
Informatica 34 (2010) 377-385 377

Using Genetic Algorithms and Dominance Concepts for Generating
Reduced Test Data

Ahmed S. Ghiduk
Department of Mathematics, Faculty of Science, Beni-Suef University, Egypt
E-mail: asaghiduk@yahoo.com

Moheb R. Girgis
Department of Computer Science, Faculty of Science, Minia University, Egypt
E-mail: mrgirgis@mailr.eun.eg

Keywords: genetic algorithms, software testing, automatic test-data generation, dominance. january

Received: March 6, 2008

Testing takes a considerable amount of the time and resources that are spent on producing software.
Testing accounts for approximately 50% of the cost of the development of a software system. Therefore,
techniques to reduce the cost of testing would be useful. This paper presents an automatic test-data
generation technique that uses a genetic algorithm (GA). This technique applies the concepts of
dominance relations between nodes to reduce the cost of software testing. These concepts are used to
define a new fitness function to evaluate the generated test data. Finally, the paper presents the results
of the experiments that have been conducted to evaluate the effectiveness of the proposed GA technique
compared to the random testing (RT) technique. These experiments are used to evaluate the
effectiveness of the new fitness function and the technique used to reduce the cost of software testing.

Povzetek: Predstavljen je genstski algoritem za zmanjšanje števila testnih podatkov.

1 Introduction
Software testing is the main technique used to improve
the quality and increase the reliability of software.
Software testing is a complex, labor-intensive, and time
consuming task that accounts for approximately 50% of
the cost of a software system development [1]. Increasing
the degree of automation and the efficiency of software
testing can reduce the cost of software design, decrease
the time required for software development, and increase
the quality of software.

One critical task in the automation of software
testing is the automation of the generation of test data to
satisfy a given adequacy criterion. Test-data generation is
the process of identifying a set of program input data that
satisfies a given testing criterion. Test-data generation
has two main aspects: test generation technique and
application of a test-data adequacy criterion. A test
generation technique is an algorithm that generates test
data, whereas an adequacy criterion is a predicate that
determines whether the testing process is finished.

There has been much previous work in automatically
generating test data. Perhaps the most commonly
encountered are random test-data generation, symbolic
test-data generation, dynamic test-data generation, and
recently, test-data generation based on GA.

Random test-data generation consists of generating
inputs at random until useful inputs are found (e.g., [2, 3,
4]). The problem with this approach is clear with
complex programs or complex adequacy criteria, an
adequate test input may have to satisfy very specific

requirements. In such cases, the number of adequate
inputs may be quite small compared to the total of inputs,
so the probability of selecting an adequate input by
chance may be low.

Symbolic test-data generation consists of assigning
symbolic values to variables to create an abstract,
mathematical characterization of the program’s
functionality. With this approach, test-data generation
can be reduced to a problem of solving an algebraic
expression. Many test-data generation methods that use
symbolic execution to find inputs that satisfy a test
requirement have been proposed (e.g., [5, 6, 7, 8, 9, 10]).
A number of problems are encountered in practice when
symbolic execution is used. One of such problems arises
in indefinite loops, where the number of iterations
depends on a non-constant expression, and the index of
array, where data is referenced indirectly. Pointer
references also present a problem because of the
potential for aliasing.

Dynamic test-data generation is based on the idea
that if some desired test requirement is not satisfied, data
collected during execution can be used to determine
which tests come closest to satisfying the requirement
[11] and [12]. With the help of this feedback, test inputs
are incrementally modified until one of them satisfies the
requirement. Two limitations are commonly found in
dynamic test-data generation systems. First many
systems make it difficult to generate tests for large
programs because they work only on simplified

378 Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

programming languages. Second, many systems use
gradient descent techniques to perform function
minimization and, therefore, they can stall when they
encounter local minima.

Several search based test-data generation techniques
have been developed (e.g., [13, 14, 15, 16, 17, 18, 19,
20]). These techniques had focused on finding test data
to satisfy a number of control-flow and data-flow testing
criteria. Genetic algorithms have been the most widely
employed search-based optimization technique in
software testing [21]. The new features of GAs make
them capable of finding the nearly global optimum
solution. Test-data generation methods based on genetic
algorithms have many problems due to the use of fitness
functions that depend on control dependences or branch-
distance in its calculations. The fitness function that takes
control dependencies into account faces a problem to
find an input to traverse a target node within loops. A
further problem is the assignment of approximation
levels for some classes of program with unstructured
control flow. A branch-distance-related problem can
occur with nested branch predicates. Once input data is
found for one or more of the predicates, the chances of
finding input data that also fits subsequent predicates
decreases, because a solution for subsequent conditions
must be found without violating any of the earlier
conditions [22, 23, 24]).

To solve the problem of reducing the cost of
software testing, we have developed a new GA-based
technique with a new fitness function that reduces the
test requirements and overcomes the problems of the
previous GA-based test-data generation methods.

This paper presents an automatic test-data generation
technique that uses a GA for white-box testing. This
technique applies the concepts of dominance relations
between nodes to reduce the cost of software testing.
These concepts are used to define a new fitness function
to evaluate the generated test data.

The paper is organized as follows: Section 2 gives
some important definitions. Section 3 describes the
proposed technique, which is used to reduce the cost of
software testing. Section 4 describes the proposed GA
technique for automatic test-data generation, and the
results of applying this algorithm to an example program.
Section 5 presents the results of the experiments that are
conducted to evaluate the effectiveness of the proposed
GA compared to the random testing technique, to
evaluate the effectiveness of the new fitness function and
the technique used to reduce the cost of software testing.
Section 6 presents the conclusions and future work.

2 Background
We introduce here some basic concepts that will be used
through this work.

2.1 The principles of genetic algorithms
The basic concepts of GAs were developed by Holland
[25]. GAs are commonly applied to a variety of problems

involving search and optimization. GAs search methods
are rooted in the mechanisms of evolution and natural
genetics. GAs draw inspiration from the natural search
and selection processes leading to the survival of the
fittest individuals. GAs generate a sequence of
populations by using a selection mechanism, and use
crossover and mutation as search mechanisms [26].

The principle behind GAs is that they create and
maintain a population of individuals represented by
chromosomes (essentially a character string analogous to
the chromosomes appearing in DNA). These
chromosomes are typically encoded solutions to a
problem. The chromosomes then undergo a process of
evolution according to rules of selection, mutation and
reproduction. Each individual in the environment
(represented by a chromosome) receives a measure of its
fitness in the environment. Reproduction selects
individuals with high fitness values in the population,
and through crossover and mutation of such individuals,
a new population is derived in which individuals may be
even better fitted to their environment. The process of
crossover involves two chromosomes swapping chunks
of data (genetic information) and is analogous to the
process of sexual reproduction. Mutation introduces
slight changes into a small proportion of the population
and is representative of an evolutionary step. The
structure of a simple GA is given below.

Simple Genetic Algorithm ()
{
 initialize population;
 evaluate population;
 while termination criterion not reached {
 select solutions for next population;
 perform crossover and mutation;
 evaluate population; }
 }

The algorithm will iterate until the population has
evolved to form a solution to the problem, or until a
maximum number of iterations have occurred
(suggesting that a solution is not going to be found given
the resources available).

2.2 The control flow graph
A program’s structure is conveniently analyzed by means
of a directed graph, called control flow graph that gives a
graphical representation of the program’s control flow. A
directed graph or digraph G = (V, E) consists of a set V of
nodes or vertices, where each node represents a
statement, and a set E of directed edges or arcs, where a
directed edge e =(n, m) is an ordered pair of adjacent
nodes, called Tail and Head of e, respectively. For a node
n in V, indegree(n) is the number of arcs entering and
outdegree(n) the number of arcs leaving it. Figure 1.b
shows the control flow graph G of the example program,
which is shown in Figure 1.a. We are augmented the
control flow graph by the unique entry node (-1) and the
unique exit node (0).

USING GENETIC ALGORITHM AND… Informatica 34 (2010) 377–385 379

Figure 1: (a) Example program, (b) its Control Flow Graph G, (c) its Dominator Tree DT(G)

(a) (b) (c)

1. #include <iostream.h>
2. void main ()
3. {
4. int x, y, z;
5. int mid;
6. cin>>x>>y>>z;
7. mid = z;
8. if(y<z)
9. {
10. if(x<y)
11. {
12. mid = y;
13. }
14. else
15. {
16. if(x<z)
17. {
18. mid = x;
19. }
20. }
21. }
22. else
23. {
24. if(x>=y)
25. {
26. mid = y;
27. }
28. else
29. {
30. if(x>z)
31. {
32. mid = x;
33. }
34. }
35. }
36. cout<<"Middle value="<<mid;
37. }

8

-1

2

3

5

6

1

4

7

36

0

37
11

13

12

17

19

18

14

16

15

31

33

32

28

30

29

22

24

23

35

34

20

9

10

21

25

27

26

9

10
11

12

13

14

15

16
17

18

19
20

21

22

23

24
25

26

27

28

29

30
31

32

33
34

35

36

0

37

8

7

-1

2

3

5

6

1

4

2.3 Dominance
Let G = (V, E) be a digraph with two distinguished nodes
n0 and nk. A node n dominates a node m if every path P
from the entry node n0 to m contains n.

Several algorithms are given in the literature to find
the dominator nodes in a digraph (e.g., [27] and [28]).

By applying the dominance relations between the
nodes of a digraph G, we can obtain a tree (whose nodes
represent the digraph nodes) rooted at n0. This tree is
called the dominator tree; we denote it by DT(G). A
(rooted) tree DT(G) = (V, E) is a digraph in which one
distinguished node n0, called the root, is the Head of no
arcs; every node n except the root n0 is a Head of just one
arc and there exists a (unique) path (dominance path)
from the root n0 to each node n; we denote this path by
dom(n). Tree nodes of outdegree zero are called leaves.

For example, Figure1.c shows the dominator tree of
the flow graph G (Figure 1.b) of the example program
(Figure 1.a). The dominance path of node 21 in DT(G) is
dom(21) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21.

3 Reducing the cost of testing
This section describes our proposed technique for
reducing the cost of software testing that fulfils the all-
statements coverage criterion. The proposed technique is
based on the concepts of the dominance relations
between nodes of the program’s control flow graph. This
technique aims to cover a subset of statements (nodes of
the program’s control flow graph) that guarantees the
coverage of all statements of the tested program.

The set of leaves of the dominator tree is an essential
set (i.e., every set of paths that covers it, covers all nodes
in the tree). To illustrate the effectiveness of this
technique, we apply it to the example program given in
Figure 1. The set of leaves of the example program is L =
{0, 13, 19, 20, 21, 27, 33, 34, 35}. The dominance paths
of the elements of this set are:

dom(0) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 36, 37, 0.
dom(13) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
dom(19) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17,
18, 19.
dom(20) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 20.
dom(21) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21.
dom(27) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 25, 26.
dom(33) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 28, 29, 30,
31, 32, 33.
dom(34) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 28, 29, 30,
34.
dom(35) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 35.

Covering an element of the set L guarantees the
coverage of its dominance path. It is clear that, the union
of nodes of this set of dominance paths is the set of all
nodes of the program’s control flow graph (i.e., all
statements of the tested program).

So, our goal of covering all nodes of the program’s
control flow graph can be reduced to covering only the
set of leaves of the dominator tree. Thus, by applying the
proposed technique the cost of testing of the example
program is reduced by 75.5%.

380 Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

4 GA-based test-data generation
This section describes the proposed GA for automatic
test-data generation, which uses a new fitness function to
evaluate the generated test data. This new fitness
function depends on the concepts of the dominance
relations between nodes of the program’s control flow
graph. The algorithm searches for test cases that satisfy
the all-statements criterion. The major components of
this GA are discussed below.

4.1 Representation
The proposed GA uses a binary vector as a chromosome
to represent values of the program input variables. The
length of the vector depends on the required precision
and the domain length for each input variable.

Suppose we wish to generate test cases for a program
of k input variables x1,…, xk where each variable xi can
take values from a domain Di = [ai, bi]. Suppose further
that di decimal places are desirable for the values of each
variable xi. To achieve such precision, each domain Di

should be divided into   id
ii ab 10 equal size ranges.

Let us denote by mi the smallest integer such that

  1210  ii md
ii ab . Then, a representation

having each variable xi coded as a binary string stringi of
length mi clearly satisfies the precision requirement. The
mapping from the binary string stringi to a real number xi

from the range [ai, bi] is performed by the following
formula:

12 



im

ii
iii

ab
xax (4.1)

Where ix represents the decimal value of the binary

string stringi [Michalewicz, 1999].
It should be noted that the above method can be

applied for representing values of integer input variables
by setting di to 0, and using the following formula instead
of formula (4.1):

)
12

int(




im

ii
iii

ab
xax (4.2)

Now, each chromosome (as a test case) is represented

by a binary string of length 



k

i
imm

1

; the first m1 bits

map into a value from the range [a1, b1] of variable x1,
the next group of m2 bits map into a value from the range
[a2, b2] of variable x2, and so on; the last group of mk bits
map into a value from the range [ak, bk] of variable xk.

For example, suppose a program has 2 input variables
x and y, where –3.0 x 12.1 and 4.1 y 5.8, and the
required precision is four decimal places for each
variable. The domain of variable x has length 15.1; the
precision requirement implies that the range [-3.0, 12.1]
should be divided into at least 15.110000 equal size
ranges. This means that 18 bits are required as the first
part of the chromosome: 217< 151000 218. The domain
of variable y has length 1.7; the precision requirement

implies that the range [4.1, 5.8] should be divided into at
least 1.710000 equal size ranges. This means that 15
bits are required as the second part of the chromosome:
214< 17000 215. The total length of a chromosome (test
case) is then m = 18+15=33 bits; the first 18 bits code x
and remaining 15 bits code y. Let us consider an example
chromosome:

010001001011010000111110010100010.
By using formula (4.1), the first 18 bits,

010001001011010000, represents x = 1.0524, and the
next 15 bits, 111110010100010, represents y = 5.7553.
So the given chromosome corresponds to the data values
1.0524 and 5.7553 for the variables x and y, respectively
[19].

4.2 Initial population
As mentioned above, each chromosome (as a test case) is
represented by a binary string of length m. We randomly
generate pop_size m-bit strings to represent the initial
population, where pop_size is the population size. The
appropriate value of pop_size is experimentally
determined. Each chromosome is converted to k decimal
numbers representing values of k input variables x1,…, xk

(i.e. a test case) by using formula (4.1) or (4.2).

4.3 Evaluation function
The algorithm uses a new evaluation (fitness) function to
evaluate the generated test data. This new fitness
function depends on the concepts of the dominance
relations between nodes of the program’s control flow
graph. The algorithm uses this new fitness function to
evaluate each test case by executing the program with it
as input, and recording the traversed nodes in the
program that are covered by this test case. We denote to
the set of traversed nodes by exePath. Also, it finds the
dominance path dom(n) of the target node n. The fitness
function is the ratio of the number of covered nodes of
the dominance path of the target node to the total number
of nodes of the dominance path of the target node. The
fitness value ft(vi) for each chromosome vi (i = 1, …,
pop_size) is calculated as follows:

1. Find exePath: the set of the traversed nodes in the
program that are covered by a test case.

2. Find dom(n): dominance path of the target node n
(the set of dominator nodes from the entry of the
dominator tree to n).

3. Determine  exePathndom )(: uncovered

nodes of the dominance path (the difference
between the dominance path and the traversed
nodes).

4. Determine   exePathndom)(: covered

nodes of the dominance path (the complement set
of the difference set between the dominance path
and the traversed nodes).

5. Calculate   exePathndom)(: number of

covered nodes of the dominance path (cardinality
of the complement set).

USING GENETIC ALGORITHM AND… Informatica 34 (2010) 377–385 381

6. Calculate)(ndom : number of nodes of the

dominance path of the target node n (cardinality
of the dominance set).

Then,
 

)(

)(
)(

ndom

exePathndom
vft i




The fitness value is the only feedback from the
problem for the GA. A test case that is represented by the
chromosome vi is optimal if its fitness value ft(vi) = 1.

4.4 Selection
After computing the fitness of each test case in the
current population, the algorithm selects test cases from
all the members of the current population that will be
parents of the new population. In the selection process,
the GA uses the roulette wheel method [29]. This method
is described below.

For the selection of a new population with respect to
the probability distribution based on fitness values, a
roulette wheel with slots sized according to fitness is
used. Such roulette wheel is constructed as follows:

 Calculate the fitness value ft(vi) for each
chromosome vi (i = 1,…,pop_size).

 Find the total fitness of the

population 


sizepop

i ivftF
_

1
)(.

 Calculate the relative fitness value rft for each

chromosome
F

vft
vrft i

i

)(
)( .

 Calculate the cumulative fitness value cft for each
chromosome

  1i)(
pop_size2,...,i)()(1

)(


 i

ii

vrft
vrftvcftivcft .

The selection process is based on spinning the
roulette wheel pop_size times; each time we select a
single chromosome for a new population in the following
way:

 Generate a random (float) number r from the
range [0..1].

 If r < cft(v1) then select the first chromosome v1;
otherwise select the i-th chromosome vi (2 i 
pop_size) such that)()(1 ii vcftrvcft .

Obviously, some chromosomes would be selected
more than once.

4.5 Recombination
In the recombination phase, we use two operators,
crossover and mutation, which are the key to the power
of GAs. These operators create new individuals from the
selected parents to form a new population.

Crossover: It operates at the individual level. During
crossover, two parents (chromosomes) exchange
substring information (genetic material) at a random
position in the chromosome to produce two new strings
(offspring). The objective here is to create better
population over time by combining material from pairs
of (fitter) members from the parent population.
Crossover occurs according to a crossover probability.

The probability of crossover PXOVER gives us the
expected number PXOVERpop_size of chromosomes,
which undergo the crossover operation. We proceed in
the following way:

For each chromosome in the parent population:
 Generate a random (float) number r from the

range [0..1];
 If r < PXOVER then select given chromosome for

crossover.
Now we mate selected chromosomes randomly: For

each pair of coupled chromosomes we generate a random
integer number pos from the range [1..m-1] (m is the
number of bits in a chromosome). The number pos
indicates the position of the crossing point. Two
chromosomes (b1…bposbpos+1…bm) and
(c1…cposcpos+1…cm) are replaced by a pair of their
offspring (b1…bposcpos+1…cm) and (c1…cposbpos+1…bm).

Mutation: It is performed on a bit-by-bit basis.
Mutation always operates after the crossover operator,
and flips each bit with the pre-determined probability.
The probability of mutation PMUTATION, gives us the
expected number of mutated bits
PMUTATIONmpop_size. Every bit (in all
chromosomes in the whole population) has an equal
chance to undergo mutation (i.e., change from 0 to 1 or
vice versa). So we proceed in the following way:

For each chromosome in the current (i.e., after
crossover) population and for each bit within the
chromosome:

 Generate a random (float) number r from the
range [0..1];

 If r < PMUTATION then mutate the bit.
In the traditional GA approach the population would

evolve until one individual from the whole set which
represents the solution is found. In our case, this
condition would correspond to finding groups of data
items achieving the test requirements (i.e., covering the
set of leaves of the dominator tree) of the tested program.
We let the population evolves until a combined subset of
the population achieves the desired test requirement. The
evolution stops when a set of individuals has traversed
the dominance path of the test requirement and its fitness
value ft(vi) = 1. The solution is this set.

4.6 Elitist
The elitist function enhances the current population by
storing the best member of the previous population. If the
best member of the current population is worse than the
best member of the previous population it exchanges
them, and the best member of the current population
would replace the worst member of the current
population. After that, it stores the best member of the
current population.

4.7 Example
To illustrate the operations of the above genetic
algorithm, a part of the result of applying the system,
which implements it, to the example program, is
presented below. The final report (Figure 2) of the result

382 Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

contains a table that shows the run number and the test
requirement to be covered in this run and the number of
the generation in which the test requirement is covered
and the status whether it is covered or not. The final
statistics shows that we needed 36 generations to obtain
100% coverage of the nine test requirements.

Appendix A shows the part of the result of applying
the system to test requirement number 5 (statement 27).
This part of the result shows the execution of the steps of
the genetic algorithm and operations of our proposed
technique.

4.8 Overall algorithm
The proposed GA-based technique accepts as input the
program to be tested, the number of input variables, and
the domain and precision of each input variable. Also, it
accepts the GA parameters: population size, maximum
number of generations, and probabilities of the crossover
and mutation operators. The algorithm produces a set of
test cases, the set of nodes covered by these test cases,
and the list of uncovered nodes, if any.

The algorithm selects, one at a time, an uncovered
node of the set of leaves nodes of the dominator tree and
evolves the initial test data until the required test data are
obtained or the maximum number of generations is
exceeded. Whenever a node is covered, the test case that
caused this coverage is stored in a score board. The
technique checks the coverage of remaining uncovered
nodes by the generated test data that cover the current
node. The overall algorithm is presented in Figure 3.

5 Empirical evaluation
This section presents the results of the experiments that
have been carried out to evaluate the effectiveness of the
proposed GA compared to the random testing (RT)

technique, and to evaluate the effectiveness of the
proposed fitness function. A set of nine C++ programs is
used in the experiments. To achieve a fair comparison,
the random test-data generator was designed to randomly
generate sets of pop_size test cases in each iteration. The
used GA parameters were as follows: Maximum Number
of Generations MAXGENS = 100, PXOVER = 0.8 and
PMUTATION = 0.15.

Table 1 shows the reduction percentage of the test
requirements. Column#2 shows the total number of test
requirements which are demanded by the all-statements
criterion and column#4 gives the number of the reduced
test requirements. The reduction percentage is 83.3% for
prog# 6 and prog# 9 and 75.6% for prog#2. It is clear
that the reduction percentage isn’t less than 75%. These
results show the effectiveness of the proposed technique
to reduce the cost of all-statements testing by reducing
the number of the test requirements.

** --- Final Report -----------------------------------

** ------------------ GA completed successfully -------------------- **
** Final Statistics:-
** ------------------
** Total number of Req.------------------: 9
** No. of Covered Req.-------------------: 9
** The Covered Req. are------------------: 13, 19, 20, 21, 27, 33, 34, 35, 0
** No. of Uncovered Req.-----------------: 0
** The Uncovered Req. are----------------:
** Coverage Ratio------------------------: 100.0%
** No. of Runs---------------------------: 9
** ---
** | Run No. | Test Req to be Covered | Generation No. | Covered |
** ---
** | 1 | 13 | 1 | Y |
** | 2 | 19 | 1 | Y |
** | 3 | 20 | 6 | Y |
** | 4 | 21 | 1 | Y |
** | 5 | 27 | 2 | Y |
** | 6 | 33 | 22 | Y |
** | 7 | 34 | 1 | Y |
** | 8 | 35 | 1 | Y |
** | 9 | 0 | 1 | Y |
** ---
** Total no. of Generations--------------: 36
** Total no. of Test Cases---------------:144
** No. of Successful Test Cases----------: 16
** No. of Distinct Successful Test Cases-: 13
** The Distinct Successful Test Cases are:
** 1)[2 , 3 , 4] 2)[1 , 2 , 3]
** 3)[2 , 1 , 4] 4)[3 , 0 , 3]
** 5)[2 , 2 , 2] 6)[2 , 3 , 1]
** 7)[3 , 4 , 1] 8)[4 , 2 , 1]
** 9)[4 , 2 , 2] 10)[2 , 4 , 3]
** 11)[4 , 3 , 4] 12)[4 , 2 , 3]
** 13)[1 , 2 , 4]
** No. of Covering Test Cases------------: 9
** The Covering Test Cases are-----------:
** 1)[2 , 3 , 4] 2)[3 , 2 , 1]
** 3)[3 , 0 , 3] 4)[1 , 2 , 1]
** 5)[2 , 2 , 2] 6)[2 , 3 , 1]
** 7)[4 , 1 , 1] 8)[4 , 2 , 1]
** 9)[2 , 4 , 3]
** -- The end of Report ----------------------- **

Figure 2: The Final Report.

/* A GA algorithm to automatically generate test cases for a given program */
Input:

The program to be tested P;
Number of program input variables;
Domain and precision of input data;
Population size;
Maximum no. of generations (Max_Gen);
Probability of crossover;
Probability of mutation;

Output:
Set of test cases for P, and the set of nodes covered by each test case;
List of uncovered nodes, if any;

Begin
Step 0: Setup (Analysis P to find prerequisites)

1. Classify the program’s statements.
2. Build the program’s control flow graph CFG.
3. Build the program’s dominator tree DT.
4. Find the set of leaves L of the dominator tree.
5. Instrument P to obtain P'.

Step 1: Initialization
Initialize the score board to zero;
nRun ← 0;
Set of test cases for P ← φ;
nCases ← 0;

Step 2: Generate test cases
For each uncovered node and not selected before in the set of nodes to be tested (L)

Begin
nRun ← nRun + 1;
Create Initial_Population;
Current_population ← Initial_Population;
No_Of_Generations ← 0;
For each member of current population do

Begin
Convert the current chromosome to the corresponding set of decimal values;
Execute P' with this data set as input;
Evaluate the current test case;
If (the current node is covered) then

Mark the current node as covered;
End If

End For;
Keep the best member of the current population;
While (current node is not covered and No_Of_Generations ≤ Max_Gen) do

Begin
Select set of parents of new population from members of
current population using roulette wheel method;
Create New_Population using crossover and mutation operators;
Current_Population ← New_Population;
For each member of Current_Population do
Begin

Convert current chromosome to the corresponding set of decimal values;
Execute P' with this data set as input;
Evaluate the current test case;
If (the current node is covered) then

Mark the current node as covered;
End If

End For;
Elitist function: If the best member of the current population is worse than the
best member of the previous population then exchange them, and the best member
of the current population would replace the worst member of the current
population.
Increment No_Of_Generations;

End While;
If (the current node is covered) then

nCases ← nCases + 1;
Add this test cases to set of test cases for P;
Update the score board;
Check all uncovered nodes by this test case.

End If
End For;

Step 3: Produce output
Return set of test cases for P, and set of nodes covered by each test case;
Report on uncovered nodes, if any;

End.

Figure 3: The overall algorithm.

USING GENETIC ALGORITHM AND… Informatica 34 (2010) 377–385 383

Table 1: The reduction percentage of the cost of
software testing

Prog#
Program

Size ProgSize)

No. Of

Variable

No. of Test

Requirements

(nTestReq)

Reduction

percentage= 100*(1 -

nTestReq/ProgSize)%

1 42 3 8 80.9%

2 37 3 9 75.6%

3 27 2 5 81.4%

4 41 2 9 78%

5 38 2 7 81.5%

6 36 2 6 83.3%

7 33 2 7 78.7%

8 19 1 4 78.9%

9 18 2 3 83.3%

Table 2 shows the results of applying the proposed
GA technique and the RT technique to nine C++
programs. These results show the effectiveness of the
proposed GA technique over the random testing
technique where the GA covers 100% of the set of test
requirements in 8 programs while random testing covers
100% of the set of test requirements in 2 programs. In
program 3, the GA needed only 9 generations and 90 test
cases to reach 100% coverage while RT needed 203
generations and 2030 test cases to reach 60% coverage.
In program 4, the GA needed 231 generations and 2310
test cases to reach 77.8% coverage while RT needed 504
generations and 5040 test cases to reach 44.4% coverage.

6 Conclusions and future work
This paper presented an automatic test-data generation
technique that uses a genetic algorithm. This technique
applies the concepts of dominance relations between
nodes to reduce the cost of software testing. These
concepts used to define a new fitness function to evaluate
the generated test data.

Experiments have been carried out to evaluate the
effectiveness of the proposed GA technique compared to
the RT technique, and to evaluate the effectiveness of the
new fitness function and the technique used to reduce the
cost of software testing. The results of these experiments
showed that the proposed GA technique outperformed
the RT technique in 7 out of the 9 programs used in the
experiments. In the other two programs, the proposed
GA reached the same coverage percentage as the RT
technique. The experiments also showed that the
proposed technique reduced the cost of software testing
by more than 75%. Also, the results of the experiments
showed that the new fitness function is quite suitable to
evaluate the generated test-data and showed the
usefulness of the concepts of dominance relations
between nodes of the program’s control flow graph in
reducing the number of test requirements.

This technique is being modified to generate test data
for data flow testing. The concepts of dominance
relations between nodes of the program’s control flow
graph will be used to define a new fitness function to
evaluate the generated test data for data flow testing.

Table 2: A comparison between the proposed GA technique and the RT technique.

Prog#
Pop.

Size
Method

Total no. of

Generations

Total no. of Test

Cases

No. of successful Test

Cases

Total no. of test

Req.

No. of Covered

Req.

Coverage Ratio

%

1 9
GA 19 171 34 8 8 100%

RT 109 981 35 8 7 87.5%

2 10
GA 9 90 36 9 9 100%

RT 9 90 36 9 9 100%

3 10
GA 9 90 32 5 5 100%

RT 203 2030 30 5 3 60%

4 10
GA 231 2310 34 9 7 77.8%

RT 504 5040 40 9 4 44.4%

5 10
GA 9 90 56 7 7 100%

RT 106 1060 54 7 6 85.7%

6 9
GA 26 234 37 6 6 100%

RT 105 945 36 6 5 83.3%

7 10
GA 35 350 48 7 7 100%

RT 106 1060 47 7 6 85.7%

8 10
GA 10 100 27 4 4 100%

RT 103 1030 26 4 3 75%

9 10
GA 3 30 25 3 3 100%

RT 3 30 25 3 3 100%

References
[1] B. Beizer (1990). Software Testing Techniques.

Second Edition, Van Nostrand Reinhold, New
York.

[2] H. D. Mills, M. D. Dyer, and R. C. Linger
(1987). Cleanroom Software Engineering. IEEE
Software 4(5), pp. 19-25.

[3] J. M. Voas, L. Morell, and K. W. Miller (1991).
Predicting where Faults Can Hide From Testing.
IEEE, 8(2), pp. 41-48.

384 Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

[4] P. Thévenod-Fosse, H. Waeselynck (1993).
STATEMATE: Applied to Statistical Software
Testing. ACM SIGSOFT Proceedings of the
1993 International Symposium on Software
Testing and Analysis, Software Engineering
Notes 23(2), pp. 78-8.

[5] R. S. Boyer, B. Elspas, and K. N. Levitt (1975).
SELECT - a Formal System for Testing and
Debugging Programs by Symbolic Execution.
Proceedings of the International Conference on
Reliable software, pp. 234-24.

[6] L. A. Clarke (1976). A System to Generate Test
Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering,
2(3), pp. 215-222.

[7] J. C. King (1976). Symbolic Execution and
Program Testing. Communications of the ACM,
19 (7), pp. 385-394.

[8] W. E. Howden (1977). Symbolic Testing and
the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering,
3(4), pp. 266-278.

[9] T. E. Lindquist, and J. R. Jenkins (1988). Test-
Case Generation with IOGen. IEEE Software, 5
(1), pp. 72-79.

[10] M. R. Girgis (1993). Using Symbolic Execution
and Data Flow Criteria to Aid Test Data
Selection. The Journal of Software Testing,
Verification and Reliability, 3(2), pp. 101-112.

[11] B. Korel (1990). Automated Software Test Data
Generation.” IEEE Transactions on Software
Engineering, 16(8), pp. 870-879.

[12] R. Ferguson and B. Korel (1996). The Chaining
Approach for Software Test Data Generation.”
ACM TOSEM, vol. 5, no. 1, pp. 63-86.

[13] Min Pei, E. D. Goodman, Zongyi Gao, and
Kaixiang Zhong (1994). Automated Software
Test Data Generation Using a Genetic
Algorithm" Technical Report GARAGe of
Michigan State University.

[14] M. Roper, I. Maclean, A. Brooks, J. Miller, and
M. Wood (1995). Genetic Algorithms and the
Automatic Generation of Test Data. Technical
report RR/95/195[EFoCS-19-95].

[15] R. P. Pargas, M. J. Harrold, R. R. Peck (1999).
Test Data Generation Using Genetic
Algorithms” Journal of Software Testing,
Verifications, and Reliability, vol. 9, pp. 263-
282.

[16] Jin-Cherng Lin and Pu-Lin Yeh (2000). Using
Genetic Algorithms for Test Case Generation in
Path Testing. Proceedings of the 9th Asian Test
Symposium (ATS'00).

[17] C. C. Michael, G. E. McGraw, M. A. Schatz
(2001). Generating Software Test Data by
Evolution. IEEE Transactions on Software
Engineering, vol.27, no.12, pp. 1085-1110.

[18] Paulo Marcos Siqueira Bueno and Mario Jino
(2002). Automatic Test Data Generation for
Program Paths Using Genetic Algorithms”
International Journal of Software Engineering

and Knowledge Engineering, vol. 12, no. 6, pp
691-709.

[19] M. R. Girgis (2005). Automatic Test Data
Generation for Data Flow Testing Using a
Genetic Algorithm. Journal of Universal
computer Science, vol. 11, no. 5, pp. 898-915.

[20] A. S. Ghiduk, M. J. Harrold, M. R. Girgis
(2007). “Using genetic algorithms to aid test-
data generation for data flow coverage,” Proc. of
14th Asia-Pacific Software Engineering
Conference (APSEC 07), pp. 41-48. IEEE Press.

[21] M. Harman (2007). The current state and future
of search based software engineering. Proc. of
the International Conference on Future of
Software Engineering (FOSE’07), pp. 342-357.
IEEE Press.

[22] Baresel A, Sthamer H, Schmidt M. Fitness
(2002). Function Design to Improve
Evolutionary Structural Testing. In proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pp. 1329-1336,
New York, USA.

[23] P. McMinn (2004). Search-based Software Test
Data Generation: A Survey. Journal of Software
Testing Verification and Reliability, vol.14,
no.2, pp.105-156.

[24] A S. Ghiduk (2009). Search-Based Testing
Guidance Using Dominances vs. Control
Dependencies. 16th Asia-Pacific Software
Engineering Conference apsec2009, pp.145-151.
IEEE Press.

[25] J. Holland (1975). Adaptation in Natural and
Artificial Systems, ISBN 0 472 08460 7.
University of Michigan Press, Ann Arbor, MI.

[26] M. Srinivas, L. M. Patnaik, Genetic Algorithms:
a Survey, IEEE Computer, 27 (6), 17-26, 1994.

[27] M. S. Hecht (1977). Flow Analysis of Computer
Programs, Elsevier North Holland, New York.

[28] T. Lengauer and R. E. Trajan (1979). A Fast
Algorithm for Finding Dominators in a
Flowgraph. ACM Transactions on programming
Languages and Systems, vol. 1, pp. 121-141.

[29] Z. Michalewicz (1999). Genetic Algorithms +
Data Structures = Evolution Programs, 3rd
Edition, Springer.

USING GENETIC ALGORITHM AND… Informatica 34 (2010) 377–385 385

Appendix A
A part of the result of applying the system to test
requirement number 5 (statement 27).

Population Size: 4
Maximum Number of Generation: 100
Crossover Probability: 0.80
Mutation Probability: 0.15
Number of Input Variables: 3
Domain and Precession of Input Variables:
1..5, 0;1..5, 0; 1..5, 0
** GA Started **
 --
 Test Requirement No. 5 is Statement: 27
 Its Dominance Path is: -1 1 2 3 4 5 6 7 8 22 23 24 25 26 27
 --
*** Generation 1
 * -------------
*** Initial Population
 * Individual 1 = 2, 2, 3 = 001000100011
 * Individual 2 = 1, 1, 3 = 000100010011
 * Individual 3 = 1, 1, 2 = 000100010010
 * Individual 4 = 1, 3, 4 = 000100110100
 *
*** Evaluation of the Population
 *
 * Individual 1:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * Individual 2:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * Individual 3:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * Individual 4:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 11 12 13 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * ---
*** Generation 2
 * -------------
*** 1- Selection
 *
 * The Selection Preformed using Roulette Wheel depended on Cumulative
Fitness
 * The Selected Cases to be Parents of New Population are:
 * Parent 1 = Individual 1 = 2, 2, 3 = 001000100011
 * Parent 2 = Individual 3 = 1, 1, 2 = 000100010010
 * Parent 3 = Individual 2 = 1, 1, 3 = 000100010011
 * Parent 4 = Individual 3 = 1, 1, 2 = 000100010010
 *
*** 2- Recombination
 *
 * 2.1- Crossover
 * The Crossover Operation (Single Point Crossover) ***
 * Selected Parents Crossover Position Offsprings
 * 1 , 2 10 000100010011 001000100010
 * 3 , 4 10 000100010011 000100010010
 *
*** 2.2- Mutation
 * The Mutation Operation (Simple Mutation) ***
 * Selected Chromosome Mutation Position Mutated Chromosome
 * 1 2 010100010011
 *
*** The New Population is:
 * Individual 1 = 5, 1, 3 = 010100010011
 * Individual 2 = 2, 2, 2 = 001000100010
 * Individual 3 = 1, 1, 3 = 000100010011
 * Individual 4 = 1, 1, 2 = 000100010010
 *
*** Pre_Evaluation of the Population before adaptation to check is one of the out
of range individuals
 * satisfies the test requirement or not, and keep the optimal
 * 2, 2, 2 is a test case covers the test requirement.
 *
*** Check Range
 * Is the generated data locate in the specified range?
 * Yes, all generated data locates in the specified range.
 *
*** 3- Evaluation of the Population
 *
 * Individual 1:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * Individual 2:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 22 23 24 25 26 27 35 36 37 0
 * Uncovered Dominator Nodes:

 * Fitness Value: 1.000
 * Individual 3:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 * Individual 4:
 * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0
 * Uncovered Dominator Nodes: 22 23 24 25 26 27
 * Fitness Value: 0.600
 *
*** Elitist: If the best member of the current generation is worse than the best
member of the previous generation we exchange them, and the best
 * member of the current generation would replace the worst member of the
current population.
 *
*** The New Population is:
 * Individual 1 = 5, 1, 3 = 010100010011
 * Individual 2 = 2, 2, 2 = 001000100010
 * Individual 3 = 1, 1, 3 = 000100010011
 * Individual 4 = 1, 1, 2 = 000100010010
*******************************Report ***************************
** Best Fitness is: 1.000 ** Average Fitness is: 0.700
** Standard deviation is: 0.200 ** No. of Generations = 2
** The Test Requirement is satisfied and The Generated Test Case is: 2, 2, 2
** see individual 2 and its evaluation.

386 Informatica 34 (2010) 377–385 A.S. Ghiduk et al.

