < j ≤ k : Si ∩ Sj = ∅ (9)

∀i, 1 ≤ i ≤ k : Ti ≤ 3R′ (10)

N ≤ N̂ (11)

Constraint (8) ensures a workstation always has no more
than 3 tasks. Constraint (9) along with definition (1) guar-
antees that a task can only be assigned to exactly one work-
station. Constraint (10) shows that the total processing time
of all tasks in a workstation is always less than or equal to
3 times the upper limit of the cycle time. Constraint (11)
shows that the total number of workers cannot be greater
than the upper bound of the number of workers which is
given as input.

2.4 Examples
As an example, in Table 2 we show technological indexes
of a Polo-Shirt product at Dong Van Garment Factory,
Hanoi Textile & Garment Joint Stock Corporation, Viet-
nam (Figure 1). The process of manufacturing such a Polo-
Shirt includes 25 tasks. In the table, ti(s) denotes the pro-
cessing time of Task i.

The precedence graph of the Polo-Shirt product in Table
2 is shown in Figure 2, along with a sample assignment of
tasks into workstations. This sample assignment ensures
that the constraints about machines in a workstation and
precedence relations are satisfied.

Figure 1: Model of Polo-Shirt.

Table 2: Product technological indexes of Polo-Shirt

No Task Machine Type ti(s)

1
Check, mark
placket

Check-table 1 32.0

2
Sew placket to
front

Lockstitch
machine

1 30.0

3 Topstitch placket
Lockstitch
machine

1 118.5

4
Trim top of
placket

Hand-made 3 12.0

5
Sew collar with
collar band

Lockstitch
machine

1 59.1

Cycle Time Enhancement by Simulated Annealing for a. . . Informatica 44 (2020) 127–138 131

6
Trim bottom edge of
collar band

Hand-made 3 12.0

7
Trim bottom edge of
collar band

Hand-made 3 10.0

8 Sew shoulder
Overlock ma-
chine

1 23.2

9 Topstitch shoulder
1 needle -
chainstitch
machine

1 11.5

10
Sew collar band with 2
point top of placket

Lockstitch
machine

1 27.3

11 Sew collar
Overlock ma-
chine

1 32.4

12 Topstitch collar band
Lockstitch
machine

1 87.9

13
Attach sleeve set to
armhole

Overlock ma-
chine

1 43.9

14 Topstitch armhole
1 needle -
chainstitch
machine

1 24.8

15 Side seam
Overlock ma-
chine

1 61.4

16 Hem bottom opening
2 needles -
chainstitch
machine

1 30.8

17 Hem sleeve opening
2 needles -
chainstitch
machine

1 41.6

18 Sew bottom of placket
Lockstitch
machine

1 15.4

19
Sew bottom opening,
sleeve opening

Lockstitch
machine

1 23.0

20
Button hole on collar
band

Button holing
machine

2 9.5

21 Button hole on placket
Button holing
machine

2 19.0

22 Button
Button ma-
chine

2 38.0

23 Bartack placket
Bartack
machine

1 9.5

24
Bartack hem sleeve
opening

Bartack
machine

1 19.0

25 Trim thread Hand-made 3 36.0

Figure 2: Precedence graph and a sample assignment of tasks into
workstations.

3 Solution overview

3.1 Solution outline
To solve the GALBP-2 problem, we simply use binary
search method to find the minimum cycle time. Because if
there is a solution which consumes no more than N̂ work-
ers when R = x then the minimum value of R is certainly
not greater than x, and if such a solution does not exist it
means thatRmust be greater than x (the correctness of this
argument will be proven in section 3.2). To check for the
existence of such a solution, we will have to solve a sub-
problem which is also a GALBP: Given the set of all tasks,
the values R and ∆, find a way to assign tasks into work-
stations in order to minimize the total number of workers.

The following GALBP2 procedure is the framework for
our solution. Given the set Tasks of tasks, the upper bound
of number of workers N̂ and the deviation coefficient of
cycle time ∆, GALBP2 will produce an estimated optimal
solution wstSet which is a set of workstations, along with
its corresponding values R, N , and H . The return value of
GALBP2 has the form (R,N,H,wstSet). In this proce-
dure, we assume that ε is a very small real positive number,
α is the maximum processing time of a task in Tasks and
β is the sum of processing time of three tasks which have
largest processing time in Tasks (if M ≤ 3 then β is the
sum of processing time of all tasks in Tasks).

The procedure GALBP1 inside GALBP2 solves the
sub-problem which is also a GALBP. It takes three pa-
rameters: Tasks, R and ∆. It generates a solution
wstSet, which is set of workstations that first minimizes
the total number of workers N and then maximizes the
balance efficiency H . The return value of GALBP1 is
(N,H,wstSet). This sub-problem is denoted as GALBP-
1 because its primary objective is minimizing the total
number of workers, close to the SALBP-1 which has the
goal of minimizing the number of workstations where each
workstation consists of only one worker. Since GALBP-
1 is an NP-hard problem, GALBP1 can only be approxi-
mately calculated. Therefore, several meta-heuristic meth-
ods are deployed in section 4 to increase the accuracy of

132 Informatica 44 (2020) 127–138 M.H. Dinh et al.

Procedure 1 Solve GALBP-2
Require: Tasks: set of all tasks,

N̂ : upper bound of total no. of workers,
∆: deviation coefficient of the cycle time.

1: procedure GALBP2(Tasks, N̂ , ∆)
2: lowR← α

3(1+∆)
. min valid R

3: upR← β
1−∆

. max effective R
4: while upR− lowR > ε do
5: R← upR+lowR

2

6: (N,H,wstSet)← GALBP1(Tasks,R,∆)
7: if N > N̂ then
8: lowR← R
9: else

10: upR← R

11: (N,H,wstSet)← GALBP1(Tasks, upR,∆)
12: if N > N̂ then . no solution
13: return (∞,∞, 0%, NULL)
14: else
15: return (upR,N,H,wstSet)

this procedure.

3.2 Binary search correctness
Recall that in section 3.1, we have stated that if there is
a solution which consumes no more than N̂ workers when
R = x then the minimum value ofR is certainly not greater
than x, and if such a solution does not exist it means that R
must be greater than x. The correctness of this argument is
proven in Lemma 3.1 below.

Lemma 3.1. Let Tasks be any set of tasks and ∆ ∈
{5%, 10%, 15%}. Let R1, R2 such that α

3(1+∆) ≤
R1 < R2, where α is the maximum processing
time of a task in Tasks. Assume that procedure
GALBP1 can always produce an accurate result, if we
set (N1, H1, wstSet1) = GALBP1(Tasks,R1,∆) and
(N2, H2, wstSet2) = GALBP1(Tasks,R2,∆), then
N1 ≥ N2.

Proof. First we need to show that for all R ≥ α
3(1+∆) , a

valid solution for GALBP1 always exists. Indeed, a so-
lution where each workstation contains exactly one task
would fit all the constraints mentioned in the problem state-
ment.

Then, we consider an interesting observation here:
wstSet1 is also a solution when R = R2 since all men-
tioned constraints are still satisfied. Moreover, if R = R2,
solution wstSet1 will consumes not as many workers as
itself when R = R1, because of the way we calculate
the number of workers in each workstations. Assume that
when R = R2, wstSet1 consumes N workers, then we
have N2 ≤ N ≤ N1 which is what we want to prove.

Actually, when R < α
3(1+∆) , there will be no solu-

tion. Because there exists at least one workstation i which
has Ti > 3(R + ∆R), contradict with problem statement.

Therefore setting lowR = α
3(1+∆) at the beginning of pro-

cedure GALBP2 is indeed appropriate. Moreover when
R > β

1−∆ , the minimum number of workers stops to de-
crease further, so initializing upR = β

1−∆ is suitable too.

4 Methods to estimate the procedure
GALBP1

With the application of GALBP2 procedure, our original
GALBP-2 is turned into solving another GALBP-1 in pro-
cedure GALBP1. GALBP-1 is very similar to the origi-
nal problem GALBP-2, with all the constraints remain the
same except that the number of workers is not bound any-
more.

Since the GALBP-1 in procedure GALBP1 is an NP-
hard problem, it cannot be fully solved in polynomial time.
Therefore, we tried to apply exhaustive search (brute-force
search) along with different meta-heuristic methods such
as simulated annealing (SA for short) and SA with greedy
to produce answers as close as possible to the optimal ones.
For a similar version of this GALBP-1 where H must not
be less than 80%, we have already proposed an efficient SA
algorithm [8] which performs excellently in terms of accu-
racy and speed. Therefore, with some reasonable modifi-
cations, we could expect our same methods to work well in
this GALBP-1.

Throughout section 4, we introduce about our ap-
proaches in detail to cope with this GALBP-1. The follow-
ing section 5 will contain a full evaluation of all methods
when being applied to solve our original GALBP-2 based
on experimental results on real data of the garment indus-
try.

4.1 Exhaustive search

The exhaustive search finds the optimal result by consider-
ing all possible solutions. We design a simple exhaustive
search algorithm for this GALBP-1 in the procedure 2.

In this procedure, wst is the current built workstation
which consists of tasks, curSol is the current solution
which is a set of workstations and bestSol is the current
best solution. By initializing bestSol as a random valid
solution and calling exhaustive(1, 1, ∅, ∅), we will have
bestSol as our optimal solution when exhaustive termi-
nates.

For our Polo-Shirt example, when the number of tasks is
not too large, the exhaustive search can still return an op-
timal solution after a reasonable time. Nonetheless, when
input is big enough, it takes hours to run until termination,
which is infeasible in industrial environment. Therefore,
better approaches should be applied to deal with this prob-
lem.

Cycle Time Enhancement by Simulated Annealing for a. . . Informatica 44 (2020) 127–138 133

Procedure 2 Exhaustive search for GALBP-1
Require: i: 1st task in current workstation,

j: last added task in current workstation,
wst: current workstation,
curSol: current solution.

1: procedure exhaustive(i, j, wst, curSol)
2: if i > M then
3: if curSol is better than bestSol then
4: bestSol← curSol
5: else if wst = ∅ then
6: if taski is marked then
7: exhaustive(i+ 1, i+ 1, ∅, curSol)
8: else
9: Push taski into wst

10: exhaustive(i, i, wst, curSol)
11: Pop taski out of wst
12: else
13: if wst is valid then
14: Mark all tasks in wst
15: Push wst into curSol
16: exhaustive(i+ 1, i+ 1, ∅, curSol)
17: Pop wst out of curSol
18: Unmark all tasks in wst
19: if |wst| < 3 then
20: for k ← j + 1 to M do
21: if taskk is not marked then
22: Push taskk into wst
23: exhaustive(i, k, wst, curSol)
24: Pop taskk out of wst

4.2 Simulated annealing

SA algorithm has been widely applied due to its feasibil-
ity in NP-hard problem classes through a randomized con-
trolled process with reasonable calculation time. There-
fore, the SA algorithm is a good tool for ALBP with a lot
of constraints.

4.2.1 Motivation and idea

Simulated annealing (SA for short) was first applied to op-
timization problems by S. Kirkpatrick et al. [18] and V.
Cerny [5]. In the book "Metaheuristics: From design to
implementation" of El-Ghazali Talbi [28], the author de-
scribed almost every aspect of SA in detail. It is a meta-
heuristic to approximate optimal solution in a large search
space for an optimization problem. The idea of SA algo-
rithm is derived from physical metallurgy. The metal is
heated to high temperatures and cooled slowly so that it
crystallizes in a low energy configuration.

SA is chosen to solve this ABLP because of its simplicity
and efficiency. It allows for a more extensive search for the
global optimal solution, and can even find a global optimal
solution if it runs for enough amount of time.

We represent our SA approach in Procedure 3. This Pro-

cedure is a close edition of the general SA algorithm from
Talbi’s book [28].

Procedure 3 Simulated Annealing

Require: s0: initial solution,
Tmax: starting temperature,
L: neighbor generation loop time limit,
Tdec: temperature drops after each step,
P : probability to accept worse solution.

1: procedure SA(s0, Tmax, L, Tdec, P)
2: s← s0

3: T ← Tmax
4: while T > 0 do
5: for i← 1 to L do
6: Generate a random neighbor s′

7: if s′ is better than s then
8: s← s′

9: else
10: Assign s← s′, probability P (T)

11: T ← T − Tdec
12: return Best solution found

There are five parameters that we need to decide for SA:
s0 as the initial solution; starting temperature Tmax, L and
Tdec for cooling schedule; and P as the acceptance prob-
ability of moving to a worse solution. Also we need to
design a procedure to generate a random neighbor s′ from
a current solution s. All these factors will affect the quality
of our algorithm.

4.2.2 Initial solution

In theory, the initial solution s0 can be any valid solution
and it does not affect the quality of SA. However, when the
solution searching space is too large, a good initial solution
can be a suitable approximation for the global optimum in
a short amount of time. In section 4.2 we set a random
solution as the initial solution for SA, and in section 4.3 we
will assign a solution obtained from a greedy method to s0.
Result comparison between these two approaches shows a
remarkable efficiency difference.

4.2.3 Neighbor generation

A neighbor of a solution s is generated simply by moving
a task from a workstation to another workstation (includ-
ing creating a new workstation consist of only that task) or
swapping two tasks in two different workstations. There
are at most M2 valid neighbors of a solution.

Among all valid neighbors of s, we just consider its χ
best neighbors and randomly choose one of them. The rea-
son why we do not choose among all valid neighbors is
to save computation cost without worsening the algorithm
efficiency too much.
χ is set high at the beginning and decreases as the tem-

perature decreases, so that when temperature is high a wide

134 Informatica 44 (2020) 127–138 M.H. Dinh et al.

range of neighbor is considered and at the end only better
solutions are chosen.

4.2.4 Move acceptance

Usually, the probability P that a worse solution is accepted
depends on the current temperature T , the current solution
s and the new solution s′. One of the most basic forms of
P [28] can be written as:

P (T, s, s′) = e−
f(s′)−f(s)

T = e−
∆E
T

In which ∆E = f(s′) − f(s) is the different of quality
between the new and current solution. However in our SA
algorithm, P depends only on T by a simple formula:

P (T) = T
Tmax

∆E is not used in our case since the quality of s and
its chosen neighbor s′ are not too different, they are even
very close. Because s′ is generated from s by just moving
a task from a workstation to another or swapping two tasks
in two workstations, and also s′ is chosen among χ best
neighbors of s. Therefore, ∆E tends to be very small and
negligible. Also, it is very hard to find an ideal formula for
calculating the quality of a solution. Any tuned formula for
a solution’s quality is just overfit to some set of tests and
performs badly in other tests.

Computational results show that P (T) works well com-
pared to any tuned version of P (T, s, s′) that we design.
Moreover, in our case P (T) formula is much simpler and
more reasonable.

4.2.5 Cooling schedule

In theory, the higher Tmax and L are the higher chance for
optimal solution to be discoverable. Similarly, the lower
Tdec is, the better our final solution will be. However, to
save computation energy, these three parameters should be
carefully tuned.

4.2.6 Multiple execution

Since the solution search space for this GALBP-1 is very
large, it is not guaranteed that when SA is applied on a
unique input, a unique output will be produced. There-
fore, given an input, SA algorithm will be repeated multi-
ple times to provide multiple answers, then the best answer
among them will be the solution for GALBP1 procedure.
By experimenting on actual data, we realize that 10 times
of repetition is enough to stabilize our SA algorithm with-
out taking too much of time.

4.3 Simulated annealing with greedy
A good initial solution provided by a greedy approach can
always be a suitable approximation for the optimal result
in a short amount of time. Also, when the solution search
space is too large, it could help SA to find better final solu-
tion by focusing the process on a critical region only. With
our GALBP-1, our initial solution s0 for SA is constructed
by a 5-step algorithm described below:

* Step 1: Choose a task u such that there is not any
remaining task v 6= u where v must be done before u is
processed.

* Step 2: Create a workstation X which contains u and
some of the remaining tasks so that X is valid and the
following WsX value is maximize (Ws here stands for
"worker saved"):

WsX = n′X − nX
Where n′X is the total number of workers needed to com-
plete all the tasks in workstation X if we divide these tasks
into separated one-task-only workstations. If there are
many workstations X with the same value WsX , choose
any workstation which is balanced.

* Step 3: Add X to s0.
* Step 4: Remove all tasks belong to X .
* Step 5: If there is some task remaining, go back to

Step 1.
At step 2 of this algorithm, a greedy strategy is utilized:

the best workstation which contains task u is added to the
solution. Such a strategy efficiently exploits a signature
property of an assembly line: Its precedence graph is al-
most identical to a tree with only a few number of branches.
Therefore, a workstation tends to consist of connected tasks
on the precedence graph, and removing them does not af-
fect our future decisions so much. Indeed, experimental
results which will be discussed in section 5 show that the
SA with greedy solution’s efficiency is usually better than
that of exhaustive search and traditional SA, in terms of
both accuracy and running time.

5 Computational results

If the exhaustive search procedure were allowed to run
fully, it would take several hours or even days until termi-
nation which is infeasible in industrial environment. There-
fore, for each test, we forced it to terminate when it is called
more than 6× 106 times recursively, and its best produced
result is collected. Besides that, for all versions of SA, we
set Tmax = 100, L = 20 and Tdec = 5 to guarantee so-
lution quality without consuming too much time. All al-
gorithms are implemented in C++, and run on a computer
which has 2.60GHz i7-8850H CPU (12 CPUs), NVIDIA
Quadro P1000, 16GB RAM and 512GB SSD.

Our algorithms were tested on real data set related to the
production of Polo-Shirt products at Dong Van Garment
Factory, Hanoi Textile & Garment Joint Stock Corporation,
Vietnam. There are 12 cases, where 6 tests are created from
each of these cases by modifying ∆ and N̂ . The values of
∆ and N̂ for each test are the combinations of three values
of ∆ (5%, 10% and 15%) and two different values of N̂
where N̂high the greater is about twice as N̂low the smaller
and N̂low ≤ 1.5M . N̂high and N̂low are different among
cases. Hence there are 72 tests in total. The number of
tasks M spreads evenly among tests, from 15 to 60. The
performance of each algorithm on all tests in terms of the
cycle time R, number of workers N , balance efficiency H

Cycle Time Enhancement by Simulated Annealing for a. . . Informatica 44 (2020) 127–138 135

Table 3: Results for tests having ∆ = 5% and N̂ = N̂low

M N̂ R-Ex R-SA R-SA-
gr

N-
Ex

N-
SA

N-
SA-
gr

H-Ex
(%)

H-SA
(%)

H-SA-
gr(%)

T-Ex
(s)

T-SA
(s)

T-SA-
gr(s)

15 18 31.429 31.429 31.429 18 18 18 54.545 54.545 54.545 0.055 10 10

20 18 30.952 31.157 30.953 18 18 18 55.556 55.556 50 37 28 28

25 24 41.857 41.857 41.857 24 24 24 29.412 29.412 29.412 11 57 55

30 28 41.81 41.81 41.81 28 28 28 23.81 23.81 19.048 110 89 90

32 26 84.762 72.621 69.02 26 26 26 23.81 38.889 29.412 843 125 128

33 36 93.016 92.245 91.429 36 36 36 33.333 25 37.5 952 125 127

35 32 42.857 37.871 37.66 32 32 32 28 52.381 44.444 911 155 162

47 33 No 35.05 32.273 No 32 33 No 34.783 54.545 1240 439 432

48 40 87.619 61.903 60.272 40 40 40 14.286 32 40.741 1368 343 347

50 40 47.143 34.822 33.225 40 40 40 11.111 33.333 46.154 1353 439 447

52 52 66.952 53.401 48.857 49 51 51 18.421 32 52 1552 531 531

60 40 No 71.011 59.831 No 38 40 No 32.143 58.333 1625 895 897

and running time in seconds is documented to make dia-
grams on Figure 3.

The top six diagrams on Figure 3 show the cycle time R
obtained from exhaustive search, SA and SA with greedy
algorithms, divide by a number R0 which is calculated as:

R0 =

M∑
i=1

ti

N̂
(12)

R0 is used as an approximation for the lower bound of
R, since if ∆ = 0% then R0 is exactly the lower bound
of R and actually ∆ is quite small (∆ ≤ 15%) which
means the real lower bound of R is not so different from
R0. Therefore R0 is used to normalize R. Among the top
six diagrams, the upper three of them consist of tests hav-
ing N̂ = N̂low and the lower three consist of tests having
N̂ = N̂high. Each column contains a pair of diagrams
sharing a particular ∆ value (5%, 10% or 15%). The same
order applies to diagrams of the balance efficiency H and
running time.

For example, Table 3 shows results of 12 tests having
∆ = 5% and N̂ = N̂low. Here "Ex" is exhaustive search,
"SA" is simulated annealing and "SA-gr" is simulated an-
nealing with greedy. These results are used to built the top-
left diagram in each set of six diagrams in Figure 3.

Since R0 is an approximation for the lower bound of R,
a value of R is a good answer if it is not so far from R0.
When N̂ = N̂low, based on Figure 3, we can see that both
SA and SA with greedy results are as good as results of

exhaustive search in small tests but much better than ex-
haustive search in medium and large tests. Even in some
cases, due to early termination, exhaustive search does not
provide any valid solution, as opposed to SA algorithms,
which still produces quality answers for all tests. In case
of N̂ = N̂high, the results of R may not be close to R0

since N̂high ≈ 2N̂low can be a bit too high which made
R0 too much lower than the real lower bound of R. Nev-
ertheless, SA algorithms still show that they are always not
worse than exhaustive search. In addition, SA with greedy
is usually slightly better than traditional SA in terms of R,
which reveals the effectiveness of greedy initial solution.

For the balance efficiency H , SA algorithms can be
slightly worse than brute force when the number of tasks
M is small. However as M grows larger, SA algorithms
clearly become superior to the exhaustive one. Moreover,
H is usually higher than 40% and often fluctuates from
60% to 80% when SA is utilized which are quite satisfy-
ing outcomes. A point worth noting is that SA with greedy
is remarkably better than exhaustive search and traditional
SA in almost all test cases.

In case of running time, SA algorithms completely out-
perform exhaustive search as expected since they are poly-
nomial time algorithms while exhaustive search theoreti-
cally runs in exponential time. Also, results are produced
from SA in less than 20 minutes even for the largest test
cases. With its fast processing speed, SA is perfectly suit-
able for real industrial environment.

With all the evaluation above, we can conclude that SA is
an efficient meta-heuristic for our GALBP-2. In addition,

136 Informatica 44 (2020) 127–138 M.H. Dinh et al.

Figure 3: Diagrams of cycle time (R), balance efficiency (H) and running time of exhaustive search, SA and SA with greedy
on 72 tests from Dong Van Garment Factory, Hanoi Textile & Garment Joint Stock Corporation, Vietnam.

the SA with greedy version is clearly the most excellent,
compared to both exhaustive search and traditional SA.

6 Conclusion
In this paper, we represented a Simulated Annealing algo-
rithm to solve a generalized assembly line balancing prob-

Cycle Time Enhancement by Simulated Annealing for a. . . Informatica 44 (2020) 127–138 137

lem in the garment industry. Our GALBP-2 has the primary
goal of minimizing the cycle time given the upper bound of
number of workers. The secondary goal is minimizing the
total number of workers on the assembly line. Then the last
goal is determining the maximum balance efficiency. We
efficiently utilized binary search to turn the original prob-
lem into a simpler problem GALBP-1, where the primary
objective is minimizing the total number of workers and
the secondary goal is maximizing the balance efficiency,
given the cycle time. Then we introduced three methods to
solve this GALBP-1: exhaustive search, SA and SA with
greedy. All of them have their particular advantages in
terms of accuracy and running time, depend on different
test sizes. These algorithms are good supporting tools for
garment factory managers to make plans before decisions.
In other real assembly line balancing cases, our mentioned
methods should also be considered as promising directions.

Acknowledgments
The authors would like to acknowledge the Dong Van Gar-
ment Factory, Hanoi Textile & Garment Joint Stock Corpo-
ration, Vietnam for supporting survey, experiment to com-
plete this study.

References
[1] Ilker Baybars. A survey of exact algorithms for

the simple assembly line balancing problem. Man-
agement science, 32(8):909–932, 1986. https:
//doi.org/10.1287/mnsc.32.8.909.

[2] Nils Boysen, Malte Fliedner, and Armin Scholl.
A classification of assembly line balancing prob-
lems. European journal of operational research,
183(2):674–693, 2007. https://doi.org/10.
1016/j.ejor.2006.10.010.

[3] Benjamin Bryton. Balancing of a continuous produc-
tion line. PhD thesis, Northwestern University, 1954.

[4] GM Buxey. Assembly line balancing with multi-
ple stations. Management science, 20(6):1010–1021,
1974. https://doi.org/10.1287/mnsc.
20.6.1010.

[5] Vladimír Černỳ. Thermodynamical approach to the
traveling salesman problem: An efficient simulation
algorithm. Journal of optimization theory and appli-
cations, 45(1):41–51, 1985. https://doi.org/
10.1007/bf00940812.

[6] James C Chen, Chun-Chieh Chen, Yi-Jhen Lin,
CJ Lin, and TY Chen. Assembly line balancing prob-
lem of sewing lines in garment industry. In Proceed-
ings of the 2014 International Conference on Indus-
trial Engineering and Operations Management Bali,

Indonesia, pages 7–9, 2014. https://doi.org/
10.1109/icmlc.2009.5212600.

[7] Wen-Chyuan Chiang. The application of a tabu search
metaheuristic to the assembly line balancing problem.
Annals of Operations Research, 77:209–227, 1998.

[8] Mai Huong Dinh, Viet Dung Nguyen, Van Long
Truong, Phan Thuan Do, Thanh Thao Phan, and
Duc Nghia Nguyen. Simulated annealing for the as-
sembly line balancing problem in the garment indus-
try. In Proceedings of the Tenth International Sym-
posium on Information and Communication Technol-
ogy, pages 36–42, 2019. https://doi.org/10.
1145/3368926.3369698.

[9] Selin Hanife ERYÜRÜK. Clothing assembly line
design using simulation and heuristic line balancing
techniques. Journal of Textile & Apparel/Tekstil ve
Konfeksiyon, 22(4), 2012.

[10] SH Eryuruk, F Kalaoglu, and M Baskak. Assembly
line balancing in a clothing company. Fibres & Tex-
tiles in Eastern Europe, 66(1):93–98, 2008.

[11] Rasul Esmaeilbeigi, Bahman Naderi, and Parisa
Charkhgard. The type e simple assembly line bal-
ancing problem: A mixed integer linear program-
ming formulation. Computers & Operations Re-
search, 64:168–177, 2015. https://doi.org/
10.1016/j.cor.2015.05.017.

[12] Waldemar Grzechca. Assembly line balanc-
ing problem with reduced number of worksta-
tions. IFAC Proceedings Volumes, 47(3):6180–
6185, 2014. https://doi.org/10.3182/
20140824-6-za-1003.02530.

[13] Allan L Gutjahr and George L Nemhauser. An al-
gorithm for the line balancing problem. Manage-
ment science, 11(2):308–315, 1964. https://
doi.org/10.1287/mnsc.11.2.308.

[14] WB Helgeson and Dunbar P Birnie. Assembly line
balancing using the ranked positional weight tech-
nique. Journal of industrial engineering, 12(6):394–
398, 1961.

[15] Thomas R Hoffmann. Assembly line balancing
with a precedence matrix. Management Science,
9(4):551–562, 1963. https://doi.org/10.
1287/mnsc.9.4.551.

[16] Mahmut Kayar and Ö C Akyalçin. Applying dif-
ferent heuristic assembly line balancing methods in
the apparel industry and their comparison. Fibres &
Textiles in Eastern Europe, 2014. https://doi.
org/10.5604/12303666.1191438.

[17] Maurice D Kilbridge and Leon Wester. A heuristic
method of assembly line balancing. Journal of Indus-
trial Engineering, 12(4):292–298, 1961.

138 Informatica 44 (2020) 127–138 M.H. Dinh et al.

[18] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vec-
chi. Optimization by simulated annealing. science,
220(4598):671–680, 1983. https://doi.org/
10.1126/science.220.4598.671.

[19] N Kriengkorakot and N Pianthong. The assembly line
balancing problem: Review problem. J. Ind. Eng,
6(3):18–25, 1955.

[20] Sophie D Lapierre, Angel Ruiz, and Patrick Sori-
ano. Balancing assembly lines with tabu search. Eu-
ropean journal of operational research, 168(3):826–
837, 2006. https://doi.org/10.1016/j.
ejor.2004.07.031.

[21] Yuchen Li, Honggang Wang, and Zaoli Yang. Type
ii assembly line balancing problem with multi-
operators. Neural Computing and Applications,
31(1):347–357, 2019. https://doi.org/10.
1007/s00521-018-3834-1.

[22] Patrick R McMullen and GV Frazier. Using sim-
ulated annealing to solve a multiobjective assem-
bly line balancing problem with parallel worksta-
tions. International Journal of Production Research,
36(10):2717–2741, 1998. https://doi.org/
10.1080/002075498192454.

[23] SG Ponnambalam, P Aravindan, and G Mogileeswar
Naidu. A multi-objective genetic algorithm for solv-
ing assembly line balancing problem. The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 16(5):341–352, 2000. https://doi.org/
10.1007/s001700050166.

[24] M. E. Salveson. Induced matchings in intersec-
tion graphs. The Journal of Industrial Engineering,
6(3):18–25, 1955.

[25] Bhaba R Sarker and JG Shanthikumari. A generalized
approach for serial or parallel line balancing. THE IN-
TERNATIONAL JOURNAL OF PRODUCTION RE-
SEARCH, 21(1):109–133, 1983. https://doi.
org/10.1080/00207548308942341.

[26] Armin Scholl and Christian Becker. State-of-the-art
exact and heuristic solution procedures for simple as-
sembly line balancing. European Journal of Opera-
tional Research, 168(3):666–693, 2006. https://
doi.org/10.1016/j.ejor.2004.07.022.

[27] Yuri N Sotskov, Alexandre Dolgui, Tsung-Chyan Lai,
and Aksana Zatsiupa. Enumerations and stability
analysis of feasible and optimal line balances for sim-
ple assembly lines. Computers & Industrial Engi-
neering, 90:241–258, 2015. https://doi.org/
10.1016/j.cie.2015.08.018.

[28] El-Ghazali Talbi. Metaheuristics: from design
to implementation, volume 74. John Wiley &
Sons, 2009. https://doi.org/10.1002/
9780470496916.

[29] Pedro M Vilarinho and Ana Sofia Simaria. A two-
stage heuristic method for balancing mixed-model
assembly lines with parallel workstations. Interna-
tional Journal of Production Research, 40(6):1405–
1420, 2002. https://doi.org/10.1080/
00207540110116273.

