
Informatica 35 (2011) 39–49 39

Realizability and Dynamic Reconfiguration of Chor Specifications

Nima Roohi
Sharif University of Technology, Tehran, Iran
E-mail: roohi@ce.sharif.edu

Gwen Salaün
INRIA Grenoble - Rhône-Alpes / VASY France
E-mail: gwen.salaun@inria.fr

Keywords: choreography, realizability, dynamic reconfiguration, process calculus, labeled transition systems

Received: January 6, 2010

Choreography description languages aim at specifying from a global point of view interactions among a
set of services involved in a new system. From this specification, local implementations or peers can be
automatically generated. Generation of peers that precisely implement the choreography specification is
not always possible: this problem is known as realizability. When peers corresponding to this specification
are being executed we may want to modify the choreography specification and reconfigure dynamically the
system. This is the case for instance if we add or remove interactions due to the addition of functionalities
to the system at hand or the loss of a service. In this article, we present our solutions to check if a
choreography is realizable and if a specific reconfiguration can be applied or not.

Povzetek: Opisana je metoda preverjanja možnosti implementacije sistema na osnovi opisa.

1 Introduction

A choreography describes how a set of services interact
together from a global point of view. Several formalisms
have already been proposed to specify choreographies:
WS-CDL, collaboration diagrams, process calculi (such
as Chor), BPMN, SRML, etc. Choreography specifica-
tion, correctness, realizability and implementation are cru-
cial issues in Service Oriented Computing. Several works
aimed at studying and proposing solutions to the realizabil-
ity problem [7, 18, 4, 2, 20] that consists in checking if a
set of existing peers implements a choreography. In this ar-
ticle, we first present some techniques to check realizabil-
ity of choreographies. Next, we focus on the dynamic re-
configuration of a choreography which has been distributed
and deployed. Such reconfigurations correspond to the ad-
dition or removal of some interactions (loss of a service,
extension of the functionalities, substitution of a service,
etc.).

We use the Chor calculus [18] as choreography speci-
fication language, because it is an abstract model of WS-
CDL coming with a formal syntax and semantics (not the
case of WS-CDL). Our goal here is first to check the realiz-
ability of a choreography. To do so, we propose an encod-
ing of Chor into the FSP process algebra and reuse equiv-
alence checking tools to verify that the behaviors of both
systems (centralized and distributed) are the same. Next,
we formalize a reconfigurability test that checks if a set of
peers that have been obtained from a choreography, can be
reconfigured with respect to a second choreography spec-
ification which consists in an extension (addition of some

interactions) or a simplification (removal of some interac-
tions) of the original choreography. If these reconfigura-
tions are possible, new peers are generated and replace the
former ones. In addition, we also propose some analysis
techniques to check some properties on the reconfiguration,
e.g., if modifications coming from the new choreography
specification impact current peer behaviors only after their
current execution state. Finally, if a choreography is realiz-
able or can be reconfigured, we can automatically generate
Java code for the corresponding peers for rapid prototyping
purposes.

The rest of this article is organized as follows: Sec-
tion 2 introduces Chor, Peer, and FSP, respectively as our
choreography, peer, and intermediate languages. Section 3
presents some automatic techniques to first convert chore-
ographies to an intermediate language, and then to check
whether this choreography is realizable or not. In Sec-
tion 4, we present our approach to check if some reconfig-
urations specified as a new choreography can be applied or
not. We also present some techniques to analyze the impact
of reconfigurations. In section 5 we describe our prototype
tool, and comment on some experimental results. Also, we
briefly overview code generation for peers. Section 6 com-
pares our approach to related works, and Section 6 ends the
article with some concluding remarks.

40 Informatica 35 (2011) 39–49 N. Roohi et al.

2 Preliminaries: Chor, Peer, and
FSP

2.1 Chor and Peer

Chor [18] is a simple process language, and a simplified
model of WS-CDL, for describing peers from a global
point of view. From this global specification, behavioral
specifications of peers can be generated by projection. In
this section, we will overview both the Chor language
(global view) and the Peer language (local view) introduced
in [18].

Table 1 shows the syntax and semantics of Chor (C, C1
and C2 are arbitrary Chor specifications). It uses weak
traces (τ actions are hidden) for specifying its semantics
(where [[C]] stands for the weak trace set of C). The reader
interested in more details on the language may refer to [18].
Also, operators on sets of traces which are used in Table 1
have been formally defined in [19].

The loop operator “∗” has the highest priority among the
others. After that, priority of the sequential composition
operator “;” is higher than the other operators, as an ex-
ample, ∗C1 ⊓C2;C3 is not ambiguous. Priority of paral-
lel “||” and choice “⊓” operators is equal, as an example,
C1∥∗C2 ⊓C3 = (C1∥(∗C2))⊓C3 (left associativity).

Chor is implemented by the coordination of a set of inde-
pendent processes. The Peer language is a simple calculus
for describing these processes. In this language, ε is an
empty process which means do nothing, and for an arbi-
trary trace t if P t

=⇒ ε we have t ∈ [[P]] (we use † to denote
deadlock). Table 2 gives the syntax and semantics of the
Peer language (P, P1 and P2 are arbitrary Peer specifica-
tions).

The Peer language mainly differs from Chor by the de-
scription of interactions. Peer specifies them from a local
point of view. Therefore, at the Peer level, an interaction
activity is either an emission or a reception, and peers inter-
act together by handshake communication (same channels,
opposite directions).

Using rules defined in Table 2, trace sets of Peer pro-
cesses are obtained as follows:

P σ−→ P′

P σ
=⇒ P′

P σ−→ P′ P′ σ ′
=⇒ P′′

P σ⌢σ ′
=⇒ P′′

Last, operator / : Peer×Activity → Peer returns the pro-
cess obtained after executing the activity which is speci-
fied as the second input parameter of the “/” operator, and
function fst (abbreviation for first) : Peer → P(Activity), in
which P(Activity) is the power set of all possible activities,
computes activities of a Peer process which can be exe-
cuted first. Formal definitions of operator “/” and function
fst are as follows (⊥ denotes an undefined process):
fst(α)=̂{α}
fst(ε) = fst(skip) = fst(P1 ⊓P2) = fst(∗P)=̂ /0
fst(P1;P2)=̂fst(P1) fst(P1∥P2)=̂fst(P1)∪ fst(P2)

skip/α=̂⊥ α/α ′=̂

{
ε if α = α ′

⊥ if α ̸= α ′

(P1;P2)/α=̂P1/α;P2 (P1 ⊓P2)/α = (∗P)/α=̂⊥

(P1∥P2)/α=̂

 P1/α∥P2 if α ∈ fst(P1)
P1∥P2/α if α ∈ fst(P2)
⊥ else

Example. We will use throughout this article a metal
stock market as running example. There are three peers in
our example. First, peer Broker selects one of two metals,
namely iron and steel, then look at the market as many
times as needed until a sale on the selected metal becomes
available. Broker sends his/her bid on the selected metal to
the second peer (Market) of our example. After receiving a
bid, Market performs the following two tasks concurrently:
saving the bid in its own database, and checking to see if
this bid is better than the best current one or not. Then,
Market sends the result of this check and the name of the
broker to the announcement Board (third peer of our exam-
ple). If this bid is the best so far, Board will change the
current winner and notifies the broker. Otherwise, Board
does nothing (skip). In the Chor specification below, bk,
mk, bd respectively stand for Broker, Market, and Board:
Stock=
(ironbk⊓ steelbk); lookbk;∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd;notify[bd,bk]⊓ skip)

2.2 FSP
FSP is a process calculus that takes inspiration in Milner’s
Calculus of Communicating Systems (1980) and in Hoare’s
Communicating Sequential Processes (1985), as explained
by Magee and Kramer in [12]. FSP was originally designed
for distributed software architecture specification, and dis-
tinguishes sequential and composite processes. Table 3 in-
troduces FSP operators which are used in the rest of this
article (x, y, new, and old are actions, P and Q are FSP
processes).

3 Realizability of Chor specifications

3.1 Translating Chor into FSP
There are two main solutions in order to perform the re-
alizability check automatically: (i) generate and compare
sets of traces for Chor and Peer in an ad-hoc manner, or
(ii) translate Chor and Peer to some intermediate language
and use existing tools to compare their behaviours. We pre-
fer the second solution because it enables the designers to
take advantage of existing tools such as equivalence check-
ing to verify realizability, or model-checking tools for val-
idation and verification purposes. We chose FSP because
it relies on a simple language yet expressive enough to
encode Chor operators. Moreover, FSP is equipped with
the LTSA toolbox which provides efficient tools for state
space exploration and verification. This encoding allows

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 41

Table 1: Syntax & Semantics of Chor
skip means do nothing, its trace set is equal to {⟨⟩}
ai is an arbitrary local activity performed by peer i, and its trace set is {⟨ai⟩}
c[i, j] is a communication between two peers i (sender) and j (receiver) through channel c, its

trace set is {⟨c[i, j]⟩}
C1;C2 means first C1 and then C2, [[C1;C2]] = [[C1]] ⌢ [[C2]]
C1 ⊓C2 means either C1 or C2, [[C1 ⊓C2]] = [[C1]]∪ [[C2]]
C1∥C2 means C1 and C2 run concurrently, [[C1∥C2]] = [[C1]] ◃▹ [[C2]]
∗C means execute C an arbitrary number of times, [[∗C]] = [[C]]∗

Table 2: Syntax & Semantics of Peer
P ::= BP (basics) BP ::= skip (no action)

| P;P (sequential) | a (local)
| P⊓P (choice) | c! (send)
| P∥P (parallel) | c? (receive)
| ∗P (loop)

Skip: skip
⟨⟩−→ ε Local: a

⟨a⟩−→ ε

Sequential:
P1

σ−→ P′
1

P1;P2
σ−→ P′

1;P2
ε;P

⟨⟩−→ P

Choice: P1 ⊓P2
⟨⟩−→ P1 P1 ⊓P2

⟨⟩−→ P2

Parallel: ε∥ε
⟨⟩−→ ε

P1
σ−→ P′

1

P1∥P2
σ−→ P′

1∥P2

c! ∈ fst(P1) c? ∈ fst(P2)

P1∥P2
⟨c⟩−→ P1/c!∥P2/c?

P2
σ−→ P′

2

P1∥P2
σ−→ P1∥P′

2

c? ∈ fst(P1) c! ∈ fst(P2)

P1∥P2
⟨c⟩−→ P1/c?∥P2/c!

Loop: ∗P
⟨⟩−→ skip ∗P

⟨⟩−→ P;∗P

to: (i) validate and verify Chor specifications using the
LTSA toolbox, (ii) generate peer protocols from its chore-
ography specified in Chor, (iii) test for realizability of the
Chor specification, and (iv) generate Java code from FSP
for rapid prototyping purposes. One could decide to spec-
ify choreographies and peers directly using FSP. However,
domain-specific languages such as Chor and Peer are more
adequate to write such specifications, since they provide
the exact level of expressiveness to do so.

Basic activities are translated into simple FSP processes
with one transition from the source to the final state (we
use τ for the skip action). The Chor sequential operator is
encoded using the FSP sequential operator. As regards the
choice operator, we prefix each operand by a τ transition,
therefore similarly to the Chor language, selecting a choice
operand is performed non-deterministically. In the FSP
parallel operator, actions which are in alphabets of both
operands can only evolve through synchronization, but the
Chor parallel operator does not synchronize activities of
its operands (interleaving). Consequently, we first prefix
operands of each parallel operator with a unique value, thus
no synchronization occurs. Then, we use the renaming op-
erator of FSP to replace these new action names with their
original values. The loop operator ∗C is specified in FSP
using a non-deterministic choice between performing skip,

or performing C and then a recursive call to the FSP process
that encodes the loop operator.

Definition 1 (Chor into FSP). Encoding a Chor specifica-
tion C into FSP is achieved using function c2f : Chor →
FSPdescription, as presented in Figure 1 (“\” operator
hides actions in the FSP process, “/” operator renames
actions in the FSP process, and ac(C) returns non-skip ba-
sic activities of its Chor operand).

FSP does not allow actions to have subscript or super-
script. Therefore, we respectively translate ai and c[i, j]

into a_i and c_i_ j. c2f pi is a one-to-one function of
type Chor →ProcessIdenti f ier generating fresh identifiers
(the same ones for identical Chor specifications) as out-
put, which obey naming rules1 of FSP process identifiers.
T.c2f pi returns a process identifier which is obtained by
prefixing the result of c2f pi by T . For all C and C′ such
that c2f(C) has a process identifier c2f pi(C′) in its specifi-
cation, the result of c2f(C′) must be included in the result
of c2f(C), because whenever we use one FSP identifier in
our specification, we must include the specification of that
process in our final specification. We proved that this trans-
lation preserves the semantics of the Chor language [19].

1These rules are defined in Section 2 of Appendix B in [12].

42 Informatica 35 (2011) 39–49 N. Roohi et al.

Table 3: FSP Operators and Informal Semantics
(x−>P) describes a process that initially executes action x and then behaves as P.
(P;Q) describes a process that first behaves as P, and then (after completion of P) behaves as Q.
(x−>P|y−>Q) describes a process that either executes action x and then P, or action y and then Q.
(P||Q) represents the concurrent execution of P and Q. This operator synchronizes shared actions of P

and Q.
x : P prefixes each label in the alphabet of P with x.
P/{new1/old1,
. . . ,newn/oldn}

renames action labels. Each old label in P is replaced by the new one.

P\{x1, . . . ,xn} removes action names x1, . . . ,xn from the alphabet of P and makes these actions “silent”. These
silent actions are labeled by τ . Silent actions in different processes are not shared.

P@{x1, . . . ,xn} hides all actions in the alphabet of P which do not belong to the set {x1, . . . ,xn}.

Figure 1: Encoding Chor into FSP
c2f(skip) =̂ SKIP = (skip−>END)\{skip}.
c2f(ai) =̂ c2f pi(ai) = (a_i−>END).

c2f(c[i, j]) =̂ c2f pi(c[i, j]) = (c_i_ j−>END).
c2f(C1;C2) =̂ c2f pi(C1;C2) = c2f pi(C1);SKIP;c2f pi(C2);END.
c2f(C1 ⊓C2) =̂ c2f pi(C1 ⊓C2) = (z−>c2f pi(C1);END|z−>c2f pi(C2);END)\{z}.

assuming z is neither in the alphabet of c2f pi(C1) nor c2f pi(C2).
c2f(C1∥C2) =̂ ∥T.c2f pi(C1∥C2)=(p1 : c2f pi(C1)∥p2 : c2f pi(C2)).

c2f pi(C1∥C2)=T.c2f pi(C1∥C2);SKIP;END/
{ba1/p1.ba1|ba1 ∈ ac(C1)}∪{ba2/p2.ba2|ba2 ∈ ac(C2)}.

c2f(∗C) =̂ c2f pi(∗C) = (z−>SKIP;END|z−>c2f pi(C);SKIP;c2f pi(∗C))\{z}.
assuming z is not in the alphabet of c2f pi(C).

Example. Let us illustrate our encoding with some of
the FSP processes generated for our example. In Table 4 we
can see for instance how the choice operator is performed
non-deterministically by prefixing the choice’s operands by
z and then hiding this action. Figure 2 shows the minimized
LTS, obtained by compilation with LTSA, of the generated
FSP code (c2f pi(Stock)). First, Broker decides what metal
(s)he wants, iron or steel. Then, (s)he looks at the market
as many times as needed until a sale on the selected metal
becomes available (there is a loop on state 2 in the LTS).
After that, (s)he sends his/her bid to the market. Next,
Market saves the price and checks it, concurrently (there
are two different paths from state 4 to state 6 in the LTS).
Then, Market sends the result of the performed check to
the board. Finally, Board either does nothing (if the result
says the bid was not good enough), or changes itself and
notifies the broker (if the result says the bid was the best
one so far). This LTS was run several times using LTSA
animation techniques, and the system behaved as expected.
Model-checking was not required here because we chose a
simple example in this article for the sake of comprehen-
sion.

3.2 Peer Generation

Given a Chor specification, one can generate the specifica-
tion of each Peer using natural projection. Natural projec-

tion2 of a Chor specification to Peer P first replaces each
observable action with skip iff P does not perform that ac-
tion. Chor and Peer share parallel, sequential, choice, and
loop operators. For these operators the natural projection
replaces each Chor operator by its equivalent in Peer, and
applies recursively to their operands. Projection of basic
activities from a Chor specification C to a Peer specifica-
tion P is achieved as follows:

1. each activity not performed by P is replaced by skip,

2. a local activity performed by P remains unchanged,

3. a communication activity involving P is replaced by a
channel input activity (if P is the receiver) or a channel
output activity (if P is the sender).

Generation of FSP processes for an arbitrary Chor speci-
fication is performed using function c2f, defined previously
in this section. The behavior of each Peer P in the chore-
ography C is generated by hiding in the corresponding FSP
(c2f pi(C)) all actions to which P does not participate (Def-
inition 2).

Definition 2. Given a Chor specification C and a Peer
identifier p, the FSP process corresponding to nproj(C, p),
the natural projection of the Chor specification C to the
Peer p, is generated as follows (p2f pi is defined similarly
to c2f pi):

2The reader may refer to [18] for the formal definition of natural pro-
jection.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 43

Table 4: Some FSP Processes Generated for the Running Example
Chor Specification FSP Process Specification
skip SKIP= (skip−>END)\{skip}.
ironbk Iron_bk= (iron_bk−>END).
lookbk Look_bk= (look_bk−>END).
bid[bk,mk] Bid_bk_mk= (bid_bk_mk−>END).
ironbk⊓ steelbk Ch= (z−>Iron_bk;END|z−>Steel_bk;END)\{z}.
∗lookbk L= (z−>SKIP;END|z−>Look_bk;SKIP;L)\{z}.
(ironbk⊓ steelbk); lookbk S= Ch;SKIP;Look_bk;END.
savemk||checkmk ||TP= (p1 : Check_mk||p2 : Save_mk).

P= TP;SKIP;END/{check_mk/p1.check_mk,
save_mk/p2.save_mk}.

Figure 2: Minimized LTS of the Stock Market Case Study

p2f(C, p)=̂p2f pi(C, p) =
c2f pi(C)@{b|b is an activity of p}.

As specified in [18] for projecting Chor to peers, the
name of each Peer process is taken as a part of each activ-
ity name (for instance, here we add it as suffix). Therefore,
local activities of different peers are pair-wise different,
and peers use exclusive channels for communicating with
each other. Thus, each channel synchronizes activities of
exactly two peers. Hence, in p2f pi(C,1)∥· · ·∥p2f pi(C,n),
only actions which represent communication activities are
synchronized with each other, and each of these actions be-
longs to alphabets of exactly two FSP processes of the par-
allel operator’s operands. We also proved that this transla-
tion preserves the semantics of the Peer language [19].

Example. For each Peer P, all actions in c2f pi(Stock) in
which P is not involved, are hidden. The three peers of our
example are encoded by the following FSP specifications:
Broker = c2fpi(Stock);END@{iron_bk,steel_bk,

bid_bk_mk, look_bk,notify_bd_bk}.
Market= c2fpi(Stock);END@{save_mk,check_mk,

bid_bk_mk, result_mk_bd}.
Board= c2fpi(Stock);END@{result_mk_bd,

notify_bd_bk,change_bd}.
Figure 3 shows the minimized LTSs of these peers gen-

erated from the FSP processes presented above.

3.3 Realizability

Definition 3 formalizes the notion of choreography realiz-
ability we use in this article. We chose a strong realizabil-
ity [2, 7] for experimentation purposes, but weak notions
could be used instead [7].

Definition 3 (Realizability of Chor). For a Chor specifica-
tion C with n peers, we say C is realizable under natural
projection, if and only if the following two conditions hold:

1. [[C]] = [[nproj(C,1)∥· · ·∥nproj(C,n)]]

2. @t �nproj(C,1)∥· · ·∥nproj(C,n) t
=⇒ †

Both Chor and Peer languages use trace semantics.
Therefore, for checking the realizability of a Chor speci-
fication we need to compare the trace set of a Chor speci-
fication with the trace set of the parallel composition of all
peers. We proved in [19] that the trace set of a Chor spec-
ification is equal to the trace set of its FSP encoding, we
also proved our encoding preserves the semantics of the
Peer language. Thus, we have to check that FSP specifi-
cations for Chor and peers produce the same set of traces
(in which τ actions are hidden) and terminate. Although
the Chor specification is deadlock-free, the specification of
the final system made of interacting peers (generated us-
ing natural projection) may cause deadlock. In addition to
check that both specifications have the same set of traces,
the parallel composition of the different peers has also to
be deadlock-free. This check is easily computed using the
LTSA toolbox. Also, one can perform any kind of test that
is provided by LTSA, such as checking temporal properties
between different activities in the Chor and Peer specifica-
tions.

Example. As for the realizability test, we first com-
pute LTSs from FSP processes Stock and Peers, using
LTSA. The FSP process for the whole system is: ∥Peers=
(Broker∥Market∥Board). Then, we compare trace sets of
these processes using ltscompare, one of the tools belong-
ing to the mCRL2 toolset3 [6], and find out they produce

3LTSA does not allow to compute trace equivalence of two LTSs.

44 Informatica 35 (2011) 39–49 N. Roohi et al.

Figure 3: Stock Market: Minimized LTSs of Peers

the same set of traces (first realizability condition, Defi-
nition 3). For a Chor specification to be realizable, it is
also required to satisfy the second condition of Definition 3.
LTSA helps us on validating this condition, and using the
check safety test, we find that the following trace causes
deadlock:

⟨iron_bk, look_bk,bid_bk_mk,check_mk,
save_mk, result_mk_bd⟩

Indeed, after Broker sends his/her bid to the market, (s)he
should decides if (s)he will be notified by the board or
not. On the other hand, Board also makes this decision
according to the result which is received from the market.
So if peers Broker and Board make different decisions, a
deadlock occurs. To make our specification realizable we
slightly change it as follows: Whatever value is received
from the market, Board always notifies the broker about
the result. Thus, the specification of the system becomes as
follows:
Stock=
(ironbk⊓ steelbk); lookbk;∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd⊓ skip);notify[bd,bk]

This new specification satisfies both realizability condi-
tions.

4 Dynamic reconfiguration of Chor
specifications

4.1 Reconfigurability Definition
In this section, we show how we check whether a recon-
figuration can be applied or not. Note that here our goal
is not to verify the reconfiguration specification, it can be
checked beforehand on the choreography specification us-
ing validation and verification techniques (see Section 3).
Instead, we propose some techniques to check if, from
a protocol point of view, a reconfiguration preserves the
global flow of control executed so far.

This process accepts as input two choreographies (an ini-
tial one, say CI , and a reconfigured one, say CR) and a trace

Therefore, we first save them in a format ltscompare accepts, and then
use it to check if LTSs have the same set of traces or not.

t which corresponds to the history of the current execution
(sequence of local or communication activities, that inter-
acting peers have performed). Traces only contain observ-
able activities (τ corresponding to internal actions and used
to encode non-deterministic choices in peers are not stored
in these traces). From the choreography specification CR,
peer LTSs are obtained using techniques presented in Sec-
tion 3. If the trace t executed by peers obtained out of CI
can also be executed in reconfigured peers generated from
CR, then the reconfiguration can take place.

Definition 4 (Reconfigurability). Given two choreogra-
phies CI and CR, two sets of peers PI and PR respectively
obtained from those choreographies, and a trace t, the cur-
rent system consisting of peers PI is reconfigurable to peers
PR if there exists P′

R such that PR
t

=⇒ P′
R, where t

=⇒ stands
for the execution of local or communication activities as
specified in trace t.

In practice, a reconfiguration is applied as follows: First,
actual peers matching with abstract descriptions (LTSs) de-
rived from the choreography CR are seeked into databases
of peers (e.g., UDDI) or directly reused from the former
system for peers which have not been modified. Next, these
peers are instantiated and executed (using the history stored
in trace t) up to the point where the reconfiguration has
been applied (this last part can be enforced by an external
controller or a monitoring engine for instance). To sum up,
our reconfigurability check aims to be transparent from an
external point of view.

Example. Now imagine that after peer Broker selects
iron (t = ⟨ironbk⟩), we want to reconfigure the current
choreography for Stock market, in a way that i) in addi-
tion to iron and steel, Broker can select gold, and ii) Broker
can send his/her bid to the Market without looking at the
market. The new specification of the system is as follows:
Stock=
(ironbk⊓ steelbk⊓goldbk);∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd⊓ skip);notify[bd,bk]

Figure 4 shows the minimized LTS of the new peer
(Broker). We first compute the parallel composition of
peers PR using LTSA, then we check in this system if it is
possible to perform activities which are specified in t. The

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 45

answer is yes, and PI is reconfigurable to PR. This is auto-
matically checked using a prototype tool we implemented
(see Section 5).

Figure 4: Minimized LTS of new Broker

4.2 Reconfigurability Analysis

Our reconfigurability definition, only says if the activities
that have occurred so far can be reproduced in the new sys-
tem, then peers PI are reconfigurable to peers PR. We want
to go further than this check since in some situations, one
may want these reconfigurations to have an immediate im-
pact on the running system, or to preserve the forthcoming
behaviour as specified in the former choreography (the sys-
tem can do at least what was possible before, but it can do
more as well).

Therefore, Definition 4 is completed with a couple of
analysis of where the modifications take place, that is we
check if modifications appear in peers after the current
global state, and if the evolutions possible from the cur-
rent global state are preserved with respect to the former
choreography. These analyses may help the designer to de-
cide whether (s)he wants to reconfigure the system or not.
Indeed, we can imagine situations in which for instance the
designer may want these modifications to immediately im-
pact the whole behaviour.

The first case, referred as preservative in the following,
is computed by first performing reconfigurability check and
finding P′

R. Then if P′
R is found, it is checked that all traces

which can be executed from P′
I (assuming PI

t
=⇒ P′

I) can
also be executed from P′

R.

Definition 5 (Preservative Reconfiguration). Given two
choreographies CI and CR, two sets of peers PI and PR re-
spectively obtained from previous choreographies, and a
trace t, new peers PR are preservative with respect to for-
mer peers PI , if PI is reconfigurable to PR and [[P′

I]]⊆ [[P′
R]],

assuming PI
t

=⇒ P′
I and PR

t
=⇒ P′

R.

Note that P′
I and P′

R obtained by application of trace t
are unique, because τ transitions have been removed from
peers and they have been determinized (no two transitions
holding the same label going out from the same state) after
performing the realizability check presented in Section 3.2.

The second case, referred as modificative in the follow-
ing, is computed by first extracting the current global state
from the trace t, and checking for each reconfigured peer
if all new interactions are reachable from its current execu-
tion state.

Definition 6 (Modificative Reconfiguration). Given two
choreographies CI and CR, two sets of peers PI and PR re-
spectively obtained from previous choreographies, and a
trace t, new peers PR are modificative with respect to for-
mer peers PI if in addition to be reconfigurable, for each
peer pi ∈ P′

R, si ∈ (s1, . . . ,sn), we have reachable(si, pi)∩
Mi = Mi, where PR

t
=⇒ P′

R, (s1, . . . ,sn) is the current global
state of peers P′

R, and Mi stands for all the modifications
(added or removed interactions) applied between CI and
CR for peer i.

Given a peer i, modifications for this peer between
choreographies CI and CR are obtained by computing the
difference of both alphabets AIi\ARi (ARi\AIi, resp.) if
some interactions are removed (added, resp.). Function
reachable from a state s and a peer LTS p is defined as
follows:
∀s, p � reachable(s, p) = /0 ⇔ @s′, l � (s, l,s′) ∈ T
∀s, p, l � l ∈ reachable(s, p)⇔∃s′ � (s, l,s′) ∈ T∨
(∃l′ � (s, l′,s′) ∈ T ∧ l ∈ reachable(s′, p))

where T is the transition relation belonging to the peer LTS
p = (A,S, I,F,T).

Last, realizability of choreography CR can be checked
using techniques presented in Section 3, and this realizabil-
ity result is another analysis on which the user can rely on
to decide whether or not applying the reconfiguration.

Example. Suppose that in addition to be reconfigurable,
we want our system to verify both properties. Since peers
PR are reconfigurable with respect to former peers PI , we
know P′

R exists such that PR
t

=⇒ P′
R. Therefore, assum-

ing PI
t

=⇒ P′
I , for reconfiguration to be preservative we

need [[P′
I]] ⊆ [[P′

R]]. This check can be performed using the
ltscompare tool, and by performing that check we find that
our reconfiguration example is preservative.

As regards the modificative reconfiguration property,
Mbk = {goldbk}, Mmk = Mbd = /0. After selecting iron,
there is no way to perform goldbk. Consequently, our re-
configuration is not modificative. We have to wait for the
current execution to get finished first, and then reconfigure
the peers if we want this property to be satisfied.

5 Prototype tool
All the steps of the approach we have presented in Sec-
tions 3 and 4 are automatically computed by a prototype
tool we implemented (see an overview in Figure 5). Boxes
and diamonds with dashed borders are optional. We explic-
itly wrote names of tools that we did not implement at the
bottom of each box or diamond. In Section 3 we have men-
tioned that one reason to choose an intermediate language,
is that we can reuse tools which have already been created
for that language. If we assume each box or diamond as
a unit of work, one can see that using our approach, we
only implemented 41.4 percent of our prototype tool, and
58.6 remaining percent are already implemented in existing
tools.

46 Informatica 35 (2011) 39–49 N. Roohi et al.

Figure 5: Overview of our prototype tool

5.1 Experimental Results

Table 5 shows experimental results on some of the exam-
ples of our database. Each row of this table shows results
for one reconfiguration request (CI , CR, and t), and respec-
tively presents the number of: peers, distinct basic activities
used in the Chor specification, basic activities used in the
Chor specification, basic activities in t (length of t), FSP
processes resulting while encoding the Chor specification
into FSP, and states and transitions in the minimized LTS
corresponding to the parallel composition of peers (PI and
PR). It also presents result of realizability plus different
types of reconfigurability checks and amount of consumed
time and memory. For keeping the table as simple as pos-
sible, we chose examples in which number of peers in CI
and CR are equal. Also number of (distinct) basic activities,
and FSP processes for CI and CR are close to each other (the
maximum is shown).

Note that measured time and memory for the reconfig-
urability check include time and memory required for the
realizability check. Also, time and memory for the two
other types of reconfigurability check include time and
memory required for the basic reconfigurability check in
addition to the realizability check.

Whenever a reconfigurability check fails, there is no
need to check the preservability or modificability proper-
ties, since being reconfigurable is a precondition for being
preservative or modificative.

5.2 Code Generation

As mentioned earlier, the final step is to produce Java code
following guidelines presented in [12]. Like the other steps,
this is completely automated by our tool. Figure 6 shows
a simplified version of some classes produced for our run-
ning example. We define an interface Channel and im-
plement it in a class ChannelImpl. For each channel in
the specification, one instance of ChannelImpl is created
in class ChannelServer and registered in a server. Also,
for each peer we create one interface and one class. The in-
terface contains methods for local and communication ac-
tivities performed by the peer and must be implemented by
the user, because the semantics of basic activities used in
the specification is not defined. Code in the class file im-
plements the peer protocol and should not be changed. The
user only needs to implement interfaces of peers and dis-
tributes classes to different locations, as (s)he needs.

Let us comment in more details, for illustration pur-
poses, method run in class mkController. We can no-
tice that for each operand of the parallel operator we cre-
ated one separate thread, and used class CyclicBarrier
(the Java utility class) to guarantee that the execution
of both threads must be finished before the next activ-
ities are performed (cb1.wait() and cb2.wait()). Also,
SynchronousQueue used in class ChannelImpl is an-
other Java class which synchronizes its read/write oper-
ations, therefore our communication mechanism remains
synchronous.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 47

Table 5: Experimental Results
P dBA BA t FSP States Trans. Realizability Reconf. Preservability Modificability

3 5 5 0 10 3 5 2 6
√

96ms 796K
√

174ms 754K
√

187ms 771K
√

173ms 870K

3 8 9 1 18 12 19 16 28
√

140ms 815K
√

224ms 824K
√

248ms 886K
√

243ms 949K

5 16 17 4 29 31 37 52 66
√

174ms 354K
√

392ms 900K
√

404ms 916K
√

378ms 1024K

5 16 36 6 30 65 194 108 449 × 146ms 978K × 146ms 978K × 1s 978K
√

146ms 978K

4 5 8 8 15 67 47 489 255
√

833ms 1187K
√

1.1s 2052K × 1.1s 2055K
√

1.1s 2056K

5 14 672 9 29 757 755 1428 1416
√

3.2s 2965K
√

12.1s 3116K × 80s 3130K × 12s 3014K

6 6 6 0 16 95 141 340 602
√

4.7s 2501K
√

5.2s 5212K
√

5.5s 5516K
√

5.2s 5559K

7 13 13 8 23 250 374 725 1277
√

1.3s 4170K
√

1.7s 6375K
√

1.7s 6942K
√

1.7s 6454K

7 17 834 11 35 932 934 1372 1372
√

8.5s 2739K
√

42s 2732K
√

244s 2947K × 42s 2982K

public class mkController extends Thread {
private final mk mk;
private final Channel bk;
private final Channel bd;
public mkController(mk mk, String server) throws

RemoteException,NamingException{
this.mk = mk;
final Context namingContext = new InitialContext();
bk = (Channel) namingContext

.lookup("rmi://"+server+"/bk_mk");
bd = (Channel) namingContext

.lookup("rmi://"+server+"/mk_bd");}
public void run() {

final Serializable msg1 = bk.recv();
mk.recv_from_bk(msg1);
final CyclicBarrier cb1 = new CyclicBarrier(2);
new Thread(new Runnable() {

public void run() {
mk.check();
cb1.wait();}}).start();

new Thread(new Runnable() {
public void run() {

mk.save();
cb1.wait();}}).start();

final Serializable msg2 = mk.send_bd_value();
bd.send(msg2);}}

public interface mk {
void save();
void check();
void recv_from_bk(Serializable value);
Serializable send_bd_value();}

public class ChannelImpl implements Channel {
public ChannelImpl() throws RemoteException {

UnicastRemoteObject.exportObject(this, 0);}
private final SynchronousQueue syncQueue = new

SynchronousQueue();
public void send(Serializable value) throws

RemoteException,InterruptedException{
syncQueue.put(value);}

public Serializable recv() throws
RemoteException,InterruptedException{
return syncQueue.take();}}

public class ChannelServer {
public ChannelServer() throws

RemoteException,NamingException{
final Channel bk_mk = new ChannelImpl();
final Channel mk_bd = new ChannelImpl();
final Channel bd_bk = new ChannelImpl();
final Context namingContext = new InitialContext();
namingContext.bind("rmi:bk_mk", bk_mk);
namingContext.bind("rmi:mk_bd", mk_bd);
namingContext.bind("rmi:bd_bk", bd_bk);}}

Figure 6: Stock Market: Java Code

6 Related works

Several works aimed at studying and defining the con-
formance and/or realizability problem for choreography.
In [3], the authors define models for choreography and or-
chestration, and formalise a conformance relation between
both models. These models are assumed given as input
whereas we focus on the generation of one from the other
(generation of peers from a global specification). In [22],
the authors focus on Let’s dance models for choreogra-
phies, and define for them an algorithm that determines if a
global model is locally enforceable, and another algorithm
for generating local models from global ones. In [15], the
authors show through a simple example how BPEL stubs
can be derived from WS-CDL choreographies. However,
due to the lack of semantics of both languages, correctness
of the generation cannot be ensured.

Some works define several realizability notions, and
classify them in a hierarchy [7]. Bultan and Fu [2] tackle
the realizability issue in the context of asynchronous com-
munication, and recently defined some sufficient condi-

tions to test realizability of choreographies specified with
collaboration diagrams. In [18, 11], formal languages
to describe choreographies were proposed. Conformance
with respect to an orchestration specification and imple-
mentability issues were studied from a formal point of
view.

Other works [4, 18] propose well-formedness rules to
enforce the specification to be realizable. For example,
in [4], the authors rely on a π-calculus-like language and
session types to formally describe choreographies. Then,
they identify three principles for global description under
which they define a sound and complete end-point projec-
tion, that is the generation of distributed processes from the
choreography.

Dynamic reconfiguration [14] is not a new topic and
many solutions have already been proposed in the context
of distributed systems and software architectures [9, 10],
graph transformation [1, 21], software adaptation [17, 16],
or metamodelling [8, 13]. However, to the best of our
knowledge, nobody has already worked on the reconfig-
uration of service interactions initially described using a

48 Informatica 35 (2011) 39–49 N. Roohi et al.

choreography specification.

As regards tools automating the realizability test,
WSAT [5] takes conversation protocols as input, and
checks a set of realizability conditions on them. Another
tool-supported approach [20] computes realizability using
a LOTOS encoding. However, in [20] the choreography
language, namely collaboration diagrams, is less expres-
sive than Chor (no choice and a loop operator restricted to
a single message), and the proposal focuses only on ab-
stract languages (no relationships with implementations or
real code).

7 Concluding remarks

In this article, we have presented an encoding of the chore-
ography calculus Chor into the process algebra FSP. This
encoding allows to generate a set of peers corresponding
to the choreography, and in a second step to check that
(i) they realize the original choreography, and (ii) they en-
sure some expected properties (by animation and model-
checking with LTSA). If the choreography is not realiz-
able or erroneous, the Chor specification can be corrected
and the process started again. If a choreography is as ex-
pected by the designer, Java code can be generated for rapid
prototyping purposes. We have also proposed some tech-
niques to verify if some reconfigurations can be applied dy-
namically on some peers that have been generated from a
choreography specification. For illustration purposes, we
have used the Chor language and transition systems to de-
scribe peers. Reconfigurations have been specified as a new
version of the choreography where some interactions have
been added or removed. Our approach is completely auto-
mated by a prototype tool we implemented and applied to
a large number of examples.

Our main perspective plans to extend our approach to
consider asynchronous communication. In this article,
we have focused on synchronous communication, and it
makes the realizability and reconfigurability checking eas-
ier. Dealing with asynchronous communication is a re-
alistic assumption with respect to implementation plat-
forms, however it complicates the analysis and verification
stage. Asynchronous communication can be specified us-
ing queues. In this context, realizability and reconfigura-
bility results depend on queue size, and some theoretical
issues are still open problems such as the relationships of
realizability results for queues of size one, queues of size
k, and infinite queues. We also plan to extend our analysis
techniques to take other kinds of reconfigurations into ac-
count. As an example, in some situations one may wish to
reduce the behaviour of the interacting peers while produc-
ing only traces that were executable before reconfiguring
the system (this is the opposite of the preservative property
presented in Section 4).

References

[1] N. Aguirre and T. Maibaum. A Logical Basis for the
Specification of Reconfigurable Component-Based
Systems. In Proc. of FASE’03, volume 2621 of LNCS,
pages 37–51. Springer, 2003.

[2] T. Bultan and X. Fu. Specification of Realiz-
able Service Conversations using Collaboration Di-
agrams. Service Oriented Computing and Applica-
tions, 2(1):27–39, 2008.

[3] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G. Zavattaro. Choreography and Orchestration Con-
formance for System Design. In Proc. of Coor-
dination’06, volume 4038 of LNCS, pages 63–81.
Springer, 2006.

[4] M. Carbone, K. Honda, and N. Yoshida. Structured
Communication-Centred Programming for Web Ser-
vices. In Proc. of ESOP’07, volume 4421 of LNCS,
pages 2–17. Springer, 2007.

[5] X. Fu, T. Bultan, and J. Su. WSAT: A Tool for Formal
Analysis of Web Services. In Proc. of CAV’04, vol-
ume 3114 of LNCS, pages 510–514. Springer, 2004.

[6] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. van Weerdenburg. The Formal Specification
Language mCRL2. In Proc. of MMOSS’07, Dagstuhl
seminar, 2007.

[7] R. Kazhamiakin and M. Pistore. Analysis of Realiz-
ability Conditions for Web Service Choreographies.
In Proc. of FORTE’06, volume 4229 of LNCS, pages
61–76. Springer, 2006.

[8] A. Ketfi and N. Belkhatir. A Metamodel-Based
Approach for the Dynamic Reconfiguration of
Component-Based Software. In Proc. of ICSR’04,
volume 3107 of LNCS, pages 264–273. Springer,
2004.

[9] J. Kramer and J. Magee. The Evolving Philoso-
phers Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, 16(11):1293–
1306, 1990.

[10] J. Kramer and J. Magee. Analysing Dynamic Change
in Distributed Software Architectures. IEE Proceed-
ings - Software, 145(5):146–154, 1998.

[11] J. Li, H. Zhu, and G. Pu. Conformance Validation
between Choreography and Orchestration. In Proc.
of TASE’07, pages 473–482. IEEE Computer Society,
2007.

[12] J. Magee and J. Kramer. Concurrency: State Models
& Java Programs, 2nd edition. Wiley, 2006.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 49

[13] J. Matevska-Meyer, W. Hasselbring, and R. Reussner.
Software Architecture Description Supporting Com-
ponent Deployment and System Runtime Reconfigu-
ration. In Proc. of WCOP’04, 2004.

[14] N. Medvidovic. ADLs and Dynamic Architecture
Changes. In SIGSOFT 96 Workshop, pages 24–27.
ACM, 1996.

[15] J. Mendling and M. Hafner. From Inter-
organizational Workflows to Process Execution: Gen-
erating BPEL from WS-CDL. In Proc. of OTM’05
Workshops, volume 3762 of LNCS, pages 506–515.
Springer, 2005.

[16] P. Poizat and G. Salaün. Adaptation of Open
Component-based Systems. In Proc. of FMOODS’07,
volume 4468 of LNCS, pages 141–156. Springer,
2007.

[17] P. Poizat, G. Salaün, and M. Tivoli. On Dynamic Re-
configuration of Software Adaptations. In Proc. of
WCAT’06, 2006.

[18] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the
Theoretical Foundation of Choreography. In Proc. of
WWW’07, pages 973–982. ACM Press, 2007.

[19] N. Roohi, G. Salaün, and S. H. Mirian. Analyzing
Chor Specifications by Translation into FSP. In Proc.
of FOCLASA’09, volume 255 of ENTCS, pages 159–
176, 2009.

[20] G. Salaün and T. Bultan. Realizability of Choreogra-
phies using Process Algebra Encodings. In Proc. of
IFM’2009, volume 5423 of LNCS, pages 167–182.
Springer, 2009.

[21] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration Lan-
guage. In Proc. of ESEC / SIGSOFT FSE 2001, pages
21–32. ACM, 2001.

[22] J. Maria Zaha, M. Dumas, A. H. M. ter Hofstede,
A. P. Barros, and G. Decker. Service Interaction Mod-
eling: Bridging Global and Local Views. In Proc.
of EDOC’06, pages 45–55. IEEE Computer Society,
2006.

50 Informatica 35 (2011) 39–49 N. Roohi et al.

