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The task of finding the best job candidates among a set of applicants is both time and resource-consuming, 

especially when there are lots of applications. In this concern, the development of a decision support 

system represents a promising solution to support recruiters and facilitate their job. In this paper, we 

present an intelligent decision support system named I-Recruiter, that ranks applicants according to the 

semantic similarity between their resumes and job descriptions; the ranking process is based on machine 

learning and natural language processing techniques. I-Recruiter is composed of three sequentially 

connected blocks namely 1) Training block: which is responsible for training the model from a set of 

resumes, 2) Matching block: that is responsible for matching the resumes to the corresponding job 

description, and 3) Extracting block: that is responsible for extracting the top n ranked candidates.  

Experimental results for accuracy and performance showed that I-recruiter is capable of doing the job 

with high confidence and excellent performance. 

Povzetek: Predlagan je inteligentni sistem za podporo odločanju (IDSS) za pregledovanje in razvrščanje 

življenjepisov prosilcev na podlagi strojnega učenja in obdelave naravnih jezikov.. 

 

1 Introduction
Organizations always seek to hire employees who 

perfectly suit the job. Improper selection decisions for a 

new employee often have costly impacts on the work. 

Hence, Persons who stand behind the selection decision 

face an arduous task of selecting the most appropriate 

person from several applicants. 

Recruitment is the process of searching, attracting, 

and hiring qualified applicants for employment in an 

organization [1]. Figure 1 presents an overview of the key 

steps of the recruitment process. 

A recruitment process starts with the advertising of an 

available job position. This is carried out using diverse 

advertising channels such as websites, newspapers, and 

others. Job seekers who are interested in that job will apply 

for the job by creating their profiles using a designated 

online form or uploading their resumes through the 

organization's website. Received applications are then 

screened to find out the suitable candidates to interview.  

Screeners firstly should understand the requirement 

for the job. After that, they look through each of the 

submitted applications and reject applicants who do not 

meet the requirements. Finally, they find the best applicant 

who matches the job by comparing resumes with the job 

profile. The top few candidates listed during the screening 

stage will go along advanced stages in the process of 

evaluation, like interviews, written tests, and group 

discussions. The feedback received from the evaluation 

processes is used to make the final hiring decision. The 

candidate who passes the interview stage will be offered 

the position [2]. 

Human resources (HR) staff need to spend a 

significant amount of time going through applications in 

order to identify the few candidates who are truly qualified 

for the position. Automated systems can scan resumes for 

job compatibility, reducing efficiently HR's time spent 

 

Figure 1: Overview of the recruitment process. 
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analyzing documents and performing the job with high 

accuracy as well  [3].  

A Decision Support System (DSS) is an interactive 

computer system that helps decision-makers to use data, 

models, and knowledge in solving structured, semi-

structured, or unstructured problems. Any DSS employs 

Artificial Intelligence (AI) techniques to generate decision 

alternatives called Intelligent Decision Support System 

(IDSS) [4].  AI is the development of machines that work 

and react as though they were intelligent [5]. The 

development of Decision Support Systems (DSS) is a 

promising solution for the candidate selection process for 

a job position in terms of time and effort. As organizations 

today receive a large number of resumes each time they 

advertise a job. The needed time and effort for screening 

is directly proportional to the number of applicants.  

This paper presents an IDSS called I-Recruiter for 

applicants resumes screening to find the best job match 

ones in the Information Technology sector (IT). I-

Recruiter ranks applicants according to the semantic 

similarity between the resume and job description. Then, 

it presents the top-ranked candidates' details to go ahead 

with the recruitment stages. System functions build on the 

basis of machine learning and natural language 

processing. 

The rest of the paper is organized as follows. In 

section 2, we will present the related works. The system 

overview is explained in section 3. I-Recruiter 

implementation and results are discussed in section 4. In 

the end, a conclusion and future work is provided in 

section 5. 

2 Related works  
This work is related to two disciplines of Artificial 

Intelligence (AI). First, Machine Learning (ML) which is 

the discipline of giving programs the ability to learn and 

adapt. Here data represent the experiences where ML 

models derived. These models help in capturing 

complicated hidden patterns of new data [6]. The second 

discipline in AI is Natural Language Processing (NLP) 

which is the discipline of processing spoken or written 

forms of free text used by humans with the use of 

computational methods [7] 

For the ML discipline, there are different approaches 

used approaches namely 1) supervised learning, 2) 

unsupervised learning, 3) reinforcement learning, and 4) 

deep learning [8]. In supervised learning, patterns are 

found from data with labeled features that define their 

meaning. It is used for weather forecasting. Unsupervised 

learning is more suitable for unlabeled data. As the data 

that comes from social media applications. Unlike 

previous approaches, reinforcement learning depends on 

trial and error and not on a set of data for training. This 

kind of learning can be used for training robots. The deep 

learning main concept relies on the base of incorporating 

neural networks in consecutive layers for learning. This 

approach is most suitable for the training of unlabeled and 

unstructured data in the cases of image recognition, 

speech, and computer vision [8]. 

NLP tasks include 1) Sentence Boundary Detection, 

2) Tokenization, 3) Part-Of-Speech Assignment To 

Individual Words (POS Tagging), 4) Morphological 

Decomposition Of Compound Words, 5) Shallow Parsing 

(Chunking), 6) Problem-Specific Segmentation, 

Spelling/Grammatical Error Identification And Recovery, 

7) Named Entity Recognition (NER), 8) Word Sense Dis-

ambiguation (WSD), 9) Negation And Uncertainty 

Identification, 10) Relationship Extraction, 11) Temporal 

Inferences/Relationship Extraction, And 12) Information 

Extraction (IE) [9]. 

Over the last few years, deep learning-based NLP 

attained outstanding results on various NLP tasks. This 

was achieved via the success of word embeddings and 

deep learning methods [10]. Word Embedding (WE) is a 

numerical representation of words, usually as vectors [11]. 

WE training can be done in a variety of ways, including 

Word2vec, FastText, and BERT [12]. Word2Vec is the 

most used form of WEs. The Word2Vec takes text corpus 

as input and produces word vectors as output. The 

generation of WE with Word2Vec can be based on two 

types of models 1) the Continuous Bag Of Words 

(CBOW) model and 2) the Skip-Gram model [13], [14]. 

In the CBOW model, a word is predicted based on 

surrounding words. While in the Skip-Gram model, 

surrounding words are predicted based on a given word 

[13]. The architecture of these models is shown in Figure 

2.  

The main usefulness of WEs is detecting the 

similarity between words [10]. Measuring similarity 

between vectors is possible, using term-based similarity 

measures such as Block Distance,  Cosine Similarity, 

Dice’s Coefficient, Euclidean Distance, Jaccard 

Similarity, Matching Coefficient, and Overlap Coefficient 

[15]. 

[16] proposed a resume ranking and recommendation 

system named Smart Applicant Ranker, which is designed 

for IT companies to guide them in their recruiting process. 

This system used Ontology to find and classify the implicit 

and explicit linkages between the candidate models and 

the job requirement model. Smart Applicant Ranker 

architecture is composed of 3 modules: 1) information 

extraction, 2) candidate search, and 3) candidate ranking 

algorithms. The information extraction module is 

responsible for reading the resume information, 

 

Figure 2: Word2Vec models architecture [13]. 
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constructing an ontology model for a resume, and finally 

saving the information in the database. Then, the 

candidate search module provides the resumes ranked by 

their relative score after calculating the similarity value 

between the selected resume models and the supplied job 

requirements. In the last module, the nominated 

candidates will be evaluated using two fundamental 

algorithms that will assign rank points based on their 1) 

educational credentials and 2) skills and work experience. 

In [17], the authors proposed a recommendation 

system that is based on the employer's inquiry to 

recommend relevant resumes. The system was mainly 

based on the Vector Space Model (VSM). Where two 

databases are used to store the terms to be retrieved from 

the documents (skill DB and candidate DB). The 

vocabulary is then constructed using the corpus's unique 

terms. The documents are then represented as vectors 

using the Term Frequency (TF) approach, and cosine 

similarity is used to calculate document similarity. Finally, 

the document that has the highest similarity value is 

recommended. 

[18] proposed a resume classifier application in the IT 

sector. The application classifies a candidate profile to the 

best match domain based on the information included in 

the resume and allocation of a project for the candidate in 

a particular domain. This application employs the 

ensemble learning based voting classifier, which consists 

of five individual classifiers Naïve Bayes, Multinomial 

Naïve Bayes, Linear SVC (Support Vector Classifier), 

Bernoulli Naïve Bayes, and Logistic Regression. The 

architecture is composed of 2 modules: 1) natural 

language processing pipeline and 2) classification module. 

The natural language processing pipeline is responsible 

for removing extraneous information from resumes and 

providing only the relevant data in the form of tokens. 

While the classification module analyzes the list of tokens 

to classify the resume into the appropriate domain. 

[19] proposed a resume matching system. The parser 

system is composed of 4 main phases: 1) text 

segmentation, 2) named entity recognition, 3) text 

normalization, and 4) Co-reference merging and conflict 

resolution. In the first phase, the extracted text is separated 

into segments of similar information based on attributes 

such as Name, Phone, and so on. Next, the texts are 

categorized into named entities. The text normalization 

process guarantees that specified entities are transmuted to 

make them consistent and reliable and that abbreviations 

are enlarged with the help of a reference library. In the last 

phase, Co-reference resolution, a sort of textual or 

syntactic-semantic connection in which two or more 

nominal groups name the same object, is applied to the 

parsed resume. The outputs of the parser system then 

passed through a weighting task and matching process 

based on the firefly algorithm. 

[20] proposed a system for resumes classification and 

matching to a specific job position. As an output of this 

system, the top ten candidates are selected from a set of 

applicants. This system first classifies resumes into 

different categories using Random Forest (RF), 

Multinomial Naive Bayes (NB), Logistic Regression 

(LR), and Linear Support Vector Classifier (Linear SVM) 

models. Then, applies the content-based recommendation 

using cosine similarity and k-Nearest Neighbors (k-NN) 

algorithm for ranking resumes. 
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[16] Ontology 83% 

The proposed solution 

works only with 

structured data.  

[17] 

NLP 

Vector 

space 

model 

Not 

mentioned 

The model only 

considers the skills 

characteristic and 

neglects other factors 

such as education and 

work experience, 

besides, accuracy was 

not reported so we 

can not decide 

whether it is usable or 

not. 

[18] 

NLP 

Ensemble 

learning 

91% 

The model merely 

matches a candidate's 

profile to an 

appropriate domain, 

not to a specific 

employment position. 

[19] 

 

NLP 

Firefly 

algorithm 

94% 
"only for a 

part of the 
whole system 

(parser)" 

The model 

concentrates only on 

the job seeker's 

educational 

qualifications and 

skills. 

[20] 
NLP 

ML 
79% 

The main issue faced 

with this system is 

that some important 

data is lost because of 

text summarization, 

also it does not 

support some real-

world resumes format 

such as PDF. 

[21] 

NLP 

Vector 

space 

model 

Not 

mentioned 

We can't say whether 

it's usable or not 

because the accuracy 

hasn't been reported. 

[22] Ontology 
Not 

mentioned 

The proposed system 

focused only on the 

CyberSecurity field. 

Also, other factors 

such as experience, 

education, and so on 

are not taken into 

account. As well 

accuracy hasn't been 

reported.  

Table 1: Comparison of similar solutions. 
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[21] proposed an automated resumes screening 

system, which works in two phases. First, NLP is used to 

extract all relevant candidate information such as skills, 

work experience, education, certifications, and so on from 

the unstructured text in resumes. Then, resumes were 

ranked according to how well their content matched the 

job description using the Vector Space Model, where the 

documents are represented as vectors, and then similarity 

measurements such as cosine similarity are used to 

determine which group of resumes is the best fit for the 

job. Finally, a ranked list of applicants is generated. 

In [22], an ontology-based recommender system was 

presented for analyzing and assessing information while 

taking into consideration the changing demands of the 

firm and the talents of the job applicant. It is composed of 

two main parts including ontologies construction and 

matching process. Where the construction of ontologies is 

done through three phases 1) Job requirements are 

represented as ontologies, 2) the system collects all of the 

information from job seekers' profiles and creates 

ontology models for them, and 3) two different ontologies 

for skills, IT skills, and Cybersecurity skills, are created. 

The matching process then uses a matching engine to 

compute matching scores using pre-generated ontologies 

and a set of matching rules, taking as input a job 

description and a number of job seeker's profiles to be 

matched. 

A summary of the related work and comparison 

among several strategies is provided in Table 1. As seen 

from the table, [16] [17], [19], [21], and [22] used ML in 

its solution architecture which is different from what was 

used by I-recruiter. Besides,  I-recruiter intersects with 

[17], [18],  [19] and [20] in its support of unstructured 

resumes. In general, I-Recruiter uses different techniques 

from other proposed works such as word embeddings and 

supports continual learning to adapt to data changing. It 

also enables users to specify the number of ranks which 

makes it more flexible as well as its supports to real-world 

resumes format such as PDF. 

3 System overview 
All the time, companies have been spent a lot of time and 

effort on traditional recruiting, especially in cases with a 

large number of received resumes. With the support of 

technology power, recruitment can be more efficient with 

fewer resources needed. As an attempt to support and 

facilitate the recruitment process, an IDSS called I-

Recruiter was designed to speed up the screening step of 

recruitment. I-Recruiter automatically finds the top-

ranked candidates based on the degree of semantic 

similarity between the job description and applicants' 

resumes. The architecture of the I-Recruiter is shown in 

Figure 2. The system consists of three main building 

blocks namely 1) training, 2) matching, 3) and extracting. 

In the next sub-sections, we will explain how does 

each block of the I-Recruiter work. 

3.1 Training block 

This block is responsible for training the domain WE from 

a set of resumes. In this subsystem, the Skip-Gram model 

is used. According to [13] skip-gram model is more 

efficient than CBOW as rare words or phrases are well 

presented. Also, this subsystem is responsible for updating 

the basic WE with any new inputted resume, this assists 

the system to continuously develop knowledge. The 

generated WE models from this block will be used later in 

the matching block. Both training and updating processes 

are done on four levels as shown in Figure 4. 

• Level 1 — text extraction: resume files are being read 

and text is extracted from them.  

• Level 2 — unigrams generation: a list of one word 

generated from resumes text in two steps. First, the text is 

pre-processed with the removal of unnecessary parts of the 

text, such as links, symbols, and stop words. Also, by 

dividing it into tokens with NLP tokenization and 

returning words to their basic form with NLP 

lemmatization. Second, words for training are extracted 

from the text using POS tagging. In which unannotated 

words in natural language are labeled with Parts-Of-

Speech labels such as verbs, nouns, adverbs, adjectives, 

etc. [7].  Figure 5 shows an example of unigrams. 

• Level 3 — bigrams generation: a list of word pairs is 

generated from resumes text in two steps. First, bigrams 

 

Figure 3: I-Recruiter architecture. 

 

Figure 4: Levels of the training process. 

 

Figure 5: Unigram and bigrams of the cleaned version of the 

sentence "Programming using C++ and Java". 
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are generated and scored with the use of the Natural 

Language Toolkit (NLTK), which is a suite of libraries for 

language processing [23]. Second, top-scored bigrams are 

cleaned to remove any noisy pairs that do not harmonize 

together or are not related to the job. This cleaning process 

employs POS tagging and NER techniques for defining 

unwanted words. NER recognizes the named entities 

occurring in the text such as persons, organizations, 

locations, dates, etc. [7].  Cleaning is also based on some 

frequent words that appear in resumes and must be ignored 

like name,  contact, and so on. Other IT-related words 

must not be ignored like C++, 3Ds, and so on.  Figure 5 

shows an example of bigrams. 

• Level 4 — training word embeddings: models are 

trained at the last level from previously generated lists of 

bigrams and unigrams using the Word2Vec technique. 

3.2 Matching block 

This block is responsible for matching the text of the job 

description with the text of each applicant's resume. It 

depends on pre-trained WEs to create vectors for all in-

putted resumes and the job description. Figure 6 shows a 

sample of the vector representation of words. After that, 

the average of generated vectors is computed as the 

vector's average estimation leads to a meaningful 

representation of longer pieces of text [24]. Lastly, the 

semantic similarity degree is calculated with the cosine 

similarity method. Cosine similarity refers to the measure 

of similarity between two vectors, where vectors represent 

the compared documents and the cosine degree between 

these vectors represents similarity degree [25]. The 

similarity is calculated as shown in the following equation 

where A and B are vectors and ∅ represent the angle 

between them: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, �⃗⃗�) =  cos ∅ =  
𝐴 . 𝐵

‖𝐴‖ ‖𝐵‖
           

 =  
∑ 𝐴𝑖  ×𝐵𝑖 

𝑛
𝑖=1

√∑ 𝐴𝑖 
2𝑛

𝑖=1  × √∑ 𝐵𝑖 
2𝑛

𝑖=1

 (1) [26] 

The top ranks of the resumes are for the top highest 

similarity degrees. These top-ranked resumes will be 

transferred to the next block for data extraction.  

3.3 Extracting block 

This block is responsible for extracting the top-ranked 

candidates' basic information that including candidate 

name, phone number, and email. NLP gazetteer and 

pattern matching approaches are used in this stage. For 

extracting emails and phone numbers, the pattern 

matching approach is used. Where extraction patterns are 

defined using Regular Expressions (RE). The result is then 

matched with a given input text and the matched text will 

be extracted [7]. I-Recruiter is designed to detect any text 

that matches the email pattern for finding candidates' 

email addresses. Concerning getting candidates' phone 

numbers, the text detected whatever matches the Palestine 

dialing code. Regard extracting names, the gazetteer 

approach was used. Gazetteer or gazette is a pre-defined 

list of all possible values of a named entity [7]. Here the 

system detects entities named ' PERSON ' in the process 

of finding candidates' names.  

4 Implementation and discussion 
In this section, we will explain the implementation of the 

I-Recruiter prototype, data collection, and I-Recruiter 

testing as well as a discussion of the results. 

4.1 Prototype development 

A prototype of I-Recruiter has been developed as a 

desktop application with the use of Python programming 

language version 3.8 escorted by python artificial 

intelligence libraries such as Gensim, spaCy, and Natural 

Language Toolkit (NLTK). Figure 7 presents the I-

Recruiter interface. 

4.2 Data collection 

A dataset of 101 unstructured resumes in the domain of 

information technology (IT) were collected from different 

resources. All resumes within this dataset are in PDF 

format. 

4.3 Test and results 

To test I-Recruiter, we designed two experiments, the first 

aimed to test the performance (elapsed time) where the 

second aimed to test the accuracy of I-Recruiter results. 

4.3.1 Performance of I-Recruiter.  

The time required to train models using 101 resume files 

was calculated. The calculated time has been carried out 

in one trial. Also, the time required to match 101 resumes 

to a job position and the time required to extract 

 

Figure 6: Sample of words vector representation. 

 

Figure 7: I-Recruiter interface. 
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information from the top three ranked candidates' resumes 

were calculated. Four trials with different job descriptions 

for each trial were used for calculating the required time 

of both matching and extracting. Table 2 shows the results 

of these tests. 

As shown in Table 1, I-Recruiter took approximately 

327.23 seconds for train 101 resumes, an average of 36.34 

seconds for matching, and an average of 0.73 seconds for 

extracting. 

There were no reports about total execution time for 

other related work, however,  an average of  37.07 seconds 

execution time is acceptable and effectively applicable in 

comparison to the lengthy manual method. According to 

this,  I-Recruiter can work efficiently and will do save time 

for the human resources department. 

4.3.2 Accuracy of I-Recruiter.  

Following [16] and [18], accuracy was measured by 

comparing system results to individual ones. In our 

experiment, I-Recruiter was configured to find out the best 

3 candidates among 10 applications for 4 job positions. 

The same was performed manually by an IT specialist and 

both results were compared together in Table 3. 

I-Recruiter has proved that it can be reliable with an 

overall accuracy of 100% in candidate selection and 92% 

in rank order. These degrees of accuracy were calculated 

by finding the average of the results of all testing trials. 

The 8% error percentage appears because of the existence 

of some noisy bigrams that were not removed in the 

cleaning process. To overcome this issue of wrong 

ordering, users can specify more than needed ranks. Then, 

reorder them manually. 

In comparison with other proposed solutions and 

models, I-Recruiter showed excellent performance in 

terms of execution as well as accuracy. The average 

accuracy of I-Recruiter is 96% while for [16], [18], and 

[20] it is 83%, 91%, and 79% respectively. Hence, it is 

obvious that I-Recruiter outperforms the other models in 

terms of accuracy and hence is reliable to be used for the 

purpose it was proposed. 

5 Conclusion and future work 
I-Recruiter is an intelligent decision support system for 

screening a set of applicants' resumes for a job position 

and find out the most appropriate candidates. This system 

is composed of three main building blocks training, 

matching, and extracting. Domain-trained word 

embeddings are generated from the training block. While 

the matching block finds the top candidates based on the 

semantic similarity between resumes and the job 

description. Basic information on top-ranked applicants 

was extracted in the last block. I-Recruiter showed very 

good results with a high degree of accuracy and a short 

time of work. We'll work on increasing the system's 

performance and accuracy in the future, as well as 

introducing more capabilities like personality analysis 

from personal pictures. 
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