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Ambiguity has an important part in the contrary observations around peripheral world. Entropy is 

imperative for measuring uncertain information which was first introduced by Shannon (1948) to measure 

the uncertain degree of randomness in a probability distribution. Fuzzy information measures have been 

applied widely in the area of decision making. Jensen–Shannon divergence is a useful distance measure 

in the probability distribution space. The present communication we propose a way of measuring the 

difference between two fuzzy sets by means of a function, called divergence. In addition, study of their 

detailed properties for its validity is also discussed. The applications of these newly developed fuzzy 

divergence measure have been provided to the optimal decision making based on the weights of 

alternatives. Numerical verification has been illustrated to demonstrate the proposed method for solving 

optimal decision-making problem under fuzzy environment. 

Povzetek: Za probleme medicinske diagnostike je narejena študija nedorečenosti in entropije. 

 

1 Introduction 
Information theory advanced out of mathematical studies 

of the problems linked with communication, storage, and 

transmission of massages. It originated from the 

fundamental paper “The Mathematical Theory of 

Communication” published by Shannon [1]. Shannon 

developed mathematical schemes for quantitatively 

defining the ideas of facts and proved several very trendy 

outcomes with deeper effects. Various generalizations of 

Shannon entropy were studied by Renyi [2], Arimoto [3], 

Sharma and Taneja [4], De Luca and Termini [5], 

Kaufmann [6] and Peerzada et al. [7]. Uncertainty and 

fuzziness are the primary nature of human wondering and 

of many real-world objectives. Fuzziness is found in our 

decision, in our language and inside the way we process 

information. The fundamental use of information is to get 

rid of uncertainty and fuzziness. 

In reality, we degree data furnished by using the 

quantity of probabilistic uncertainty eliminated in an 

experiment and the measure of uncertainty eliminated is 

also called as a measure of information while degree of 

fuzziness is the measure of vagueness and ambiguity of 

uncertainties. The theory of fuzzy sets (FSs) developed by 

Zadeh [8], as a generalization of classical set theory, for 

representing vague and indistinct phenomena. This idea 

serves as an effective tool for know-how of the behaviour 

of humanistic systems in which human judgment, 

perceptions and feelings play a critical role. In fuzzy set 

concept, the entropy is described as a degree of fuzziness 

which expresses the quantity of ambiguity or problem in 

we decide whether an element belongs to a set or not. 

Bhandari and Pal [9] extended the probabilistic 

exponential entropy idea of Pal and Pal [10] to the fuzzy 

phenomenon. Kapur [11] discussed fuzzy measures 

uncertainty due to fuzziness of information. 

In fuzzy context, several measures have been 

proposed to measure the degree of difference between two 

fuzzy sets. Measure of fuzzy divergence between two 

fuzzy sets gives the difference between two fuzzy sets and 

this measure of difference between two fuzzy sets is called 

the fuzzy divergence measure. 

The similarity measure is important tools that can be 

used in decision-making problem to deal with uncertainty 

through IFS theory. Various distance measures have been 

proposed by different researchers. It has been observed 

that different distance measure produces different values 

while measuring the distance degree between two IFSs. 

Also, sometimes existing distance measures are not able 

to give an appropriate and convenient result for a pair of 

IFSs. For this reason, it is always necessary to derive 

advanced measures for better decision making. 

To explain the distinction among fuzzy sets, the 

distance measure was set up and was regarded as dual 

model of correspondence measure. Many researchers, 

such as Yager [12], Kosko [13] and Kaufmann [6] had 

used distance measure to define fuzzy entropy. Several 

recent methods of fuzzy entropy generated by distance 

measure and properties of distance measure were extended 

by Fan et al. [14]. The distances among two fuzzy subsets 
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on a fuzzy subset of R+ were characterized by Dubois and 

Prade [15]. Thus, the set of distances between two sets was 

simplified whereas the shortest distance between two crisp 

sets was not simplified. The shortest distance among two 

fuzzy sets as a density function on non-negative reals was 

described by Rosenfeld [16]. Thus, related to Kullback 

and Leibler [17] probabilistic measure of divergence, the 

subsequent measure of fuzzy directed divergence was 

initiated by Bhandari and Pal [9]. Montes et al. [18] 

proposed an axiomatic form to measure the difference 

between fuzzy sets and we study in detail the case of local 

divergence. 

Luo and Zhao [19] gave the algorithms for pattern 

recognition and use it to solve medical diagnosis 

problems. Gupta and Tiwari [20] and Datta and Goala [21] 

proposed cosine similarity measure for intuitionistic and 

interval-valued intuitionistic fuzzy sets using an advanced 

distance measure on intuitionistic fuzzy sets.  

2 Preliminaries 
The model of entropy was initiated to arrange numerical 

quantity of ambiguity.  

Shannon [1] originated a quantity  

𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1      (1) 

for the uncertainty of a probability distribution 

(𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛) and called it entropy. 

A fuzzy set �̃� in a finite Universe of discourse X = 

(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛) is given by  

�̃� = {〈𝑥, 𝜇�̃�(𝑥)〉|𝑥 ∈ 𝑋}    (2) 

where 𝜇�̃�: X → [0,1]  𝑖𝑠 𝑡ℎ𝑒 membership function of 

�̃�.The number 

𝜇�̃�(𝑥) 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔𝑛𝑒𝑠𝑠 𝑜𝑓 𝑥

∈ 𝑋 𝑖𝑛 �̃�. 

De Luca and Termini [5] defined fuzzy entropy for a fuzzy 

set A corresponding to Shannon Entropy (1948) as 

H(�̃�) = −
1

𝑛
∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔(𝜇�̃�(𝑥𝑖)) +  (1 −𝑛

𝑖=1

𝜇�̃�(𝑥𝑖))𝑙𝑜𝑔(1 − 𝜇�̃�(𝑥𝑖))]   (3) 

Motivated by the fundamental properties of directed 

divergence, Kapur [11] explained the concept of fuzzy 

directed divergence as follows: The directed divergence of 

fuzzy set A from the fuzzy set B is a function D (A; B) 

that should comply with the subsequent requirements 

which satisfies the following conditions: 

1. 𝐷(𝐴; 𝐵) ≥ 0 

2. 𝐷(𝐴; 𝐵) = 0 𝑖𝑓𝑓 𝐴 = 𝐵 

3. 𝐷(𝐴; 𝐵) ≥ 0 is a convex function in (0,1) 

4. 𝐷(𝐴; 𝐵) ≥ 0 should not change, when 𝜇𝐴(𝑥𝑖) is 

changed to1 − 𝜇𝐴(𝑥𝑖)  and 𝜇𝐵(𝑥𝑖) is changed to 1 −
𝜇𝐵(𝑥𝑖). 

Now, corresponding to Kullback – Leibler’s [17] 

measure of divergence, Bhandari and Pal [9] proposed a 

fuzzy divergence measure A and B given by 

𝐷(𝐴; 𝐵) =
1

𝑛
∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
+ (1 −𝑛

𝑖=1

𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔
(1−𝜇𝐴(𝑥𝑖))

(1−𝜇𝐵(𝑥𝑖))
]     (4) 

Later, Shang and Jiang [22] was pointed out that the 

expression (4) has some limitations, i.e., if 𝜇𝐴(𝑥𝑖) 

approaches to 0 or 1, then its value tends to ∞. Therefore 

they proposed a modified version of fuzzy divergence 

measure (4), given as  

𝐽(𝐴; 𝐵) = ∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔
𝜇𝐴(𝑥𝑖)

𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑥𝑖)

2

+ (1 −𝑛
𝑖=1

𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔
(1−𝜇𝐴(𝑥𝑖))

1−(
𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑥𝑖)

2
)
]   (5) 

Corresponding to Kerridge [23] inaccuracy measure, 

Verma and Shrama [24] define a measure of inaccuracy of 

fuzzy set B with respect to fuzzy set A, as 

𝐼(𝐴; 𝐵) = −
1

𝑛
∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐵(𝑥𝑖) + (1 −𝑛

𝑖=1

𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔(1 − 𝜇𝐵(𝑥𝑖))]    (6) 

Ohlan [25] proposed a parametric generalized 

measure of divergence between two fuzzy sets A and B 

corresponding to Taneja [26] as 

𝐿𝑡(𝐴, 𝐵) = ∑
(𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑥𝑖))

2

2𝑡
𝑛
𝑖=1 ×

[
(𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑥𝑖))

𝑡

√𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖)
𝑡+1 +

(2−𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑥𝑖))
𝑡

√(1−𝜇𝐴(𝑥𝑖)).(1−𝜇𝐵(𝑥𝑖))
𝑡+1]  (7) 

    𝑡 = 0,1,2, … 

The generalized measure of fuzzy directed divergence 

of order 𝛼 and type 𝛽 is given by Arora and Dhiman [27] 

as 

𝐷𝛼
𝛽(𝐴: 𝐵) =

1

(1 − 𝛼)𝛽
∑ [{

𝜇𝐴(𝑥𝑖)𝛼𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)𝛼𝜇𝐵(𝑥𝑖)

𝑛

𝑖=1

+
(1 − 𝜇𝐴(𝑥𝑖))𝛼(1−𝜇𝐴(𝑥𝑖))

(1 − 𝜇𝐵(𝑥𝑖))𝛼(1−𝜇𝐵(𝑥𝑖))
}

𝛽

− 2𝛽] 

  where 𝛼 > 0, 𝛼 ≠ 1, 𝛽 ≠ 0. (8) 

Prakash and Kumar [28] proposed a new fuzzy 

divergence measure of fuzzy set B with respect to fuzzy 

set A, as follows: 

𝐾(𝐴, 𝐵) =

−𝑙𝑜𝑔 (
1+

1

𝑛
∑ [√𝜇𝐴(𝑥𝑖)𝜇𝐵(𝑥𝑖)+√(1−𝜇𝐴(𝑥𝑖)).(1−𝜇𝐵(𝑥𝑖))]𝑛

𝑖=1

2
)

      (9) 

Kumari et al. [29] proposed Weighted Fuzzy 

Exponential J-Divergence as 

𝐻(𝐴; 𝑊) =
1

𝑛(√𝑒−1)
∑ ∑ 𝑤𝑖𝑗[(𝜇𝐴𝑓𝑖𝑗)𝑒1−𝜇𝐴𝑓𝑖𝑗 + (1 −𝑀−1

𝑗=0
𝑀−1
𝑖=0

(𝜇𝐴𝑓𝑖𝑗)𝑒1−𝜇𝐴𝑓𝑖𝑗 − 1]                (10) 
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where 𝜇𝐴𝑓𝑖𝑗 is the membership values of the pixels in the 

image and 𝑓𝑖𝑗 is the (i, j) th pixel of the image A. 

Tiwari and Gupta [30] proposed entropy measures 

and erived relation between distance, entropy, and 

similarity measures for IvIFSs. 

3 Proposed Fuzzy Distance Measure 

Let X = (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛)be the universe of discourse. 

Let 𝐴= {〈𝑥𝑖, 𝜇𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} and B = 

{〈𝑥𝑖, 𝜇𝐵(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋}  be two fuzzy sets. Then we 

propose new distance measure as follows: 

𝐷(𝐴; 𝐵) =
2

𝑛
∑

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

1+ 𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

𝑛
𝑖=1  (11) 

Theorem 3.1. The fuzzy distance measure 𝐷(𝐴; 𝐵) 

defined in equation (11) is a valid measure of fuzzy 

divergence. 

Proof. All the necessary four conditions to be a 

distance measure are satisfied by the new distance 

measure which are as follows: 

(P1) 0 ≤ 𝐷(𝐴; 𝐵) ≤ 1 

(P2) 𝐷(𝐴; 𝐵) = 0 if and only if 𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖). 

(P3) 𝐷(𝐴; 𝐵) = 𝐷(𝐵; 𝐴) 

(P4) If A, B and C be three fuzzy sets, then the 

distance measure satisfies the triangular inequality, i.e., 

𝐷(𝐴; 𝐶) ≤ 𝐷(𝐴; 𝐵) + 𝐷(𝐵; 𝐶). 

Proof: We will now prove these conditions one by 
one: 

(P1)  As we know that, 𝐴= {〈𝑥𝑖 , 𝜇𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} for 

degree of membership 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 1. 

That is, for 𝐴= {〈𝑥𝑖 , 𝜇𝐴(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} and B= 
{〈𝑥𝑖 , 𝜇𝐵(𝑥𝑖)〉|𝑥𝑖 ∈ 𝑋} 

0 ≤ |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| ≤ 1 ⇒ 0 ≤
𝜋

2
|𝜇𝐴(𝑥𝑖) −

𝜇𝐵(𝑥𝑖)| ≤
𝜋

2
  

 ⇒ 0 ≤ 𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|} ≤ 1 

                  (12) 

 ⇒ 0 ≤ 1 + 𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|} ≤ 2

                  (13) 

From (12) and (13), we have  

0 ≤ 2.
𝑠𝑖𝑛 {

𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

1 +  𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}
≤ 1 

      ⇒   0 ≤
2

𝑛
∑

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

1+ 𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

𝑛
𝑖=1 ≤ 1 ⇒

0 ≤ 𝐷(𝐴; 𝐵) ≤ 1. 

(P2)  𝐷(𝐴; 𝐵) = 0 

⇔      
2

𝑛
∑

𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

1 +  𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

𝑛

𝑖=1

= 0 

⇔      
𝑠𝑖𝑛 {

𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

1 +  𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}
= 0 

⇔  𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|} = 0

⇔   |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| = 0 

⇔  𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖) ⇔   𝐴 = 𝐵 

Therefore, 𝐷(𝐴; 𝐵) = 0 if and only if 𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖).  

(P3)  As  

𝐷(𝐴; 𝐵) =  
2

𝑛
∑

𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

1 +  𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|}

𝑛

𝑖=1

 

            =
2

𝑛
∑

𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)|}

1 +  𝑠𝑖𝑛 {
𝜋
2

|𝜇𝐵(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)|}

𝑛

𝑖=1

 

= 𝐷(𝐵; 𝐴) 

To prove the triangular inequality, i.e., 𝐷(𝐴; 𝐶) ≤ 

𝐷(𝐴; 𝐵) + 𝐷(𝐵; 𝐶), we have to prove that   

(P4) In order to prove fourth necessary condition, we 

must first prove the identity 

sin(𝐴 + 𝐵) ≤ sin(𝐴) + sin (𝐵), where A and B 

are acute angles. 

or in other words, we have to show that 
sin(𝐴) + sin(𝐵) − sin (𝐴 + 𝐵) ≥ 0 

⇒  sin 𝐴 + sin 𝐵 − sin𝐴. 𝑐𝑜𝑠𝐵 − 𝑐𝑜𝑠𝐴. 𝑠𝑖𝑛𝐵
≥ 0 

⇒  sin 𝐴(1 − 𝑐𝑜𝑠𝐵) + sin 𝐵 (1 − 𝑐𝑜𝑠𝐴) ≥ 0 

Since A and B are acute angles, therefore,  

sin 𝐴, (1 − 𝑐𝑜𝑠𝐵) , sin 𝐵, (1 − 𝑐𝑜𝑠𝐴) are all positive 

and hence the identity holds good. 

Now, consider 𝐴 = {〈𝑥, 𝜇𝐴(𝑥)〉|𝑥 ∈ 𝑋}, 𝐵 = 

{〈𝑥, 𝜇𝐵(𝑥)〉|𝑥 ∈ 𝑋} and 𝐶 = {〈𝑥, 𝜇𝐶(𝑥)〉|𝑥 ∈ 𝑋} be 

three fuzzy sets. 

As,  

|𝜇𝐴(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)| ≤ |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| +
|𝜇𝐵(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|  

 (∵ 𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) 

⇒  𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|} ≤ 𝑠𝑖𝑛

𝜋

2
[{|𝜇𝐴(𝑥𝑖) −

𝜇𝐵(𝑥𝑖)| + |𝜇𝐵(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|}]  

⇒  𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|} ≤ 𝑠𝑖𝑛 {

𝜋

2
|𝜇𝐴(𝑥𝑖) −

𝜇𝐵(𝑥𝑖)|} + 𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐵(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|}  

Also. 
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1 + 𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐶(𝑥𝑖)|} ≤ 1 +

𝑠𝑖𝑛 {
𝜋

2
|𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|} + 𝑠𝑖𝑛 {

𝜋

2
|𝜇𝐵(𝑥𝑖) −

𝜇𝐶(𝑥𝑖)|}  

⇒  
1

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

≥

1

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

  

⇒  1 −
1

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

≤ 1 −

1

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

  

⇒  
𝑠𝑖𝑛{

𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

 ≤

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

  

⇒  
𝑠𝑖𝑛{

𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

     ≤

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

+

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

  

⇒
2

𝑛
∑

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

𝑛
𝑖=1      ≤

2

𝑛
∑

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

𝑛
𝑖=1 +

2

𝑛
∑

𝑠𝑖𝑛{
𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

1+𝑠𝑖𝑛{
𝜋

2
|𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑥𝑖)|}+𝑠𝑖𝑛{

𝜋

2
|𝜇𝐵(𝑥𝑖)−𝜇𝐶(𝑥𝑖)|}

𝑛
𝑖=1   

⇒  𝐷(𝐴; 𝐶) ≤ 𝐷(𝐴; 𝐵) + 𝐷(𝐵; 𝐶). 

Hence, the proposed distance measure satisfies all the 

necessary properties. 

4 Application of Proposed Fuzzy 

Measure to Medical Diagnosis 
In a classical problem of medical diagnosis, assume that if 

a doctor needs to diagnose some of patients "𝑃 =
{𝐴𝑙𝑒𝑥, 𝐶ℎ𝑟𝑖𝑠, 𝐽𝑎𝑚𝑒𝑠, 𝑀𝑖𝑘𝑒 𝑎𝑛𝑑 𝑆ℎ𝑎𝑤𝑛}" under 

some defined diagnosis "𝐷 = {𝑉𝑖𝑟𝑎𝑙 𝑓𝑒𝑣𝑒𝑟 (𝑉𝐹),
𝑀𝑎𝑙𝑎𝑟𝑖𝑎(𝑀), 𝑇𝑦𝑝ℎ𝑜𝑖𝑑(𝑇),
𝑆𝑡𝑜𝑚𝑎𝑐ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚(𝑆𝑃)𝑎𝑛𝑑 𝐶ℎ𝑒𝑠𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚(𝐶𝑃)}" 

and a set of symptom "𝑆 = {𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑇𝑒𝑚𝑝. ),
𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒(𝐻), 𝑆𝑡𝑜𝑚𝑎𝑐ℎ 𝑝𝑎𝑖𝑛 (𝑆. 𝑃𝑎𝑖𝑛),
𝐶𝑜𝑢𝑔ℎ(𝐶)𝑎𝑛𝑑 𝐶ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛(𝐶𝑃)}". The following 

tables (table 1 and table 2) serve the purpose of the 

proposed computational application: 

In view of the table 3, it is being concluded that 

"𝐴𝑙𝑒𝑥" is suffering from  "𝑀𝑎𝑙𝑎𝑟𝑖𝑎"; "𝐶ℎ𝑟𝑖𝑠", 

"𝐽𝑎𝑚𝑒𝑠" and "𝑀𝑖𝑘𝑒" are suffering from 

 "𝐶ℎ𝑒𝑠𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚" and "𝑆ℎ𝑎𝑤𝑛" is suffering from 

"𝑉𝑖𝑟𝑎𝑙 𝑓𝑒𝑣𝑒𝑟". 

This is because smaller value of the patient 
against each distance measure indicates the more 
probability of having the disease. 

5 Comparative Study 
Jain and Kumar [31] proposed the intuitionistic fuzzy 

based trigonometric entropy as: 

 Temp. H S. Pain C CP 

VF 0.4 0.4 0.3 0.1 0.6 

M 0.4 0.2 0.5 0.6. 0.7 

T 0.3 0.6 0.1 0.5 0.7 

SP 0.2 0.3 0.7 0.4 0.3 

CP 0.4 0.6 0.5 0.4 0.6 

Table 1: Fuzzy membership values for diseases and their 

symptoms. 

 Temp. H S. Pain C CP 

Alex 0.8 0.1 0.7 0.6 0.4 

Chris 0.3 0.6 0.8 0.4 0.7 

James 0.7 0.7 0.6 0.6 0.4 

Mike 0.5 0.4 0.5 0.4 0.6 

Shawn 0.5 0.6 0.3 0.2 0.9 

Table 2: Fuzzy membership values for patients and related 

symptoms. 

 Alex. Chris James  Mike Shawn 

VF 0.680965 0.493065 0.634603 0.273332 0.327418 

M 0.421368 0.421368 0.469442 0.296955 0.538941 

T 0.689085 0.24253 0.546709 0.444991 0.40803 

SP 0.42172 0.381062 0.516246 0.398187 0.670988 

CP 0.596858 0.233026 0.42181 0.148478 0.367724 

Table 3: Values of Fuzzy relative entropy measure for the 

patients and the likely diseases. 
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𝐸𝐼𝐹(𝐴)   =
1

𝑛
∑ [𝑐𝑜𝑠

𝜋

2
(|𝜇𝐴

2(𝑥𝑖) − 𝜈𝐴
2(𝑥𝑖)| )]

𝑛

𝑖=1

 

The fuzzy version of the entropy is: 

𝐸(𝐴)   =
1

𝑛
∑ [𝑐𝑜𝑠

𝜋

2
(|𝜇𝐴

2(𝑥𝑖) − 𝜇𝐵
2(𝑥𝑖)| )]

𝑛

𝑖=1

 

From the table, it is concluded that the larger value in 

the column is the decision value. 

Wei et al. [32] proposed the generalized fuzzy entropy 

as: 

𝐻(𝐴)   =
1

𝑛
∑ [{𝑐𝑜𝑠 𝜋 (

𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)

4
) − 1}

𝑛

𝑖=1

× 
1

√2 − 1
]  

From the table, it is concluded that the smaller value 

in the column is the decision value. 

6 Conclusions 
In this paper, we have proposed a relative distance 

measure for fuzzy sets. Proof of its validity is also 

considered through numerical computations. Some of the 

essential properties of the measure are also studied. It has 

been observed that this measure is more flexible in terms 

of their previous derived measures. Application of this 

measure is also studied in medical diagnosis to check its 

legitimacy. Also, from the table 4 and 5, it is concluded 

that the result obtained from the proposed entropy is 

similar with the results of the existing entropies (shown in 

table nos.), which validates the fact that the proposed 

entropy is valid and have applications across disciplines. 
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