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Cloud computing consists of an advanced set of technologies that allow cloud providers to offer computing
resources such as infrastructure, platforms and applications to be accessible over the Internet as services.
Cloud computing relies on virtualization of resources in the cloud data centers, where a set of Virtual
Machines (VMs) are deployed on Physical Machines (PMs) to provision and serve user requests. Due
to the dynamic nature of cloud environments and complexity of resources virtualization, as well as the
diversity of user’s requests, developing effective techniques to evaluate and analyze the performance of
cloud centers has become highly required. In this paper, we propose the use of probabilistic model checking
as an effective framework for the evaluation and the performance analysis of resource provisioning in the
cloud. Based on an analytical model for resource provisioning in Infrastructure-as-a-Service (IaaS) cloud,
we build a stochastic model using the probabilistic model checker PRISM and analyze it against a useful set
of probabilistic and reward properties that help to measure and analyze cloud performance in an efficient
way.

Povzetek: Analizirane so razne komponente računanja v oblaku, npr. modeliranje in performance virov.

1 Introduction

Cloud computing is a novel information technology that
provides access to different IT services on demand over
the Internet. The services provided through the cloud
range into three main categories: Infrastructure as a Ser-
vice (Iaas), where infrastructure resources such as: servers,
storage, network components are provisioned. Platform
as a Service (PaaS), which provides an environment for
developing, running and managing applications efficiently
by reducing the complexity related to infrastructure. Soft-
ware as a Service (SaaS), which represents the largest cloud
market, in which the task of managing software is moved
to third-party services. Cloud computing has been treated
from different aspects such as: security [22], load balanc-
ing [24], storage[7] and consistency [21].

In cloud computing literature, we refer usually to ser-
vice providing by the technical term, provisioning. In this
regard, Vaquero et al. [23] defined cloud as: the provi-
sion of computing infrastructure, which aims to shift the
location of the computing infrastructure to the network in
order to reduce the costs associated to management and
maintenance of hardware and software resources. These
resources are offered to the customer by cloud providers
based on specific legally binding contracts called Service
Level Agreements (SLAs), which state Quality of Service
(QoS) parameters, such as time, cost, availability and se-
curity that should be guaranteed by service providers in or-

der to meet customer’s needs and execute service requests.
Buyya et al. [5] defined the cloud as: "A Cloud is a type
of parallel and distributed system consisting of a collec-
tion of inter-connected and virtualized computers that are
dynamically provisioned and presented as one or more uni-
fied computing resources based on service level agreements
(SLA) established through negotiation between the service
provider and the customers".

In IaaS cloud, virtualization plays a crucial role in en-
abling cloud computing services, in fact, it is a principal
mechanism that enables cloud providers to cope with mul-
tiple requests of users through virtualization of physical
machines(PMs). Virtualization refers to the abstraction of
computing resources in a way that a single physical ma-
chine can run a set of virtual machines(VMs)[3].

However, due to dynamic nature of cloud computing en-
vironments and the complexity related to managing infras-
tructure resources from a side, and the diversity in cus-
tomers requests from another, addressing the effective ways
to instantiate, provision and deploy infrastructure resources
to handle user requests and meet QoS requirements is con-
sidered as a big challenge and very critical issue in cloud
computing. Therefore, performance analysis and evalua-
tion of cloud computing environments have attracted re-
cently much attention and formed an active research area.

Cloud performance analysis is beneficial for both cloud
providers and consumers because it helps to get a deep in-
sight on the infrastructure resources and how they should
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be provisioned and scaled to execute various customers re-
quests. Among various performance and evaluation meth-
ods, analytical modeling-based methods represent the ma-
jor research that has been done in this area [8]. Since
resources provisioning and usage is highly variable and
uncertain, and since the arrival of customer requests is
stochastic, these methods are stochastic in general, and em-
ploy queuing theory with different buffers to cope with
a large number of requests given the available resources,
and thus, performance measures are quantified using prob-
abilistic methods. These stochastic methods can effectively
capture the uncertainty beyond cloud provisioning behav-
ior and estimate perfectly cloud metrics. Hence, SLA can
be maintained and an overall optimization can be achieved.
Continuous-time Markov Chains (CTMC), Stochastic Re-
ward Net (SRN) and Stochastic Petri Nets (SPN) are all
stochastic models that have been used for modeling and
analyzing cloud services performance, and they showed
promising results.

Performance behavior in the cloud is affected by a large
set of parameters, and thus many system variables must be
introduced to capture every modeling detail. CTMC mod-
els represent a good candidate to model every detail of the
system [12, 17]. However, as the system variables under
modeling grow up, the analysis could be intractable, since
it results in a very large state space, which is known as the
state explosion problem. To cope with such a problem, a
solution based on decomposing the entire model into small
interacting sub-models is proposed to facilitate and speed-
up the model generation[12].

Bradley et al.[4] stated that symbolic approaches are
very useful for performance and resilience modeling and
analysis of massive stochastic systems, and thus they
are very suitable for state space representation for cloud
computing systems. Symbolic techniques such as Multi-
terminal Binary Decision Diagrams are efficiently used to
encode CTMCs, and enable steady-state and transient anal-
ysis. These techniques are efficiently employed by the
probabilistic model checker PRISM[14], whose language
features synchronization between modules. These advan-
tages make PRISM a suitable tool for the performance anal-
ysis of cloud computing systems.

In this paper, we aim to show how probabilistic model
checking can be used for the performance analysis and
evaluation of IaaS cloud based on analytical modeling
methods using CTMCs. Probabilistic model checking has
appeared as an extension of model checking for analyz-
ing systems that exhibit stochastic behavior. These systems
are described usually using Discrete-Time Markov Chains
(DTMC), Continuous Time Markov Chains (CTMC) or
Markov Decision Processes (MDP), and verified against
properties specified in Probabilistic Computation Tree
Logic (PCTL)[13] or Continuous Stochastic Logic (CSL)
[1, 2].

Using the probabilistic model checker PRISM [14], we
show that analytical models, even if they are composed of
many interacting sub-models, can be easily expressed in

PRISM language and analyzed in an efficient way. The en-
tire model can be generated from interacting sub-models in
reasonable time thanks to many numerical solution meth-
ods employed by PRISM that can deal perfectly with the
state explosion problem. In this paper, we chose the model
proposed by [12] as a case study. With probabilistic model
checking, we will not be able only to compute probabilities
related to QoS metrics, but also we can verify such safety
properties and analyze reward-based properties.

The rest of this paper is organized as follows. In Sec-
tion 2 we present some related works to cloud performance
analysis. Section 3 presents some preliminaries and defi-
nitions on PRISM language. In section 4, we present the
analytical model and its implementation in PRISM with
detailed analysis of probabilistic and reward properties. Fi-
nally, we conclude the paper in Section 5.

2 Related work

The performance analysis and evaluation of cloud com-
puting services can be performed through two ways:
measurement-based methods and analytical modeling-
based methods. In measurement-based methods [19], both
cloud services and performance metrics to be evaluated
should be known in prior, and then the benchmark to be
tested should be chosen accordingly. After that, the test-
ing experiments can be executed. Actually, this technique
suffers from extensive experiments that should be executed
with different workloads and system configurations, which
may make the construction of appropriate testbeds that
can represent realistic cloud services scenarios a costly
task. Despite that, some measurements become invalid
when cloud service providers upgrade their software and
hardware to enhance their services. Therefore, analytical
modeling-based methods are considered as a good alterna-
tive since they are of low cost, and can cover large param-
eters of cloud services, especially that these methods can
analyze features of services even in early stages of design.

Li et al. [20] addressed the analysis of cloud services
by modeling the service as a queuing network consisting of
two tandem servers, web server and service server. After
service completion at the level of the web server, the re-
quest either exits the network or continues to be executed
at the service server. Both servers are modelled as M/M/1
queue with an exponential distribution of arrival and ser-
vice times. The main metric under evaluation in this paper
was response time. Based on this measure, a relationship
between the number of customers, the minimal service re-
sources and the highest level of services can be easily de-
rived. However, this work lakes an important feature in
cloud computing modeling, which is virtualization.

Chen et al. [6] have also considered queuing network
to estimate two different performance metrics, which are
practically needed more in the context of cloud comput-
ing, request completion time (ECT) and rejection prob-
ability (RP). The authors in this work consider also two
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queues, admission queue, and PM queue. Visualization is
addressed considering many parameters, such as buffer size
of queues, number of virtual machines, number of physical
machines and error/recovery rates. In this work, each job
is denoting a VM instance, and each VM is deployed on a
single PM.

While previous works assume an exponential distribu-
tion of requests, considering heterogeneity in cloud model-
ing is actually more appropriate to better analyze some dy-
namic properties. In this regard, Khazaei et all. [16] intro-
duced an embedded Markov model as an approximate an-
alytical model based on M/G/m/m+r queuing system with
single task arrivals and a task buffer of finite capacity. By
solving the approximate model, complete probability dis-
tribution of the request response time, and important per-
formance indicators such as the mean number of tasks in
the system, the blocking probability, and the probability of
immediate service can be easily estimated.

Covering more cloud services parameters by perfor-
mance evaluation model is highly needed. However, some-
times the analysis of such a model tends to be intractable.
To deal with this issue, some works [12, 17] proposed
a solution based on interacting stochastic sub-models of
Continuous-time Markov Chain (CTMC), thus, quantify-
ing performance metrics can be realized in a scalable man-
ner. In [12], the main QoS addressed was service avail-
ability and provisioning response delays. The requests or
jobs submitted by users can be served in different pools
named (hot, warm and cold), the decision in which pool
the request should be served is made by a module called
resource provisioning decision model, which is a CTMC
model consisting of a queue with finite length. Another
queue is found at each PM, where some requests/jobs can
wait for VM provisioning. While this model is limited to
service requests with a single task, Kazai et all. [17] pro-
posed a similar solution, but capable of dealing with batch
arrival of requests, where multiple VMs can be provisioned
to handle multi-tasks based on a single service request, thus
realizing a high degree of visualization.

Probabilistic model checking has already been used for
modeling and analysis of cloud computing. Kikuchi and
Matsumoto [18] have used PRISM for the performance
modeling and analysis of concurrent live migration oper-
ations in cloud computing systems. Live migration plays a
crucial role in cloud virtualization since it guarantees trans-
porting VMs from a host to another without affecting the
performance of the services. The authors described the
performance model of concurrent VM live migration op-
erations as a CTMC in PRISM language, and it has been
verified against two main quantitative properties regarding
the operations that can be stacked in waiting state at sender
side, and the operations that are executed at server side.

In [15], the authors defined an interesting set of resource
usage patterns in PRISM language as an MDP, and then in-
troduced a set of reward-based properties for analyzing cost
variation, and min/max probabilistic properties to analyze
deployment’s resource usage. These probabilistic patterns

before being generated as MDPs, are first expressed in a
higher language called probabilistic pattern modeling lan-
guage (PPM).

Evangledis et al. [9] addressed performance modeling
and formal verification of auto-scaling policies in PaaS and
IaaS to provide performance guarantees to reduce SLAs
violations, where two cloud services providers Amazon
EC2 and Azure have been considered. The authors consid-
ered rule-based auto-scaling policies, where upper and/or
lower bound on performance metrics such as CPU are ex-
pressed. The dynamics of auto-scaling process are ex-
pressed in PRISM as DTMC, and verified against proba-
bilistic properties to estimate CPU utilization and response
time violation for each auto-scaling policy, thus refining
QoS violation thresholds for the policies.

We summarize the existing related work in Table 1

3 PRISM

PRISM is a tool used for formal modeling and analyz-
ing systems that exhibit random or probabilistic behav-
ior [14]. It supports several types of probabilistic mod-
els such as DTMCs, CTMCs and MDPs. The analysis is
performed on these models against properties specified in
PCTL logic [13] for DTMCs and MDPs and Continuous
Stochastic Logic (CSL) [1, 2]for CTMCs. PRISM uses
several numeric methods for model analysis such as Gauss-
Seidel method, Backwards Gauss-Seidel method and Ja-
cobi method. For MDPs and CTMCs, PRISM uses value it-
eration and uniformisation, respectively. As additional fea-
tures, PRISM offers a simulation framework for reasoning
about probabilities and rewards.

A model in PRISM consists of one or several modules
that interact with each other. The module is specified using
PRISM language as a set of guarded commands.

[< action >] < guard >−→< updates >

Where the guard is a predicate over the variables of the
system and the updates describe probabilistic transitions
that the module can make if the guard is true. These up-
dates are defined as follows:
< prob >:< atomicupdate > +.....+ < prob >:<

atomicupdate >

When representing CTMCs, < prob > will refer to
transition rates instead of discrete probabilities. PRISM
also supports rewards which are real values associated with
states or transitions of the model. Where state rewards can
be specified as: g : r, and transition rewards are repre-
sented as: [a]g : r.

The properties for a CTMC model can be specified in
CSL logic that allows the specification of both transient
behavior and steady state behavior. We use the P opera-
tor for specifying transient properties and S operator for
specifying steady state properties. Another interesting op-
erator employed is the R operator that is used to reason on
the expected value of rewards.

Example
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Analytical
models

Analytical
Tools

Properties Scope Experimental
setting

Ghosh et al. [12] CTMCs SPHERE
service availability,

provisioning response
delays

Infrastructure IBM
SmartCloud

Khazaei et al.[17] CTMCs Maplesoft
rejection probability,

response
delays

Infrastructure Artifex engine

Li et al.[20] queuing net-
works

Matlab
completion time,

rejection probability,
system overhead rate

Infrastructure –

Chen et al. [6] queuing net-
works

–
Rejection probability,

task completion
time

Infrastructure XenServer
and OpenStack

Kikuchi et al.[18] CTMCs PRISM
stacked operations,
executed operations Infrastructure XenServer

Jhonson et al.[15] MDPs PRISM
Cost variation,
deployment’s

resource usage
Infrastructure –

Evangledis et al.[9] DTMCs PRISM
CPU utilization,

response time violation
Infrastructure,

Platform
Amazon EC2

and Azure

Table 1: Main related work on cloud performance analysis.
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Figure 1: Queue model.

Let us consider the CTMC presented in Figure 1. It repre-
sents a queuing system with maximum length 3. The sys-
tem can move from an empty state, where there is no job
to a new state with (q = 1) by the arriving of a new job
wit rate λ, and can return to the previous state by serv-
ing the job with a rate µ. The same thing applies for the
rest of states. The corresponding module for this model
is described in Figure 2. We have to declare 3 vari-
ables, the integer variable lq that refers to queue length and
two double variables representing the arrival and services
rates. The main variable is q, which represents the possi-
ble states of the system through raising two main transi-
tions, Arrive and Service, with their corresponding rates.
We can express probabilistic properties based on the value
of time variable T . For instance, we can express a CSL
property that states that the probability of the queue be-
ing full with time T should not exceed the probability
0.5: P <= 0.5[trueU <= T“full”]. The property

1 ctmc
2 const int lq = 3;//queue length
3 const double lambda = 1/10;//arrival rate
4 const double mu = 1/2;//service rate
5 module Queue
6 q: [0..lq] init 0;
7 [Arive] (q<lq) -> lambda: (q’=q+1);
8 [Serve] (lq>0) -> mu : (q’=q-1);
9 endmodule

10 label "full"= q=3;

Figure 2: Prism model for the queuing system.

can be rewritten in a different way to estimate the prob-
ability of the property being true within time unit T as
P =?[trueU <= T“full”].

4 Case study

The model that we are going to study concerns data cen-
ters that consist of a number of Physical Machines (PMs)
[12]. When user requests arrive at a cloud center, a vir-
tual machine or many VMs are deployed on PMs to serve
this request. A single VM can be provisioned to serve a
single request, however, in reality, multiple VMs can be
provisioned on a single or multiple PMs to serve such com-
plex request or super-task [17]. The PMs are grouped into
three servers: hot (i.e., running VMs), warm (turned on,
but without running VMs) and cold (turned off). It is tried
first to provision the request on a hot pool if there is enough
capacity, if there is no a hot PM available, there will be a
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look-up for a warm PM, if all warm PMs are busy, a PM
in the cold pool is used. In the case where no PM is avail-
able in all pools, the request will be simply rejected. The
strategy of regrouping the PMs into multiple pools results
in a good performance by reducing VMs provisioning de-
lay and operational costs. The model proposed consists of
three sub-models that refer to the three main steps of cloud
servicing, which are resource provisioning decision, VM
provisioning, and run-time execution. The overall solution
is obtained by interacting over these three sub-models. The
steps of provisioning and servicing are presented in Figure
3. In the following, we will describe each of the CTMCs
models.

4.1 Resource provisioning decision model
(RPDM)

This module is responsible for choosing the PM that can ac-
cept the request and in which pool. A finite decision queue
is employed, where decisions are made on FIFO basis. The
arrival to RPDM is modeled as Poisson process with arrival
rate λ. The related CTMC model is shown in Figure 5.

The states in the model are presented as pairs (i, j),
where i denotes the number of requests being waiting in
the global queue, and j denotes the pool on which the re-
quest is under provisioning. The initial state (0, 0) means
that the system is in an empty state, where there is no re-
quest, neither in the queue nor under provisioning. j is set
to ’h’ if there is at least one hot PM that can accept the job
for provisioning. Similarly, when j is set to ’w’ (or ’c’),
that means that a warm (or cold) PM can accept the job
for provisioning. The waiting queue for this model has a
maximum number N .

From the initial state, by arriving of a new request, the
system moves to the state (0, h) with rate λ, since it tries
to find a hot PM first. From this state the following three
possible transitions can occur:

– A request is accepted for provisioning in a hot PM,
and thus the module returns to the state (0, 0) with
rate Phδh.

– Another request arrives, and the system moves to state
(1, h) with rate λ.

– No hot PM can accept the request for provisioning due
to insufficient capacity, and thus the system tries to
find a warm PM and transits to state (0, w) with rate
δh(1− Ph)

Now, from the state (0, w), the model tries to find an
available warm PM to provision the request, if one warm
PM is available, the model moves back to the initial state
with rate Pwδw, otherwise, the module tries to find a PM in
cold pool by making a transition to (0, c) with rate δw(1−
Pw). Then, from the state (0, c), the request can be either
accepted in the cold pool, and thus the model moves back
to the initial state with rate Pcδc, or the request is rejected
when there is no available cold PM, and thus the model

moves to the same state with a rate δc(1 − Pc). The state
where i >= 1 means that i request is waiting in the queue.

The related prism module of this model is depicted in
Figure 6. We use two main variables, i and j, where i
refers to the number of jobs waiting in the queue, and j de-
notes the type of pool (j=1 for hot, j=2 for warm and j=3
for cold). The commands with wait action and rate λ (lines
6, 11 and 16) refer to a new request waiting and staying at
the same pool, hot, warm and cold respectively. The other
commands of provision refer to the provision in hot, warm
and cold respectively with the appropriate rates. The rest of
the commands where no action is defined refer to search-
ing for a PM in the next pool. While wait actions have no
control on the entire model, and they are just used for in-
dication, the other actions (Provision_hot, Provision_warm
and Provision_cold) are used for synchronization with the
rest of provisioning models (hot, warm and cold).

To build our model we need global as well as local vari-
ables. While local variables are defined at each module,
global variables are defined at the top of the global model,
thus they can be used by all modules. The rates in CTMC
models are usually defined as global variables. In addition,
we can define some variables that play an important role in
defining properties such as the time variable T . The set of
variables with their values are presented in Figure 4. These
values are basically adapted from [12, 10].

4.2 VM provisioning models
These models capture instantiation, configuration and pro-
visioning of a VM on a PM. The model for provisioning
a hot PM is described as a CTMC in Figure 10. In this
model, requests, PMs and VMs are all assumed to be ho-
mogeneous, and each request is for one VM instance. We
also assume that inter-arrival time, service time and VM
provisioning time are all exponentially distributed.

Figure 10: VM provisioning model for each hot PM[12,
11].

States of provisioning model are controlled by three
main variables i, j and k, where i presents the number
of requests in PM’s queue, j presents the number of VMs
currently being provisioned, and k presents the number of
VMs which have already been deployed. There are also in-
put parameters that control the model, Lh that represents
the size of PM’s queue, j can be 0 or 1 if the VMs are
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Figure 3: Request provisioning and servicing steps [12].

assumed to be provisioned one at a time, otherwise, a pa-
rameter can be introduced to refer to the number of VMs
under provisioning. Finally, we have the maximum value
of k, which refers to the maximum number of VMs that can
run in parallel (m). The other parameters concern rates: ef-
fective job arrival rate (λh), VM provisioning rate (βh) and
service rate (µ).

As we see in Figure 10, when a request arrives, the
model moves from state (0,0,0) to state (0,0,1) with a rate
λh, which means that the current request is under provi-
sioning, then it moves to the state (0,0,1), with a rate βh,
the last state indicates that one VM is deployed, upon ser-
vice completion, VM instance is removed and the model
goes back state (0, 0, 0) with service rate µ.

The related PRISM mode for a hot PM is presented in
Figure 7. We use here three variables: xh that refers to
the state of PM’s queue, yh that refers to the provision-
ing state and zh that refers to the number of VMs being
deployed. The commands refer in order to provisioning,
deployment and service respectively. An additional action
has been added just to use it in properties that specify the
number of requests being rejected.

The two other CTMCs for warm and cold PMs are sim-
ilar, though, they can define different arrival and instan-
tiation rates (see Figure 11 and Figure 12). The most
important difference concerns provisioning step, where in
both warm and cold pools, PMs are turned on but not ready
to use, thus, they require additional startup time. Time to
make a warm/cold PM ready for use is exponentially dis-
tributed with a rate γw/γc.

The related PRISM modules describing warm and cold
provisioning models are shown in Figures 8 and 9 re-
spectively. We notice that warm and cold models define
the same variables and steps as the hot model does, ex-
cept with the provisioning step, where the values yw and
yc have a larger range, yw = 2/yc = 2 refer to 1∗ and

yw = 3/yc = 3 refers to 1∗∗. Thus, compared to the hot
model, an additional section has to be added starting from
line 11.

For the following values: (lq = 6, lh = 1, lw = 1, lc =
1 and m = 2), the model generated by PRISM consists of
72859 states and 289147 transitions. The size of the model
may mainly vary to the number of variables used in the
module, as well as the range of their values. For instance,
if we let the value of j of warm and cold pools as the same
as hot (i.e [0..1]), we had to introduce two new Boolean
variables to replace the values 2 and 3 of j. Such a solution
could result in an additional large set of states.

Figure 12: VM provisioning model for each cold PM[11].

4.3 Specification
In this section, we will show how we can specify quanti-
tative properties in PRISM to reason about many measures
of cloud performance through various operators employed
by PRISM, which are the transient operator P , the steady
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1 //arrival and service rates
2 const double lambda;
3 const double mu;
4 // provisioning rates
5 const double betaH=1;
6 const double betaW=1/2;
7 const double betaC=1/3;
8 //max VMs deployed, time and global queu size
9 const m=2 ;

10 const double T;
11 const lq =6;
12 // buffer size hot, warm,cold
13 const lh=1;
14 const lw=1;
15 const lc=1;
16

17 const double deltaH=3;
18 const double deltaW=3;
19 const double deltaC=3;
20 // prob. off succes in hot, warm and cold
21 const double ph=0.9 ;
22 const double pw =0.8 ;
23 const double pc=0.7 ;
24

25 const double lamH =deltaH* (1-ph);
26 const double lamW=deltaW * (1-pw);
27 const double lamC =deltaC* (1-pc);
28

29 const double muH=deltaH*ph;
30 const double muW=deltaW*pw;
31 const double muC=deltaC*pc;
32

33 const double lambdaH = lambda/2;
34 const double lambdaW =lambda/4;
35 const double lambdaC =lambda/5;
36

37 const double gammaW =1;
38 const double gammaC=1;

Figure 4: Global variables.

Figure 5: Resource provisioning decision model[12].

operator S and the reward operatorR. The model checking
algorithm used during the analysis phase is Jacobi method,
though, we can use other methods such as Gauss-Seidel
method. We can use many variations in the model param-
eters during the analysis, such as the number of PM’s, the
number of VMs, arrival and service rates, etc. Since each
PM is represented by a complete module, to ease the anal-
ysis, we are going to fix the number of PMs, so no module
duplication will be used.

We can use the simulation framework of PRISM to pro-
vide a detailed analysis based on these values. The differ-
ent graphs to plot will be based on the variation of three
main values, arrival rate λ, service rate µ and time variable
T . All the values are considered in minutes. We will show
that the main measures, job rejection probability and wait-
ing time can be easily computed using probabilistic and
reward properties. We will also show how to obtain addi-
tional important measures. Before presenting these proper-
ties, we should introduce some labels that are employed to
express in a better way these properties. The set of labels
that we are going to use are presented in Figure 13, and the
set of rewards are presented in Figure 14.

Job rejection probability As explained before, job re-
jection could be at the level of the global queue, where
the buffer size reaches its limit, or on the level of the pro-
visioning module, where there is no sufficient resources,
which means that all PMs queues are full (xh=lh & xw=lw
&xc=lc). To obtain the rejection probability due to insuf-
ficient capacity we use the following steady-state property
:
S =?[”all_Pools_Full”]

We fix the arrival rate by λ = 8, and we use different
values of the mean service time µ to obtain the results pre-
sented in Figure 15. From the Figure, we see that increas-
ing the mean service time results in increasing job rejec-
tion probability. It’s evident that taking more time to serve
a request could result in rejecting new arriving requests.
We can also use a steady property to estimate the long-run
probability of the queue being more than 75% full, this in-
teresting property results in 0.99 and can be expressed as
the following: S =?[i/lq > 0.75].

Another important measure can be estimated using
steady-state operator is the steady probability that the sys-
tem is in full provision state (yh = 1&yw >= 1&yc >=
1), which means that in all pools, there is a request be-
ing provisioned. This property is expressed as S =
?[”all_Provision”] and returns a value of 0.94.

We can reason on minimum and maximum delay time
taken for provisioned requests before being served. To do
so we use the following reachability reward properties that
estimate the reward accumulated along a path until a certain
state is reached. The time reward is denoted by "time" in
Figure 14 (line 9), where every transition is counted.
R”time” =?[F (j = 1&zh = 1){j = 1&zh =

0}{max}]
R”time” =?[F (j = 2&zw = 1){j = 2&zw =
0}{max}]
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1 module rpdm
2 i: [0..lq];
3 j:[0..3] init 0;
4

5 [] (i=0) &(j=0)-> lambda :(i’=i)&(j’=1);
6 [wait] (i<lq-1) &(j=1)-> lambda :(i’=i+1)&(j’=j);
7 [] (i<lq) &(j=1)-> lamh :(i’=i)&(j’=2);
8 [Provision_hot] (i>0 )& (i<lq)&(j=1) -> muH :(i’=i-1)&(j’=j);
9 [Provision_hot] (i=0)&(j=1) -> muH :(i’=0)&(j’=0);

10

11 [wait] (i<lq-1)&(j=2) -> lambda: (i’=i+1)&(j’=j);
12 [] (i<lq)&(j=2) -> lamw:(i’=i)&(j’=3);
13 [Provision_warm] (i>0 )&(i<lq)&(j=2) -> muW :(i’=i-1)&(j’=j-1);
14 [Provision_warm] (i=0)&(j=2) -> muW :(i’=0)&(j’=0);
15

16 [wait] (i<lq-1)&(j=3) -> lambda :(i’=i+1)&(j’=j);
17 [] (i>0 )&(i<lq)&(j=3)-> lamc :(i’=i-1)&(j’=j-2);
18 [Provision_cold] (i>0 )&(i<lq)&(j=3)-> muC :(i’=i-1)&(j’=j-2);
19 [Provision_cold] (i=0)&(j=3) -> muC :(i’=0)&(j’=0);
20 endmodule

Figure 6: PRISM model for The RPDM module.

1 module vmpsm_hot
2 xh: [0..lh] init 0;// PM queue
3 yh: [0..1] init 0;// provision
4 zh: [0..m] init 0;// deployement
5

6 [Provision_hot] (xh=0) &(yh=0)&(j>=0)&(j<2)-> lambdaH :(yh’=1);
7 [Provision_hot] (xh<lh) & (yh=1) &(j=1)-> lambdaH :(xh’=xh+1);
8 [] (xh>0) & (yh<1)&(j=1)-> lambdaH :(yh’=yh+1)& (xh’=xh-1);
9 [] (yh>0)& (zh<m)&(j=1)-> betaH:(yh’=yh-1)&(zh’=zh+1);

10 [serve_hot] (zh>0)& (zh<=m)&(j=1)-> zh*mu:(zh’=zh-1);
11 [Reject_hot] (xh=lh) & (j=1) ->true;
12 endmodule

Figure 7: PRISM model for hot PM.

1 module vmpsm_warm
2 xw: [0..lw] init 0;// PM queue
3 yw: [0..3] init 0;// provision
4 zw: [0..m] init 0;// deployement
5

6 [Provision_warm] (xw<lw) & (yw=1) &(j=2)-> lambdaW :(xw’=xw+1);
7 [] (xw>0) & (yw<1)&(j=2)-> lambdaW :(yw’=yw+1)& (xw’=xw-1);
8 [] (yw>0)& (zw<m)&(j=2)-> betaW:(yw’=yw-1)&(zw’=zw+1);
9 [serve_warm] (zw>0)& (zw<=m)&(j=2)-> zw*mu:(zw’=zw-1);

10 // provision steps different than hot
11 [Provision_warm] (xw=0) &(yw=0) &(zw=0)&(j=2)-> lambdaW :(yw’=2);
12 [Provision_warm] (xw<lw) &(zw=0) & (yw=2)&(j=2) -> lambdaW :(xw’=xw+1) & (yw’=2);
13 [] (xw<lw) &(yw=2)& (zw=0) &(j=2) -> deltaW :(xw’=xw) & (yw’=1);
14 [] (zw=0)& (yw=3)&(j=2)-> betaH:(yw’=yw-1)&(zw’=zw+1);
15 [serve_warm] (zw=1)& (yw=1)&(j=2)-> zw*mu:(zw’=zw-1) & (yw’=3);
16

17 [Reject_warm] (xw=lw) & (j=2)->true;
18 endmodule

Figure 8: PRISM model for warm PM.



Modeling and Performance Analysis of Resource Provisioning in. . . Informatica 45 (2021) 529–541 537

1 module vmpsm_cold
2 xc: [0..lc] init 0;// PM queue
3 yc: [0..3] init 0;// provision
4 zc: [0..m] init 0;// deployment
5

6 [Provision_cold] (xc<lc) & (yc=1) &(j=3)-> lambdaC :(xc’=xc+1);
7 [] (xc>0) & (yc<1)&(j=3)-> lambdaC :(yc’=yc+1)& (xc’=xc-1);
8 [] (yc>0)& (zc<m)&(j=3)-> betaC:(yc’=yc-1)&(zc’=zc+1);
9 [serve_cold] (zc>0)& (zc<=m)&(j=3)-> zc*mu:(zc’=zc-1);

10 // provision steps different than hot
11 [Provision_cold] (xc=0) &(yc=0) &(zc=0)&(j=3)-> lambdaC :(yc’=2);
12 [Provision_cold] (xc<lc)&(zc=0) & (yc=2)&(j=3) -> lambdaC :(xc’=xc+1) & (yc’=2);
13 [] (xw<lw) &(yc=2)& (zw=0) &(j=3) -> deltaC :(xc’=xc) & (yc’=1);
14 [] (zc=0)& (yc=3)&(j=3)-> betaH:(yc’=yc-1)&(zc’=zc+1);
15 [serve_cold] (zc=1)& (yc=1)&(j=3)-> zc*mu:(zc’=zc-1) & (yc’=3);
16

17 [Reject_cold] (xc=lc) & (j=3)->true;
18 endmodule

Figure 9: PRISM model for cold PM.

Figure 11: VM provisioning model for each warm PM[11].

label "deployed_Max_In_hot" = (zh =m & j=1);
label "deployed_Max_In_warm" = (zw =m & j=2);
label "deployed_Max_In_cold" = (zc =m & j=3);
label "all_Provision"= (yh=1&yw>=1&yc>=1);
label "all_Pools_Full" = (xh=lh &xw=lw
& xc=lc);
label "maximum_Deployment" = (zh=m & zw=m
& zc=m);

Figure 13: Labels.

rewards "queue_size"
true : i;
endrewards
rewards "Provision_queue_full"
[Provision_hot](i=lq-1) : 1;
[Provision_warm](i=lq-1) : 1;
[Provision_cold](i=lq-1) : 1;
endrewards
rewards "time"
true : 1;
endrewards
rewards "Waiting_Pools"
true : xh + xw + xc;
endrewards
rewards "VMs_Deployed"
true : zh + zw + zc;
endrewards
rewards "VMs_Deployed_Hot"
true : zh;
endrewards
rewards "VMs_Deployed_Warm"
true :zw;
endrewards
rewards "VMs_Deployed_Cold"
true : zc;
endrewards
rewards "request_Reject_Warm"
[Reject_warm]true: 1;
endrewards

Figure 14: Rewards.

R”time” =?[F (j = 3&zc = 1){j = 3&zc = 0}{max}]
The properties estimate the reward that a state where a

request is served can be reached starting from a state where
the request is provisioned before being served. Roughly
speaking, it computes the complete time between provi-
sioning and service. For the hot pool, PRISM returns a
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Figure 15: Job rejection probability.

Figure 16: Probability of max deployment over time T.

result of 3 time units, 15 for the warm pool and 37 for the
cold pool. It is evident that the time taken for the request
to be served in hot pool is much less than warm and cold,
since the last pools require additional provisioning time,
and the resource provisioning decision model tries to pro-
vision the request in hot pool first. As we can compute
maximum reward/probability, we can also compute mini-
mum reward/probability using the feature of filter. For in-
stance, we can compute the minimum probability of the
global queue being not full, starting from the state where
the queue has been already full. The property is presented
as :
P =?[trueU <= T (i < lq − 1){i = lq − 1}{min}]
The results of this property for different values of T are

presented in Figure 17. A simple reachability property
without a filter can be used to compute the probability of
reaching the maximum deployment in each pool as follows
:
P =?[trueU <= T”deployed_Max_In_hot”]

P =?[trueU <= T”deployed_Max_In_warm”]
P =?[trueU <= T”deployed_Max_In_cold”]

The results of these properties are depicted in Figure
16. We see that the probability of reaching maximum de-
ployment (zh = 2) in hot increases faster than warm and
cold. For warm pool, the maximum probability value is not
reached until approximately T = 70.

We can also use Instantaneous reward properties to rea-
son on the reward of a model at a particular instant of time.
This type of properties associates with a path the reward
in the state of that path when exactly T time units have
elapsed. We can use it to estimate for instance the exact

Figure 17: Min probability using filter of full queue.

Figure 18: Number of VMs deployed.

number of requests waiting in the global queue in an in-
stance T as follows:
R”queue_size” =?[I = T ]
As time elapses, the reward will increase until it reaches

its limit, which will be at most lq − 1. Similarly, we can
use the property R”Waiting_Pools” =?[I = T ] to com-
pute the number of requests being waiting. We can use
these Instantaneous reward properties also to reason about
the number of VMs deployed globally at an instance T:
R”VMs_Deployed” =?[I = T ]. For instance, given a
value of (T = 60), the value returned is 5. For different
values of T , we can use the following properties to esti-
mate the number of VMs deployed at each pool.
R”VMs_Deployed_Hot” =?[I = T ]

R”VMs_Deployed_Warm” =?[I = T ]
R”VMs_Deployed_Cold” =?[I = T ]

The graph presented in Figure 18 shows the expected
number of VMs being deployed for different values of T.
It is evident that always the number of VMs in hot pool is
greater, where zh reaches its limit rapidly before zw and
zc respectively, because the RPDM tries always to find a
hot PM first. The mean service time has a great impact on
the results, by increasing its value, it could result in higher
values of (zh, zw and zc), since each request takes much
time to be served.

Unlike the Instantaneous reward properties, we can use
Steady-state reward properties to compute reward in the
long-run. To do so, the previous property of queue size can
be written as follows: R”queue_size” =?[S] and it results
in the value of lq − 1.

The last type of reward properties that can be used by
PRISM, is the cumulative reward that associates a reward
that is accumulated along the path until a bound T. For in-
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Figure 19: Expected number of requests provisioned after
full queue.

Figure 20: Expected number of requests rejected in warm.

stance, using the property R”Provision_queue_full” =
?[C <= T ], we will be able to compute the expected num-
ber of requests being provisioned from the state where the
global queue is full. The results over time T are presented
in Figure 19.

Now, we want to use cumulative reward properties to
reason on the requests being rejected at the level of each
pool with respect to the value of the arrival rate λ. From
the previous results, we choose the warm pool for this prop-
erty, because it knows a medium number of requests being
provisioned and served compared to hot and cold. For a
fixed period of time of 60 minutes, we try to estimate the
number of requests being rejected for different values of λ
using the following property:
R”request_Reject_Warm” =?[C <= 60]
The results of this property as returned by PRISM are

depicted in Figure 20. We notice that as the value of λ in-
creases, the expected number of requests rejected in warm
increases as well, because as much as requests arrive, more
hot PMs start accepting requests and subsequently warm
and cold PMs.

4.4 Power consumption analysis
The importance of cumulative reward properties can be
clearly shown in the context of power consumption. We
use it here for estimating power consumption of the three
pools. It is assumed that a hot PM consumes an idle power
hl when no VM is running, and the power consumption of
a VM is assumed to be va. For the hot pool, a reward of
r(i,j,k) = hl+Kva is assigned to each state of the hot pool,

where k represents the number of VMs being deployed.
The rest of rewards rates for warm and cold pools can be
found at [11], and their rewards as interpreted in PRISM
are presented in Figure 21.

We notice that power consumption rates for both warm
and cold have much details, since they require much addi-
tional startup time to be ready for use. This is represented
in the variables yw and yc that have three possible values.
It is assumed here that wl1 ≤ wl2 ≤ wl3 ≤ h1, and it is
the same case for cold pool: cl1 ≤ cl2 ≤ cl3 ≤ h1. The
values as adapted from [11] are declared as global vari-
ables in PRISM (see Figure 22). The values (wl1, wl2,
wl3) are assumed to be within 20 - 50% of hl, and the
values(cl1, cl2,cl3) 0-40% of hl. Given these values, we
can estimate the power consumption at each pool using the
following cumulative reward properties :
R”Power_hot_PM” =?[C <= T ]

R”Power_warm_PM” =?[C <= T ]
R”Power_cold_PM” =?[C <= T ]

The results of these properties over time are presented in
Figure 23. We see that power consumption in hot pool is
much higher than warm and cold pools, due to the higher
rates in hot. In addition, requests are provisioned more in
hot, then warm and finally cold. These results can be also
explained based on the previous graph (see Figure 18). We
notice that after 10 time units, the power consumption in
warm starts getting higher, due to a request being provi-
sioned in warm. While warm power consumption could
exceed 10% of hot power consumption by time T = 80,
the cold power consumption stays in a low level.

5 Conclusion
In this paper we illustrated the use of probabilistic model
checking as an effective framework for the evaluation and
performance analysis of IaaS clouds. Using PRISM model
checker, we implemented an analytical model that consists
of many interactive sub-models. The model describes and
quantifies the steps of provisioning and serving user re-
quests on virtual machines (VMs), which are deployed on
physical machines (PMs) regrouped in different pools. Us-
ing transient and steady properties, we were able to com-
pute many important performance measures, such as rejec-
tion probability and time delay. In addition, using different
types of reward properties, we were able to estimate many
reward-based measures, especially the power performance
trade-off of the IaaS cloud. The reliable estimations ob-
tained can help cloud providers to get a better insight on
cloud performance, thus avoiding SLA violation.
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