
Informatica 29 (2005) 189–197 189

Model Checking Multi-Agent Systems

Mustapha Bourahla
Computer Science Department, University of Biskra, Algeria
mbourahla@hotmail.com

Mohamed Benmohamed
Computer Science Department, University of Constantine, Algeria
ibnm@yahoo.fr

Keywords: Multi-Agent Systems, Multi-Modal Branching-Time Logic, Model Checking

Received: September 21, 2004

Multi-agent systems are increasingly complex, and the problem of their verification and validation is ac-
quiring increasing importance. In this paper we show how a well known and effective verification tech-
nique, model checking, can be generalized to deal with multi-agent systems. This paper explores a particu-
lar type of multi-agent system, in which each agent is viewed as having the three mental attitudes of belief
(B), desire (D), and intention (I). We present a new approach to the verification of multi-agent systems,
based on the use of possible-worlds framework to describe the system, a multi-modal branching-time logic
BDICTL, with a semantics that is grounded in traditional decision theory, to specify the properties, and a
decision procedure based on model checking technique. An imperative multi-agent programming language
and a formal semantics for this language in terms of the BDICTL logic are used to specify multi-agent
systems. The multi-agent program is used to systemically construct the agents state spaces. Then an au-
tomatic synthesis of these state spaces using the agents mental attitudes will generate the possible worlds
structures. These possible worlds will be used by the adopted decision procedure to solve the problems of
verification. A preliminary implementation of the approach shows promising results.

Povzetek: Predstavljen je nov algoritem za preverjanje pravilnosti multi-agentnih sistemov.

1 Introduction

The design of (in particular safety-critical control) systems
that are required to perform high-level management and
control tasks in complex dynamic environments is becom-
ing of increasing commercial importance. Such systems
include the management and control of air traffic systems,
telecommunications networks, business processes, space
vehicles, and medical services. Experience in applying
conventional software techniques to develop such systems
has shown that they are very difficult and very expensive to
build, verify, and maintain. Agent-oriented systems, based
on a radically different view of computational entities, offer
prospects for a qualitative change in this position.

A number of different approaches have emerged as can-
didates for the study of agent-oriented systems [3, 6, 16,
18, 19]. One such architecture [16] views the system as a
rational agent having certain mental attitudes of Belief (be-
liefs can be viewed as the informative component of sys-
tem state), Desire (desires can be thought of as representing
the motivational state of the system), and Intention (the in-
tentions of the system capture the deliberative component
of the system). Thus BDI (Belief, Desire and Intention)
represents the information, motivational, and deliberative
states of the agent. These mental attitudes determine the

system’s behavior and are critical for achieving adequate
or optimal performance when deliberation is subject to re-
source.

To describe the belief, desire, and intention components
of the system state a propositional form is used, based on
possible worlds. Thus, the possible worlds model [16] con-
sists of a set of possible worlds where each possible world
is a tree structure. A particular index within a possible
world is called a situation. With each situation we associate
a set of belief-accessible worlds, desire-accessible worlds,
and intention-accessible worlds; intuitively, those worlds
that the agent believes to be possible, desires and intends to
bring about, respectively.

In this paper, we address the problem of verification for
such formalisms which is increasingly important. The for-
malism of multi-agent temporal logic [16] is introduced to-
wards lifting one of the most successful verification tech-
niques, model checking [4], for the validation of multi-
agent systems. Multi-agent temporal logic BDICTL com-
bines, within a single framework, the aspects of temporal
logic, used to reason about the temporal evolution of finite-
state automata, with agent-related aspects such as belief,
desire and intention.

The problem of extending the standard temporal logic
model checking techniques, and then using the related

190 Informatica 29 (2005) 189–197 M. Bourahla et al.

tools, to deal with the multi-agent aspects of the logic, is
the specification of the possible worlds and the relation be-
tween them. The essential of our contribution is to present
an approach by which we help reducing the specification
time. This approach is based on the automatic synthesis of
the mental attitudes of agents. Each mental state will be
an index to a new created world using the specifications of
the different agents. For illustrating our approach, we de-
signed a sub-language for specifying multi-agent systems.
The specification will be agent-oriented. A tool is devel-
oped for constructing the state space of each agent in the
multi-agent system. Then an algorithm is developed for
synthesizing the agent models of the specified multi-agent
system. The synthesis result is a possible worlds model.
At the end, we have adopted the standard model check-
ing for the analysis of these models of multi-agent systems.
A symbolic model checking tool for verifying multi-agent
systems has been implemented. The preliminary results are
extremely promising.

This paper is structured as follows. In Section 2 we de-
scribe the multi-agent temporal logic (BDICTL). In Sec-
tion 3, we present the specification sub-language and its
underlying intuitions, and define the language and the se-
mantics as a temporal logic. In Section 4, we present the
algorithm for synthesizing the corresponding multi-agent
structures. In Section 5, we present the extended general
algorithm for model checking. Finally, in Section 6 we out-
line the results, discuss future work, and draw some conclu-
sions.

2 Multi-Agent Temporal Logic
BDICTL

The temporal logic BDICTL [16] we consider is exten-
sion of Computation Tree Logic CTL [7] that has been
used extensively for reasoning about concurrent programs.
The branching-time logic CTL is extended to represent the
mental state or belief-desire-intention state of an agent.
This logic can then be used to reason about agents and
the way in which their beliefs, desires, and actions can
bring about the satisfaction of their desires. The syntax of
BDICTL is as follows.

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ∃Xϕ | ∃Gϕ | ∃ϕUϕ |
Biϕ | Diϕ | Iiϕ.

The primitives of this language include a nonempty setAP
of atomic propositions, propositional connectives ∨ and ¬,
modal operators B (agent believes), D (agent desires), and
I (agent intends), and temporal operators of CTL. The CTL
temporal operators are ∃Xϕ (ϕ might hold at next time in-
stant), ∃ϕUψ (it might be the case that ψ holds at a certain
time future and until then ϕ holds), and ∃Gϕ (ϕmight hold
for all future time instants). Temporal operators are com-
pactly characterized by ∃ϕUψ ⇔ (ψ∨ (ϕ∧∃X∃(ϕUψ)))
and by ∃Gϕ ⇔ (ϕ ∧ ∃X∃Gϕ). We have operators Biϕ,
Diϕ, and Iiϕ which mean that agent i has a belief, desire,

and intention of ϕ, respectively. This grammar is not given
in its most succinct form and there exist equivalence rules
to express the same formula with different operators; for
example, ∀Fϕ (ϕ is inevitable) is equivalent to ¬∃G¬ϕ.
In practice, by using these equivalence rules, a formula can
be written such that the negation appears only at the level
of atomic propositions. Such a form of a formula is known
as Negative Normal Form (henceforth NNF form).

The traditional possible-worlds semantics of beliefs con-
siders each world to be a collection of propositions and
models belief by a belief-accessibility relation B linking
these worlds. A formula is said to be believed in a world if
and only if it is true in all its belief-accessible worlds [10].
The accessibility relation B is a relation between the world
at an index and at a time point to a set of worlds. Intuitively,
an agent believes a formula in a world at a particular index
if and only if in all its belief-accessible worlds the formula
is true. We consider each possible world to be a tree struc-
ture with a single past and a branching future [5]. Eval-
uation of formulas is with respect to a world and a state.
Hence, a state acts as an index into a particular tree struc-
ture or world of the agent. The belief-accessibility relation
maps a possible world at a state to other possible worlds.
The desire-, and intention-accessibility relations behave in
a similar fashion. More formally, we have the following
definition of a Kripke structure.

Definition 1 A Kripke structure is defined to be a tuple
K = 〈W,S, {Sw : w ∈ W}, {Rw : w ∈ W}, {Iw :
w ∈W}, L,B,D, I〉, where W is a set of possible worlds,
S is the set of states, Sw is the set of states in each world
w ∈ W (S = ∪w∈WSw), Rw is a total tree relation, i.e.,
Rw ⊆ Sw × Sw, Iw a set of initial states (Iw ⊆ Sw),
L : W × S → 2AP is a function that labels for each world
w ∈ W , each state s ∈ Sw with the set of atomic propo-
sitions true in that state, and B, D, and I are relations on
the worlds W and states S (i.e. O ⊆W × S ×W), where
O is one of B, D, or I.

We also define a world to be a sub-world of another if
one of them contains fewer paths, but they are otherwise
identical to each other. More formally, we have the follow-
ing definition.

Definition 2 A world w′ is a sub-world of the world w,
denoted by w′ � w, if and only if

1. Sw′ ⊆ Sw, Iw′ ⊆ Iw, Rw′ ⊆ Rw,

2. ∀s ∈ Sw′ , L(w′, s) = L(w, s),

3. ∀s ∈ Sw′ , (w′, s, v) ∈ B iff (w, s, v) ∈ B; and simi-
larly for D and I.

The semantics of BDICTL involves two dimensions: an
epistemic and a temporal dimension. The truth of a formula
depends on both the epistemic world w and the temporal
state s. A pair (w, s) (denoted also sw) is called a situation

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 191

in whichBDICTL formulas are evaluated. The relation be-
tween situations is traditionally called an accessibility rela-
tion (for beliefs) or a successor relation (for time).

A BDICTL-model M is represented as a Kripke struc-
ture. We note a model M in world w as Mw. A trace
(path) in a world w ∈ W starting from sw is an infinite se-
quence of states ρw = sw

0 s
w
1 s

w
2 · · · such that sw

0 = sw, and
for every i ≥ 0, 〈sw

i , s
w
i+1〉 ∈ Rw. The (i + 1)-th state of

trace ρw is denoted ρw[i]. The set of paths starting in state
sw of the model Mw is defined by ΠMw

(sw) = {ρw |
ρw[0] = sw}.

For any BDICTL-model Mw and state sw ∈ Sw, there
is an infinite computation tree with root labeled sw such
that 〈sw

i , s
w
j 〉 is an arc in the tree if and only if 〈sw

i , s
w
j 〉 ∈

Rw. Satisfaction of formulas, denoted by |=Mw
, is given

with respect to a model M, a world w, and state s. The
expression s |=Mw

ϕ is read as “model M in world w and
state s satisfies ϕ”.

– s |=Mw p iff p ∈ L(w, s)

– s |=Mw ¬p iff s �|=Mw p

– s |=Mw ϕ ∨ ψ iff s |=Mw ϕ or s |=Mw ψ

– s |=Mw ∃Xϕ iff ∃ρw ∈ ΠMw (s) : ρw[1] |=Mw ϕ

– s |=Mw ∃Gϕ iff ∃ρw ∈ ΠMw (s) : ∀j ≥ 0 : ρw[j] |=Mw

ϕ

– s |=Mw ∃ϕUψ iff ∃ρw ∈ ΠMw (s) : (∃j ≥ 0 :
ρw[j] |=Mw ψ) ∧ (∀k, 0 ≤ k < j : ρw[k] |=Mw ϕ)

– s |=Mw Bi(ϕ) iff ∀v, (w, s, v) ∈ B : ∀s′ ∈ B(Bi(ϕ)) :
s′ |=Mv ϕ

– s |=Mw Di(ϕ) iff ∀v, (w, s, v) ∈ D : ∀s′ ∈ D(Di(ϕ)) :
s′ |=Mv ϕ

– s |=Mw Ii(ϕ) iff ∀v, (w, s, v) ∈ I : ∀s′ ∈ I(Ii(ϕ)) :
s′ |=Mv ϕ

We denote the set of states in the world v that are acces-
sible to the state s in the world w, where (w, s, v) ∈ O by
O(Oi(ϕ)) (more details are in Section 4). A formula ϕ is
said to be valid in Mv , written as |=Mv

ϕ, if s |=Mv
ϕ for

every state s ∈ Sv . A formula is valid if it is true in every
state, in every world, in every structure (model).

Recall that an agent i has a belief ϕ, denoted Bi(ϕ), in
state s if and only if ϕ is true in all the belief-accessible
worlds of the agent at state s. As the belief-accessibility re-
lation is dependent on the state, the mapping of B at some
other state may be different. Thus the agent can change its
beliefs about the options available to it. Similar to belief-
accessible worlds, for each state we also associate a set
of desire-accessible worlds to represent the desires of the
agent. Thus, in the same way that we treat belief, we say
that the agent has a desire ϕ in state s if and only if ϕ is
true in all the desire-accessible worlds of the agent in state
s.

In the philosophical literature, desires can be inconsis-
tent and the agent need not know the means of achieving
these desires. Desires have the tendency to ‘tug’ the agent
in different directions. They are inputs to the agent’s de-
liberation process, which results in the agent choosing a

subset of desires that are both consistent and achievable.
In the AI literature such consistent achievable desires are
usually called goals. The desires as presented here are log-
ically consistent, but due to the branching-time structure,
conflicting desires can ‘tug’ the agent along different ex-
ecution paths. That is, while the desires may be logically
consistent, they may not all be realizable, as the agent can
only follow one execution path in the branching tree of pos-
sible executions. The deliberation process must eventually
resolve these conflicts and choose a set of realizable desires
before the agent can act intentionally.

Intentions are similarly represented by sets of intention-
accessible worlds. These worlds are ones that the agent
has chosen to attempt to realize. The intention-accessibility
relation is used to map the agent’s current world and state
to all its intention-accessible worlds. We say that the agent
intends a formula in a certain state if and only if it is true in
all the agent’s intention-accessible worlds at that state.

3 Specification of Multi-Agent
Systems

A multi-agent system contains a finite number of agents.
The basic form of an agent is “agent A is init P ”, where
A is the name of the agent and P is the program body.
Each agent in a multi-agent system is assumed to have a
unique name, drawn from a set of agent identifiers . The
main part of an agent, which determines its behavior, is the
program body P . The basis of program bodies is a simple
imperative language, containing iteration (loop loops), se-
quence (the ; constructor), selection (a form of the if , then ,
else statement), choice (the | constructor), and assignment
statements.

An agent A is allowed to execute by a do instruction any
of a setActions = {α, · · ·} of external actions. The sim-
plest way to think of external actions is as native methods
in a programming language like Java. They provide a way
for agents to execute actions that do not simply affect the
agent’s internal state, but its external environment. The ba-
sic form of the do instruction is do α, where α ∈ Actions
is the external action to be performed. When we incorpo-
rate communication, we do so by modeling message send-
ing as an external action to be performed.

In a conventional programming language, conditions in
if statement are only allowed to be dependent on program
variables. Unusually, we allow conditions in if statement
to be arbitrary formulas of the BDICTL logic (any accept-
able formula is allowed as a condition). To make this more
concrete, consider the following:

if Bjp then r := p else r := false

The idea is that if the agent executing this instruction be-
lieves that agent j believes that p, then the agent executing
the instruction assigns the value of p to r. If the agent ex-
ecuting the instruction believes it is not the case that agent
j believes p, then it assigns the value false to r. Notice

192 Informatica 29 (2005) 189–197 M. Bourahla et al.

the form of words used here: the agent executing this if
instruction must believe that j believes p; the condition
does not depend on what j actually believes, but on what
the agent executing the statement believes that j believes.
As this example illustrates, conditions can thus refer to the
mental state of other agents. The general form of a loop
construct, as in conventional programming languages, is
loop P endloop, where P is a program.

Given a collection {A1, · · · , An} of agents, they are
composed into a multi-agent system by the parallel compo-
sition operator “‖”: A1 ‖ · · · ‖ An. Formally, the abstract
syntax of multi-agent systems is defined by the grammar
below.

MAS ::= Agent ‖ · · · ‖ Agent
Agent ::= agent A is Init P
Init ::= init p := true or false, where p ∈ AP
P ::= do α | p := true or false
| if ϕ then P | if ϕ then P else P
| loop P endloop | P ′;′ P | P ′|′ P

Example 1 To clarify this syntax, let us consider the fol-
lowing scenario involving two agents: a receiver rcv and
a sender snd. snd continuously reads news on a certain
subject (p) from its sensors (e.g., the standard input). Once
read the news, snd informs rcv only if it believes that
rcv does not have the correct knowledge about that sub-
ject (this in order to minimize the traffic over the network).
Once received the news, rcv acknowledges this fact back
to snd. After the reception of acknowledgement from the
agent rcv, the agent snd will believe that the agent rcv be-
lieves p ∨ q (q is a propositional atom) or it believes that
the agent rcv believes p (or q) in the case that the agent
rcv at the beginning, does not have the correct knowledge
about p (or ¬p).

We have therefore three agents: snd , rcv , and a network
(communication protocol) protocol which allows them to
interact. The descriptions of snd , rcv and the communica-
tion protocol protocol , are given below respectively.

agent snd is
init ∀p ∈ AP : p := false
loop

do read(p);
if p ∧ ¬Brcvp then

do putmsg(inform(snd, rcv, p));
do getmsg(inform(rcv, snd, Brcvp));
(Brcvp := true) | (Brcv(p ∨ q) := true);

else if ¬p ∧ ¬Brcv¬p then
do putmsg(inform(snd, rcv,¬p));
do getmsg(inform(rcv, snd, Brcv¬p));
(Brcvq := true) | (Brcv(p ∨ q) := true);

endloop

agent rcv is
init ∀p ∈ AP : p := false
loop

{
do getmsg(inform(snd, rcv, p));
p := true;
do putmsg(inform(rcv, snd, Brcvp));

} | {

do getmsg(inform(snd, rcv, ¬p));
q := true;
do putmsg(inform(rcv, snd, Brcv¬p));

}
endloop

agent protocol is
init ∀p ∈ AP : p := false
loop
∀p ∈ AP : p := false;
{
Bsnd∀F do putmsg(inform(snd, rcv, p)) := true;
Brcv∀F do getmsg(inform(snd, rcv, p)) := true

} | {
Bsnd∀F do putmsg(inform(snd, rcv, ¬p)) := true;
Brcv∀F do getmsg(inform(snd, rcv, ¬p)) := true

};
∀p ∈ AP : p := false;
{
Brcv∀F do putmsg(inform(rcv, snd, Brcvp)) := true;
Bsnd∀F do getmsg(inform(rcv, snd, Brcvp)) := true

} | {
Brcv∀F do putmsg(inform(rcv, snd, Brcv¬p)) := true;
Bsnd∀F do getmsg(inform(rcv, snd, Brcv¬p)) := true

}
endloop

mas = protocol ‖ snd ‖ rcv

In these descriptions, the news subject of the informa-
tion exchange is the truth value of the propositional atom
p. inform(snd , rcv , p) returns a message with sender snd ,
receiver rcv , and content p (inform is a FIPA (Founda-
tion for Intelligent Physical Agents) primitive). putmsg
and getmsg are the primitives for putting and getting (from
the communication channel) a message. read allows for
reading from the standard input. Brcv is the operator used
to represent the beliefs of rcv as perceived by the other
agents, and dually for Bsnd. Notice that the communica-
tion protocol has beliefs about rcv and snd and therefore
must have a representation of how they behave. We sup-
pose that this representation coincides with what rcv and
snd actually are, as described above. This allows us to
model the fact that the communication protocol behaves
correctly following what snd and rcv do. snd also has be-
liefs about rcv . We suppose that snd (which in principle
does not know anything about how rcv works) only knows
that rcv can be in one of two states, with p being either
true or false. In the example, Bsnd∀F do <statement>
(or Brcv∀F do <statement>) intuitively means that
snd (rcv) will necessarily reach a state in which it will have
just performed the action corresponding to<statement>.
The agent program protocol codifies the fact that the proto-
col implements the information flow between snd and rcv ,
and the fact that it always delivers the messages it is asked
to deliver. Some properties that we may want to prove are:

1. An agent liveness property, e.g., that snd will even-
tually believe that rcv believes p or believes ¬p. Its
expression is |=Mwsnd

∀F (Brcvp ∨ Brcv¬p). Where
wsnd is the world seen by the agent snd.

2. An overall system liveness property, e.g., that if it be-
lieves p, then in the future snd will believe that rcv

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 193

will believe p. Its expression is |=M Bsnd(p) ⊃
∀FBsnd∀FBrcvp.

3.1 Formal Semantics

The semantics of a multi-agent program will be defined as
a formula of BDICTL, which characterizes the acceptable
computations of the system, and the “mental state” of the
agents in the system.

The agent program semantic function is defined in terms
of the function [[· · ·]]Bexp : Bexp → B, which gives the
semantics of Boolean expressions. The four remaining se-
mantic functions are defined in Figure 1. The idea is that
the semantics are defined inductively by a set of definitions,
one for each construct in the language.

A declaration “agent A is init P ” binds a name A
with the semantics of the init statements and the pro-
gram body P . We capture the semantics of this by sys-
tematically substituting name A for the place-holder name
self in [[init]]Init ∧ [[P]]P . The semantics of a system
A1 ‖ · · · ‖ An is simply the conjunction of the seman-
tics of the component agents Ai, together with some back-
ground assumptions ψMAS . The idea of the background
assumptions is that these capture general properties of a
multi-agent system that are not captured by the semantics
of the language.

4 Construction of Possible Worlds
Model

We will develop an algorithm to construct a multi-agent
structure as defined in Definition 1. First we need to
build a structure for each agent specification then we will
synthesize these structures. At the beginning, a multi-
agent system will have a Kripke structure of the form
K = 〈W = {w1, · · · , wn}, S = {Sw1 , · · · , Swn

}, R =
{Rw1 , · · · , Rwn

}, I = {Iw1 , · · · , Iwn
}, L,B = ∅,D =

∅, I = ∅〉, where n is the number of agents. Then we will
compute the sets B, D, and I using the worlds w ∈W and
the labeling function L. At the end, a Kripke structure K
will be constructed representing the multi-agent system us-
ing the algorithm below. The initial Kripke structure K is
generated directly from the agents specifications. In each
world, there is a finite set of the BDI operators of the form
Oiϕ (whereO stands forB,D, or I). This set is considered
as a part of the atomic propositions AP .

Let us call TrueBDI(w,v)(s) the set of BDI atoms of
world w (of the current agent), of the form Oiϕ, which
are true at s (TrueBDI(w,v)(s) = BDI(w,v) ∩ L(w, s)).
v is the world of the agent i. An accessibility relation
O(w,v) ⊆ BDI(w,v) × Sv (or O(w,v)(Oiϕ) ⊆ Sv), con-
straints the truth of BDI (Oiϕ) atoms of a world w to the
truth values (of ϕ) in the world v. The states of world v ac-
cessible to s are those states belonging to the intersection,
over the BDI atoms true at s, of the sets of states accessible
to TrueBDI(w,v)(s). We extend the accessiblity relation

to a relation over a set of BDI atoms A ⊆ BDI(w,v) as
follows.

O(w,v)(A) =
⋂

Oiϕ∈A
O(w,v)(Oiϕ)

Therefore, the set of states of v accessible to a state s of w
will be simply denoted by O(w,v)(TrueBDI(w,v)(s)).

Depending on the kind of BDI operator being consid-
ered, the accessibility relation may have different proper-
ties. What makes M a model of a multi-agent possible
world is the particular structure of the accessibility rela-
tions among adjacent sub-worlds.

Definition 3 A BDICTL model M is a possible world
structure if for every word w, every BDI atom Oiϕ of w
and every s ∈ Sw the following conditions hold.

1. If Oiϕ ∈ L(w, s), then s′ ∈
O(w,v)(TrueBDI(w,v)(s)) implies that s′ is
reachable in v and s′ |=Mv

ϕ.

2. If Oiϕ �∈ L(w, s), then for some reachable state s′ ∈
O(w,v)(TrueBDI(w,v)(s)), s′ |=Mv

¬ϕ.

Condition 1 tells us what are the states in world
v which are accessible to a given state s (satisfying
TrueBDI(w,v)(s)), according to the semantics of BDIs ,
namely that the argument of a BDI true at a state must be
true in all the states reachable from it via accessibility re-
lation. Condition 2, on the other hand, tells us what are
the states of world w which actually comply to the seman-
tics of BDIs , i.e. the states which assign truth values to
BDI atoms in accordance with the semantics of the BDI
operator.

Let ϕ and ψ be two BDICTL formulas, assume that
ϕ ⊃ ψ, it would be unreasonable to allow for a state satis-
fying the BDI atom Oiϕ, yet not satisfying the BDI atom
Oiψ at the same time. This is the kind of situation that this
condition prevents. Indeed, let us suppose there is a state s
of a world w satisfying Oiϕ. By Condition 1 of Definition
3, any reachable state s′ of world v accessible to smust sat-
isfy ϕ. By Condition 2 of Definition 3, for s not to satisfy
the BDI atom Oiψ, there must be a reachable state s′′ in
world v accessible to s and which does not satisfy ψ. But,
according to Condition 1, all the states accessible to s must
satisfy ϕ and, consequently, ψ as well, which is impossible.

On the other hand, the definition of multi-agent struc-
ture allows for a state s of a world w to satisfy both BDI
atoms Oiϕ and Oi¬ϕ, where ϕ is BDICTL formula. This
happens when there is no state in world v is accessible to
s (i.e. when O(w,v)(TrueBDI(w,v)(s)) is empty). This
corresponds to the situation where world w, when in state
s, ascribes inconsistent BDIs to world v. Notice how-
ever that this kind of inconsistency is of a different nature
from the one ruled out by Definition 3. Indeed, allowing
a state s not to satisfy Oiψ while satisfying Oiϕ (where
ϕ ⊃ ψ) would make the specification of w itself incon-
sistent, while allowing both Oiϕ and Oi¬ϕ would not. It

194 Informatica 29 (2005) 189–197 M. Bourahla et al.

[[init p]]Init = Bselfp, p ∈ AP
[[do α]]P = Iselfα, α ∈ Actions

[[p := e]]P = ∀XBself [[e]]Bexp

[[if ϕ then P]]P = Bselfϕ⇒ [[P]]P

[[if ϕ then P1 else P2]]P = Bselfϕ⇒ [[P1]]P ∧ ¬Bselfϕ⇒ [[P2]]P

[[loop P endloop]]P = [[P ; loop P endloop]]P

[[P1;P2]]P = [[P1]]P ⇒ [[P2]]P

[[P1 | P2]]P = [[P1]]P ∨ [[P2]]P

[[agent A is init P]]Agent = ([[init]]Init ∧ [[P]]P)[A �→ self]

[[A1 ‖ · · · ‖ An]]MAS = [[A1]]Agent ∧ · · · ∧ [[An]]Agent ∧ ψMAS

Figure 1: Semantics of multi-agent program

is clearly possible, though, to rule out also the latter situa-
tion, by adding the additional constraint that every state s
must have a non-empty set of accessible states of the world
below (i.e. O(w,v)(TrueBDI(w,v)(s)) �= ∅).

4.1 Synthesizing Multi-Agent Structure

In this section we present a synthesis algorithm that auto-
matically constructs the suitable multi-agent Kripke struc-
ture M from a set of independently generated structures for
each agent specification and a selected set of BDI atoms,
thus leading to significant savings in the modeling phase.
The synthesis algorithm is reported below. It takes as input
a set of agents represented as world structures, and a set of
BDI atoms. Intuitively, the algorithm at each world com-
putes as a first step the accessibility relations associated to
each BDI operator of the world. This is done according
to Condition 1 of Definition 3. The second step is to im-
plement Condition 2 of the same definition. The idea is to
check whether there are states of the current world where
the negation of some BDI atoms conflicts with other BDI
atoms true at that state. Condition 2 tells us no such state
is admissible in a multi-agent structure as they correspond
to impossible combination of BDI atoms. Therefore, we
need to get rid of all those states in the structure of the
world. Once those two steps are performed at each world,
the resulting structure is indeed a multi-agent structure.

Algorithm 1 BUILD-MODEL(w,M)

{
for each i ∈ agent identifiers do

Let v be the world structure of the agent i
if BDI(w,v) �= ∅ then

Let wv be the world of the agent i as viewed by
the agent of the world w
M← BUILD-MODEL(wv,M)
M← CreateAR(w, v,M)

end if
end for
return(M)

}

The initial call is BUILD-MODEL(top, M), where top
is the root of the Kripke structure (in our example, is the
protocol agent). At the end of the algorithm, M will con-
tain the accessibility relations of the structure rooted at
w. The algorithm BUILD-MODEL recursively descends
depth-first the tree of worlds rooted at w, and builds the ac-
cessibility relations (algorithm below) with all the worlds
one level below the current world w. The creation of the
accessibility relations is using the algorithm MAS-Sat(w,
ϕ) (descried in the next section) which computes the set of
states satisfying the formula ϕ in the world w.

Algorithm 2 CreateAR(w, v,M)

{
/* Condition 1 of Definition 3 */
for each Oiϕ ∈ BDI(w,v) do

[[ϕ]]v ←MAS-Sat(v, ϕ)
O(w,v)(Oiϕ)← [[ϕ]]v

end for
/* Condition 2 of Definition 3 */
BadStates← ∅
for each Oiϕ ∈ BDI(w,v) do

[[¬ϕ]]v ←MAS-Sat(v, ¬ϕ)
BadBDI ← {A ⊆ BDI(w,v) \ {Oiϕ} |

O(w,v)(A) ∩ [[¬ϕ]]v = ∅}
BadStates← BadStates ∪ {s ∈ Sw |

TrueBDI(w,v)(s) ⊆ BadBDI}
end for
S′

w ← Sw \BadStates
if R′

w (which is Rw restricted to S′
w)

is total tree relation then
substitute w with 〈S′

w, R
′
w, Iw ∩ S′

w〉 inM
else remove w fromM
return(M)

}

Example 2 In Figure 2, the Kripke structure generated
from the agents specifications, contains three worlds for the
agents protocol , snd and rcv . The initial state is marked
by 0 and the list of atomic propositions true at a state are
written beside the circle representing that state. The values
of symbols m1, m2, m3 and m4 are inform(snd, rcv, p),

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 195

inform(snd, rcv,¬p), inform(rcv, snd,Brcvp) and
inform(rcv, snd,Brcv¬p), respectively. The first step of
the synthesis is the creation of the accessibility relations.
The agent protocol has beliefs on the agent snd and the
agent rcv thus, there are accessibility relations from its
world to new created worlds for the two agents as believed
by the agent protocol . These accessibility relations are il-
lustrated by dotted edges. We have also accessibility rela-
tions shown by dashed edges from the world(s) represent-
ing the agent snd to new created world representing the
agent rcv because the agent snd has beliefs on the agent
rcv . In the second step, we have removed the states (with
their edges) that are making conflicts (there are two states
as colored in the world of the agent snd). Then, the result-
ing Kripke structure is a possible world representing the
multi-agent system which can be used to check specified
properties for the multi-agent system.

5 BDICTL Model Checking

In this section, we present an extension of the standard CTL
model checking algorithm [4]. Given a BDICTL-formula
ϕ and a world of BDICTL-model Mw with a finite set
of states (Sw), the model checking algorithm MAS-Sat(w,
ϕ) (presented below) computes the set of states from the
world w satisfying the BDICTL formula ϕ. This set is
denoted [[ϕ]]w, and is computed in a recursive way, i.e. by
computing for each sub-formula ψ of ϕ the set [[ψ]]w. In
order to decide whether s |=Mw

ϕ we just have to check
whether s ∈ [[ϕ]]w.

Algorithm 3 MAS-Sat(w, ϕ)

{
case ϕ of
p | p ∈ AP : [[ϕ]]w ← {s | p ∈ L(w, s)}
Ojψ | Ojψ ∈ AP : [[ϕ]]w ← {s | Ojψ ∈ L(w, s)}
Ojψ |Ojψ �∈ AP : Let v be the world of the agent j

and let wv be the world of the agent j
as viewed by the agent of the world w
[[ψ]]wv ←MAS-Sat(wv, ψ)
O−1

(w,v)([[ψ]]wv)← {A ⊆ BDI(w,v) |
O(w,v)(A) ⊆ [[ψ]]wv}

[[ϕ]]w ← {s ∈ Sw |
TrueBDI(w,v)(s) ⊆ O−1

(w,v)([[ψ]]wv)}
¬ψ : [[ϕ]]w ← Sw\MAS-Sat(w, ψ)
ψ ∨ γ : [[ϕ]]w ←MAS-Sat(w, ψ) ∪MAS-Sat(w, γ)
∃Xψ : Q←MAS-Sat(w, ψ)

[[ϕ]]w ← {s ∈ Q | ∃〈s, s′〉 ∈ Rw ∧ s′ ∈ Q}
∃Gψ : [[ϕ]]w ← νZ.([[ψ]]w ∩ ∃X Z)
∃(ψUγ) : [[ϕ]]w ← µZ.([[ψ]]w ∪ ([[γ]]w ∩ ∃X Z))

end case
return([[ϕ]]w)

}

The standard model checking algorithm is adopted to ac-
cept formulas of the form Ojψ which are not BDI atoms.
To compute the set of states satisfying these formulas, first
we compute the satisfaction set [[ψ]]wv of the sub-formula

ψ, then we compute the set of BDI atoms (O−1
(w,v)([[ψ]]wv))

whose accessible states are sub-sets of [[ψ]]wv . At the end,
the satisfaction set of Ojψ is the states whose true BDI
atoms are subsets of O−1

(w,v)([[ψ]]wv).
For the last two cases ∃Gψ and ∃(ψUγ) we calculate

a fix-point. The satisfaction set of ∃Gψ is the greatest
fix-point (νZ.([[ψ]]w ∩ ∃X Z)), and the satisfaction set of
∃(ψUγ) is the least fix-point (µZ.([[ψ]]w∪([[γ]]w∩∃X Z))).

6 Conclusion and Related Work

We have presented a new approach to the verification of
multi-agent systems, based on the use of possible worlds
to describe the system, modal temporal logic to specify the
properties, and a decision procedure based on model check-
ing technique. One contribution is the presentation of an
imperative multi-agent programming language, and a for-
mal semantics for this language in terms of the BDICTL

logic. The multi-agent program is used to systemically
construct the agents state spaces. Our main contribution is
the synthesis of these state spaces using the agents mental
attitudes to generate the possible worlds structures. These
possible worlds will be used by the adopted decision pro-
cedure to solve the problems of verification.

The notions of possible worlds is inspired by the works
in [15, 17, 16] and the works in the field of multi-language
systems [8, 9]. Other related work is in [1], where a finitely
nested data structure is used to model the belief-desire-
intention states. The authors of [11] present an automata
theoretic approach to temporal modal logic restricted to the
case of single nesting of beliefs, applied to the specification
of knowledge-based systems.

In [22], the authors present the MABLE language for the
specification of multi-agent systems. In this work, modal-
ities are translated into nested data structures in the spirit
of [1]. The author of [2] use a modified version of the
AgentSpeak(L) language [14] to specify agents and to ex-
ploit existing model checkers. Both the works of [22] and
[2] translate the specification into a SPIN specification to
perform the verification. Effectively, the attitudes for the
agents are reduced to predicates, and the verification in-
volves only the temporal verification of those. In [13] a
tool is provided to translate an interpreted system into SMV
code, but the verification is limited to static epistemic prop-
erties, i.e. the temporal dimension is not present, and the
approach is not fully symbolic. The work of [12] is con-
cerned with verification of interpreted systems for model
checking knowledge and time based on OBDD’s.

Currently we are investigating the extension in many di-
rections. One is the extension of the language to support
the other types of expression. In particular the arithmetic
expressions, by incorporating a tool for abstracting the pro-
gram using the framework of predicate abstractions. An-
other problem which is taking our attention is the explo-
sion problem, where techniques like the equivalence based
reduction or space partition can be investigated. One of the

196 Informatica 29 (2005) 189–197 M. Bourahla et al.

0

1

Bsnd∀F do putmsg(m1)),

2

Bsnd∀F do putmsg(m2))

3

Brcv∀F do getmsg(m1))

4

Brcv∀F do getmsg(m2))

5

6

Brcv∀F do putmsg(m3))

7

Brcv∀F do putmsg(m4))

8 Bsnd∀F do getmsg(m3))

9 Bsnd∀F do getmsg(m4))

5 Brcv(p ∨ q)0

do read(p)

1

p, do putmsg(m1)

2

do putmsg(m2)

3

4

do getmsg(m4)

6

do getmsg(m3)

Brcvp

7 Brcvq

0

1

do getmsg(m1)

2

do getmsg(m2)

3

p

4

q

5 do putmsg(m3)

6 do putmsg(m4)

0

1

do getmsg(m1)

2

do getmsg(m2)

3

p

4

q

5 do putmsg(m3)

6 do putmsg(m4)

Figure 2: Construction of the possible worlds

most and interesting extension is to treat the case of func-
tional dependencies between the mental attitudes, where
a mental attitude is considered to be a function of one or
more other mental attitudes.

References

[1] Benerecetti M., F. Giunchiglia, and L. Serafini (1998)
Model checking multi-agent systems, Journal of
Logic and Computation 8(3), pp. 401–423.

[2] Bordini R. H., M. Fisher, C. Pardavila, and M.
Wooldridge (2003) Model checking AgentSpeak.
Proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multi-agent Sys-
tems (AAMAS’03).

[3] Bratman, M. E., D. Israel, and M. E. Pollack
(1988) Plans and resource bounded practical reason-
ing, Computational Intelligence 4, pp. 349–355.

[4] Clarke, E. M., O. Grumberg, and D. A. Peled (1999)
Model Checking, MIT Press.

[5] Cohen P. R., and H. J. Levesque (1990) Intention is
Choice with Commitment, Artificial Intelligence 42,
pp. 213–261.

[6] Doyle J. (1992) Rationality and its roles in reasoning,
Computational Intelligence 8(2), pp. 376–409.

[7] Emerson E. A., and J. Srinivasan (1989) Branching
time temporal logic, Linear Time, Branching Time
and Partial Order, Proceedings of Logics and Models
for Concurrency, Springer-Verlag, pp. 123–172.

[8] Ghidini C. and F. Giunchiglia (2001) Local Mod-
els Semantics, or Contextual Reasoning = Locality +
Compatibility, Artificial Intelligence 127(2), pp. 221–
259.

[9] Ghidini C. and L. Serafini (1994) Multi-language hi-
erarchical logics (or: how we can do without modal
logics), Artificial Intelligence 65, pp. 29–70.

[10] Halpern J. Y., and Y. O. Moses (1990) A guide to
completeness and complexity for modal logics of
knowledge and belief, Artificial Intelligence 54, pp.
319–379.

[11] van der Meyden R. and M. Y. Vardi (1998) Synthesis
from Knowledge-Based Specifications, Proceedings
of the 9th International Conference on Concurrency
Theory (CONCUR’98).

[12] Raimondi F. and A. Lomuscio (2004) Verification of
multi-agent systems via ordered binary decision di-
agrams: an algorithm and its implementation, Pro-

MODEL CHECKING MULTI-AGENT SYSTEMS Informatica 29 (2005) 189–197 197

ceedings of the First International Joint Conference
on Autonomous Agents and Multi-agent Systems (AA-
MAS’04).

[13] Raimondi F. and A. Lomuscio (2003) A tool for spec-
ification and verification of epistemic and temporal
properties of multi-agent system, Electronic Notes in
Theoretical Computer Science.

[14] Rao A. S. (1996) AgentSpeak(L): BDI agents speak
out in a logical computable language, Lecture Notes
in Computer Science.

[15] Rao A. S., and M. Georgeff (1998) Decision proce-
dures for BDI logics, Journal of Logic and Compu-
tation 8(3), pp. 293–344.

[16] Rao A. S., and M. P. Georgeff (1991) Modeling ra-
tional agents within a BDI architecture, Proceedings
of the Second International Conference on Principles
of Knowledge Representation and Reasoning, Mor-
gan Kaufmann.

[17] Rao A. S., and M. P. Georgeff (1992) An abstract ar-
chitecture for rational agents, Knowledge Representa-
tion and Reasoning, pp. 439–449.

[18] Rosenschein S. J., and L. P. Kaelbling (1986) The
synthesis of digital machines with provable epistemic
properties, Proceedings of the First Conference on
Theoretical Aspects of Reasoning about Knowledge,
Morgan Kaufmann, 1986.

[19] Shoham Y. (1991) Agent0: A simple agent language
and its interpreter, Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI91), pp.
704–709.

[20] Woodridge M. (2000) Computationally grounded the-
ories of agency, Fourth International Conference on
Multi-Agent Systems (ICMAS-2000), pp. 13–20.

[21] Woodridge M., and M. Fisher (1994) A decision pro-
cedure for a temporal belief logic, Proceedings of the
First International Conference on Temporal Logic.

[22] Wooldridge M, Fisher M., M.P. Huget, and S. Parsons
(2002) Model checking multi-agent systems with
MABLE. Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-agent
Systems (AAMAS’02).

198 Informatica 29 (2005) 189–197 M. Bourahla et al.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.720 841.680]
>> setpagedevice

