
https://doi.org/10.31449/inf.v45i4.3356 Informatica 45 (2021) 617–623 617

An Intelligent Decision Support System For Recruitment: Resumes

Screening and Applicants Ranking

Arwa Najjar

Information Technology College, Hebron University, Hebron, Palestine

E-mail: ar1993wa@gmail.com

Belal Amro

Information Technology College, Hebron University, Hebron, Palestine

E-mail: Bilala@hebron.edu

Mário Macedo

Sciences and Technologies of Information and Communication College, Atlântica University, Lisbon, Portugal

E-mail: mariojcmacedo@gmail.com

Keywords: recruitment, Decision Support System (DSS), Intelligent Decision Support System (IDSS), Artificial

Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP).

Received: November 7, 2020

The task of finding the best job candidates among a set of applicants is both time and resource-consuming,

especially when there are lots of applications. In this concern, the development of a decision support

system represents a promising solution to support recruiters and facilitate their job. In this paper, we

present an intelligent decision support system named I-Recruiter, that ranks applicants according to the

semantic similarity between their resumes and job descriptions; the ranking process is based on machine

learning and natural language processing techniques. I-Recruiter is composed of three sequentially

connected blocks namely 1) Training block: which is responsible for training the model from a set of

resumes, 2) Matching block: that is responsible for matching the resumes to the corresponding job

description, and 3) Extracting block: that is responsible for extracting the top n ranked candidates.

Experimental results for accuracy and performance showed that I-recruiter is capable of doing the job

with high confidence and excellent performance.

Povzetek: Predlagan je inteligentni sistem za podporo odločanju (IDSS) za pregledovanje in razvrščanje

življenjepisov prosilcev na podlagi strojnega učenja in obdelave naravnih jezikov..

1 Introduction
Organizations always seek to hire employees who

perfectly suit the job. Improper selection decisions for a

new employee often have costly impacts on the work.

Hence, Persons who stand behind the selection decision

face an arduous task of selecting the most appropriate

person from several applicants.

Recruitment is the process of searching, attracting,

and hiring qualified applicants for employment in an

organization [1]. Figure 1 presents an overview of the key

steps of the recruitment process.

A recruitment process starts with the advertising of an

available job position. This is carried out using diverse

advertising channels such as websites, newspapers, and

others. Job seekers who are interested in that job will apply

for the job by creating their profiles using a designated

online form or uploading their resumes through the

organization's website. Received applications are then

screened to find out the suitable candidates to interview.

Screeners firstly should understand the requirement

for the job. After that, they look through each of the

submitted applications and reject applicants who do not

meet the requirements. Finally, they find the best applicant

who matches the job by comparing resumes with the job

profile. The top few candidates listed during the screening

stage will go along advanced stages in the process of

evaluation, like interviews, written tests, and group

discussions. The feedback received from the evaluation

processes is used to make the final hiring decision. The

candidate who passes the interview stage will be offered

the position [2].

Human resources (HR) staff need to spend a

significant amount of time going through applications in

order to identify the few candidates who are truly qualified

for the position. Automated systems can scan resumes for

job compatibility, reducing efficiently HR's time spent

Figure 1: Overview of the recruitment process.

mailto:ar1993wa@gmail.com

618 Informatica 45 (2021) 617–623 A. Najjar et al.

analyzing documents and performing the job with high

accuracy as well [3].

A Decision Support System (DSS) is an interactive

computer system that helps decision-makers to use data,

models, and knowledge in solving structured, semi-

structured, or unstructured problems. Any DSS employs

Artificial Intelligence (AI) techniques to generate decision

alternatives called Intelligent Decision Support System

(IDSS) [4]. AI is the development of machines that work

and react as though they were intelligent [5]. The

development of Decision Support Systems (DSS) is a

promising solution for the candidate selection process for

a job position in terms of time and effort. As organizations

today receive a large number of resumes each time they

advertise a job. The needed time and effort for screening

is directly proportional to the number of applicants.

This paper presents an IDSS called I-Recruiter for

applicants resumes screening to find the best job match

ones in the Information Technology sector (IT). I-

Recruiter ranks applicants according to the semantic

similarity between the resume and job description. Then,

it presents the top-ranked candidates' details to go ahead

with the recruitment stages. System functions build on the

basis of machine learning and natural language

processing.

The rest of the paper is organized as follows. In

section 2, we will present the related works. The system

overview is explained in section 3. I-Recruiter

implementation and results are discussed in section 4. In

the end, a conclusion and future work is provided in

section 5.

2 Related works
This work is related to two disciplines of Artificial

Intelligence (AI). First, Machine Learning (ML) which is

the discipline of giving programs the ability to learn and

adapt. Here data represent the experiences where ML

models derived. These models help in capturing

complicated hidden patterns of new data [6]. The second

discipline in AI is Natural Language Processing (NLP)

which is the discipline of processing spoken or written

forms of free text used by humans with the use of

computational methods [7]

For the ML discipline, there are different approaches

used approaches namely 1) supervised learning, 2)

unsupervised learning, 3) reinforcement learning, and 4)

deep learning [8]. In supervised learning, patterns are

found from data with labeled features that define their

meaning. It is used for weather forecasting. Unsupervised

learning is more suitable for unlabeled data. As the data

that comes from social media applications. Unlike

previous approaches, reinforcement learning depends on

trial and error and not on a set of data for training. This

kind of learning can be used for training robots. The deep

learning main concept relies on the base of incorporating

neural networks in consecutive layers for learning. This

approach is most suitable for the training of unlabeled and

unstructured data in the cases of image recognition,

speech, and computer vision [8].

NLP tasks include 1) Sentence Boundary Detection,

2) Tokenization, 3) Part-Of-Speech Assignment To

Individual Words (POS Tagging), 4) Morphological

Decomposition Of Compound Words, 5) Shallow Parsing

(Chunking), 6) Problem-Specific Segmentation,

Spelling/Grammatical Error Identification And Recovery,

7) Named Entity Recognition (NER), 8) Word Sense Dis-

ambiguation (WSD), 9) Negation And Uncertainty

Identification, 10) Relationship Extraction, 11) Temporal

Inferences/Relationship Extraction, And 12) Information

Extraction (IE) [9].

Over the last few years, deep learning-based NLP

attained outstanding results on various NLP tasks. This

was achieved via the success of word embeddings and

deep learning methods [10]. Word Embedding (WE) is a

numerical representation of words, usually as vectors [11].

WE training can be done in a variety of ways, including

Word2vec, FastText, and BERT [12]. Word2Vec is the

most used form of WEs. The Word2Vec takes text corpus

as input and produces word vectors as output. The

generation of WE with Word2Vec can be based on two

types of models 1) the Continuous Bag Of Words

(CBOW) model and 2) the Skip-Gram model [13], [14].

In the CBOW model, a word is predicted based on

surrounding words. While in the Skip-Gram model,

surrounding words are predicted based on a given word

[13]. The architecture of these models is shown in Figure

2.

The main usefulness of WEs is detecting the

similarity between words [10]. Measuring similarity

between vectors is possible, using term-based similarity

measures such as Block Distance, Cosine Similarity,

Dice’s Coefficient, Euclidean Distance, Jaccard

Similarity, Matching Coefficient, and Overlap Coefficient

[15].

[16] proposed a resume ranking and recommendation

system named Smart Applicant Ranker, which is designed

for IT companies to guide them in their recruiting process.

This system used Ontology to find and classify the implicit

and explicit linkages between the candidate models and

the job requirement model. Smart Applicant Ranker

architecture is composed of 3 modules: 1) information

extraction, 2) candidate search, and 3) candidate ranking

algorithms. The information extraction module is

responsible for reading the resume information,

Figure 2: Word2Vec models architecture [13].

An Intelligent Decision Support System For... Informatica 45 (2021) 617–623 619

constructing an ontology model for a resume, and finally

saving the information in the database. Then, the

candidate search module provides the resumes ranked by

their relative score after calculating the similarity value

between the selected resume models and the supplied job

requirements. In the last module, the nominated

candidates will be evaluated using two fundamental

algorithms that will assign rank points based on their 1)

educational credentials and 2) skills and work experience.

In [17], the authors proposed a recommendation

system that is based on the employer's inquiry to

recommend relevant resumes. The system was mainly

based on the Vector Space Model (VSM). Where two

databases are used to store the terms to be retrieved from

the documents (skill DB and candidate DB). The

vocabulary is then constructed using the corpus's unique

terms. The documents are then represented as vectors

using the Term Frequency (TF) approach, and cosine

similarity is used to calculate document similarity. Finally,

the document that has the highest similarity value is

recommended.

[18] proposed a resume classifier application in the IT

sector. The application classifies a candidate profile to the

best match domain based on the information included in

the resume and allocation of a project for the candidate in

a particular domain. This application employs the

ensemble learning based voting classifier, which consists

of five individual classifiers Naïve Bayes, Multinomial

Naïve Bayes, Linear SVC (Support Vector Classifier),

Bernoulli Naïve Bayes, and Logistic Regression. The

architecture is composed of 2 modules: 1) natural

language processing pipeline and 2) classification module.

The natural language processing pipeline is responsible

for removing extraneous information from resumes and

providing only the relevant data in the form of tokens.

While the classification module analyzes the list of tokens

to classify the resume into the appropriate domain.

[19] proposed a resume matching system. The parser

system is composed of 4 main phases: 1) text

segmentation, 2) named entity recognition, 3) text

normalization, and 4) Co-reference merging and conflict

resolution. In the first phase, the extracted text is separated

into segments of similar information based on attributes

such as Name, Phone, and so on. Next, the texts are

categorized into named entities. The text normalization

process guarantees that specified entities are transmuted to

make them consistent and reliable and that abbreviations

are enlarged with the help of a reference library. In the last

phase, Co-reference resolution, a sort of textual or

syntactic-semantic connection in which two or more

nominal groups name the same object, is applied to the

parsed resume. The outputs of the parser system then

passed through a weighting task and matching process

based on the firefly algorithm.

[20] proposed a system for resumes classification and

matching to a specific job position. As an output of this

system, the top ten candidates are selected from a set of

applicants. This system first classifies resumes into

different categories using Random Forest (RF),

Multinomial Naive Bayes (NB), Logistic Regression

(LR), and Linear Support Vector Classifier (Linear SVM)

models. Then, applies the content-based recommendation

using cosine similarity and k-Nearest Neighbors (k-NN)

algorithm for ranking resumes.

A
rticle

B
asic

M
eth

o
d

s

A
ccu

racy

L
im

itatio
n

s

[16] Ontology 83%

The proposed solution

works only with

structured data.

[17]

NLP

Vector

space

model

Not

mentioned

The model only

considers the skills

characteristic and

neglects other factors

such as education and

work experience,

besides, accuracy was

not reported so we

can not decide

whether it is usable or

not.

[18]

NLP

Ensemble

learning

91%

The model merely

matches a candidate's

profile to an

appropriate domain,

not to a specific

employment position.

[19]

NLP

Firefly

algorithm

94%
"only for a

part of the
whole system

(parser)"

The model

concentrates only on

the job seeker's

educational

qualifications and

skills.

[20]
NLP

ML
79%

The main issue faced

with this system is

that some important

data is lost because of

text summarization,

also it does not

support some real-

world resumes format

such as PDF.

[21]

NLP

Vector

space

model

Not

mentioned

We can't say whether

it's usable or not

because the accuracy

hasn't been reported.

[22] Ontology
Not

mentioned

The proposed system

focused only on the

CyberSecurity field.

Also, other factors

such as experience,

education, and so on

are not taken into

account. As well

accuracy hasn't been

reported.

Table 1: Comparison of similar solutions.

620 Informatica 45 (2021) 617–623 A. Najjar et al.

[21] proposed an automated resumes screening

system, which works in two phases. First, NLP is used to

extract all relevant candidate information such as skills,

work experience, education, certifications, and so on from

the unstructured text in resumes. Then, resumes were

ranked according to how well their content matched the

job description using the Vector Space Model, where the

documents are represented as vectors, and then similarity

measurements such as cosine similarity are used to

determine which group of resumes is the best fit for the

job. Finally, a ranked list of applicants is generated.

In [22], an ontology-based recommender system was

presented for analyzing and assessing information while

taking into consideration the changing demands of the

firm and the talents of the job applicant. It is composed of

two main parts including ontologies construction and

matching process. Where the construction of ontologies is

done through three phases 1) Job requirements are

represented as ontologies, 2) the system collects all of the

information from job seekers' profiles and creates

ontology models for them, and 3) two different ontologies

for skills, IT skills, and Cybersecurity skills, are created.

The matching process then uses a matching engine to

compute matching scores using pre-generated ontologies

and a set of matching rules, taking as input a job

description and a number of job seeker's profiles to be

matched.

A summary of the related work and comparison

among several strategies is provided in Table 1. As seen

from the table, [16] [17], [19], [21], and [22] used ML in

its solution architecture which is different from what was

used by I-recruiter. Besides, I-recruiter intersects with

[17], [18], [19] and [20] in its support of unstructured

resumes. In general, I-Recruiter uses different techniques

from other proposed works such as word embeddings and

supports continual learning to adapt to data changing. It

also enables users to specify the number of ranks which

makes it more flexible as well as its supports to real-world

resumes format such as PDF.

3 System overview
All the time, companies have been spent a lot of time and

effort on traditional recruiting, especially in cases with a

large number of received resumes. With the support of

technology power, recruitment can be more efficient with

fewer resources needed. As an attempt to support and

facilitate the recruitment process, an IDSS called I-

Recruiter was designed to speed up the screening step of

recruitment. I-Recruiter automatically finds the top-

ranked candidates based on the degree of semantic

similarity between the job description and applicants'

resumes. The architecture of the I-Recruiter is shown in

Figure 2. The system consists of three main building

blocks namely 1) training, 2) matching, 3) and extracting.

In the next sub-sections, we will explain how does

each block of the I-Recruiter work.

3.1 Training block

This block is responsible for training the domain WE from

a set of resumes. In this subsystem, the Skip-Gram model

is used. According to [13] skip-gram model is more

efficient than CBOW as rare words or phrases are well

presented. Also, this subsystem is responsible for updating

the basic WE with any new inputted resume, this assists

the system to continuously develop knowledge. The

generated WE models from this block will be used later in

the matching block. Both training and updating processes

are done on four levels as shown in Figure 4.

• Level 1 — text extraction: resume files are being read

and text is extracted from them.

• Level 2 — unigrams generation: a list of one word

generated from resumes text in two steps. First, the text is

pre-processed with the removal of unnecessary parts of the

text, such as links, symbols, and stop words. Also, by

dividing it into tokens with NLP tokenization and

returning words to their basic form with NLP

lemmatization. Second, words for training are extracted

from the text using POS tagging. In which unannotated

words in natural language are labeled with Parts-Of-

Speech labels such as verbs, nouns, adverbs, adjectives,

etc. [7]. Figure 5 shows an example of unigrams.

• Level 3 — bigrams generation: a list of word pairs is

generated from resumes text in two steps. First, bigrams

Figure 3: I-Recruiter architecture.

Figure 4: Levels of the training process.

Figure 5: Unigram and bigrams of the cleaned version of the

sentence "Programming using C++ and Java".

An Intelligent Decision Support System For... Informatica 45 (2021) 617–623 621

are generated and scored with the use of the Natural

Language Toolkit (NLTK), which is a suite of libraries for

language processing [23]. Second, top-scored bigrams are

cleaned to remove any noisy pairs that do not harmonize

together or are not related to the job. This cleaning process

employs POS tagging and NER techniques for defining

unwanted words. NER recognizes the named entities

occurring in the text such as persons, organizations,

locations, dates, etc. [7]. Cleaning is also based on some

frequent words that appear in resumes and must be ignored

like name, contact, and so on. Other IT-related words

must not be ignored like C++, 3Ds, and so on. Figure 5

shows an example of bigrams.

• Level 4 — training word embeddings: models are

trained at the last level from previously generated lists of

bigrams and unigrams using the Word2Vec technique.

3.2 Matching block

This block is responsible for matching the text of the job

description with the text of each applicant's resume. It

depends on pre-trained WEs to create vectors for all in-

putted resumes and the job description. Figure 6 shows a

sample of the vector representation of words. After that,

the average of generated vectors is computed as the

vector's average estimation leads to a meaningful

representation of longer pieces of text [24]. Lastly, the

semantic similarity degree is calculated with the cosine

similarity method. Cosine similarity refers to the measure

of similarity between two vectors, where vectors represent

the compared documents and the cosine degree between

these vectors represents similarity degree [25]. The

similarity is calculated as shown in the following equation

where A and B are vectors and ∅ represent the angle

between them:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, �⃗⃗�) = cos ∅ =
𝐴 . 𝐵

‖𝐴‖ ‖𝐵‖

 =
∑ 𝐴𝑖 ×𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 × √∑ 𝐵𝑖
2𝑛

𝑖=1

 (1) [26]

The top ranks of the resumes are for the top highest

similarity degrees. These top-ranked resumes will be

transferred to the next block for data extraction.

3.3 Extracting block

This block is responsible for extracting the top-ranked

candidates' basic information that including candidate

name, phone number, and email. NLP gazetteer and

pattern matching approaches are used in this stage. For

extracting emails and phone numbers, the pattern

matching approach is used. Where extraction patterns are

defined using Regular Expressions (RE). The result is then

matched with a given input text and the matched text will

be extracted [7]. I-Recruiter is designed to detect any text

that matches the email pattern for finding candidates'

email addresses. Concerning getting candidates' phone

numbers, the text detected whatever matches the Palestine

dialing code. Regard extracting names, the gazetteer

approach was used. Gazetteer or gazette is a pre-defined

list of all possible values of a named entity [7]. Here the

system detects entities named ' PERSON ' in the process

of finding candidates' names.

4 Implementation and discussion
In this section, we will explain the implementation of the

I-Recruiter prototype, data collection, and I-Recruiter

testing as well as a discussion of the results.

4.1 Prototype development

A prototype of I-Recruiter has been developed as a

desktop application with the use of Python programming

language version 3.8 escorted by python artificial

intelligence libraries such as Gensim, spaCy, and Natural

Language Toolkit (NLTK). Figure 7 presents the I-

Recruiter interface.

4.2 Data collection

A dataset of 101 unstructured resumes in the domain of

information technology (IT) were collected from different

resources. All resumes within this dataset are in PDF

format.

4.3 Test and results

To test I-Recruiter, we designed two experiments, the first

aimed to test the performance (elapsed time) where the

second aimed to test the accuracy of I-Recruiter results.

4.3.1 Performance of I-Recruiter.

The time required to train models using 101 resume files

was calculated. The calculated time has been carried out

in one trial. Also, the time required to match 101 resumes

to a job position and the time required to extract

Figure 6: Sample of words vector representation.

Figure 7: I-Recruiter interface.

622 Informatica 45 (2021) 617–623 A. Najjar et al.

information from the top three ranked candidates' resumes

were calculated. Four trials with different job descriptions

for each trial were used for calculating the required time

of both matching and extracting. Table 2 shows the results

of these tests.

As shown in Table 1, I-Recruiter took approximately

327.23 seconds for train 101 resumes, an average of 36.34

seconds for matching, and an average of 0.73 seconds for

extracting.

There were no reports about total execution time for

other related work, however, an average of 37.07 seconds

execution time is acceptable and effectively applicable in

comparison to the lengthy manual method. According to

this, I-Recruiter can work efficiently and will do save time

for the human resources department.

4.3.2 Accuracy of I-Recruiter.

Following [16] and [18], accuracy was measured by

comparing system results to individual ones. In our

experiment, I-Recruiter was configured to find out the best

3 candidates among 10 applications for 4 job positions.

The same was performed manually by an IT specialist and

both results were compared together in Table 3.

I-Recruiter has proved that it can be reliable with an

overall accuracy of 100% in candidate selection and 92%

in rank order. These degrees of accuracy were calculated

by finding the average of the results of all testing trials.

The 8% error percentage appears because of the existence

of some noisy bigrams that were not removed in the

cleaning process. To overcome this issue of wrong

ordering, users can specify more than needed ranks. Then,

reorder them manually.

In comparison with other proposed solutions and

models, I-Recruiter showed excellent performance in

terms of execution as well as accuracy. The average

accuracy of I-Recruiter is 96% while for [16], [18], and

[20] it is 83%, 91%, and 79% respectively. Hence, it is

obvious that I-Recruiter outperforms the other models in

terms of accuracy and hence is reliable to be used for the

purpose it was proposed.

5 Conclusion and future work
I-Recruiter is an intelligent decision support system for

screening a set of applicants' resumes for a job position

and find out the most appropriate candidates. This system

is composed of three main building blocks training,

matching, and extracting. Domain-trained word

embeddings are generated from the training block. While

the matching block finds the top candidates based on the

semantic similarity between resumes and the job

description. Basic information on top-ranked applicants

was extracted in the last block. I-Recruiter showed very

good results with a high degree of accuracy and a short

time of work. We'll work on increasing the system's

performance and accuracy in the future, as well as

introducing more capabilities like personality analysis

from personal pictures.

References
[1] M. B. R. Devi and Dr. Mrs. P. V. Banu, “Introduction

to Recruitment,” SSRG Int. J. Econ. Manag. Stud.

SSRG-IJEMS, vol. 1, no. 2, p. 4, 2014. [Online].

Available:

https://www.internationaljournalssrg.org/IJEMS/20

14/Volume1-Issue2/IJEMS-V1I2P102.pdf

[2] A. Singh, C. Rose, K. Visweswariah, V.

Chenthamarakshan, and N. Kambhatla,

“PROSPECT: a system for screening candidates for

recruitment,” in Proceedings of the 19th ACM

international conference on Information and

knowledge management - CIKM ’10, Toronto, ON,

Canada, 2010, p. 659. doi:

https://doi.org/10.1145/1871437.1871523.

[3] M. L. Gusdorf, “Recruitment and Selection: Hiring

the Right Person,” p. 19, 2008. [Online]. Available:

https://www.shrm.org/certification/educators/Docu

ments/Recruitment%20and%20Selection%20IM.pd

f

Testing

Device

Processor: intel core i7-6700HQ

RAM: 16 GB

System Type: 64-Bit

System

Block
Training Matching Extracting

Time /

Seconds
327.23

Trial

1
37.55 0.69

Trial

2
35.74 0.86

Trial

3
36.11 0.43

Trial

4
35.95 0.94

Table 2: Performance of I-Recruiter.
J

o
b

D
escrip

tio
n

T
o

p
 R

a
n

k
s

I-R
ec

ru
iter

R
esu

lt

H
u

m
a

n

R
esu

lt

S
electio

n
s

C
o

rr
ec

tn
ess

O
rd

er

C
o

rr
ec

tn
ess

JD

1

Rank 1 CV1 CV1

100% 67% Rank 2 CV8 CV5

Rank 3 CV5 CV8

JD

2

Rank 1 CV2 CV2

100% 100% Rank 2 CV8 CV8

Rank 3 CV3 CV3

JD

3

Rank 1 CV8 CV8

100% 100% Rank 2 CV6 CV6

Rank 3 CV5 CV5

JD

4

Rank 1 No one

matches

the job

No one

matches

the job

100% 100% Rank 2

Rank 3

Table 3: Accuracy of I-Recruiter.

An Intelligent Decision Support System For... Informatica 45 (2021) 617–623 623

[4] G. Phillips-Wren, “Intelligent Decision Support

Systems,” in Multicriteria Decision Aid and

Artificial Intelligence, M. Doumpos and E.

Grigoroudis, Eds. Chichester, UK: John Wiley &

Sons, Ltd, 2013, pp. 25–44. doi:

https://doi.org/10.1002/9781118522516.ch2.

[5] W. Ertel, Introduction to Artificial Intelligence.

Cham: Springer International Publishing, 2017. doi:

https://doi.org/10.1007/978-3-319-58487-4.

[6] J. Zhang and P. S. Yu, “Machine Learning

Overview,” in Broad Learning Through Fusions,

Cham: Springer International Publishing, 2019, pp.

19–75. doi: https://doi.org/10.1007/978-3-030-

12528-8_2.

[7] S. Singh, “Natural Language Processing for

Information Extraction,” ArXiv180702383 Cs, Jul.

2018, Accessed: Sep. 11, 2020. [Online]. Available:

http://arxiv.org/abs/1807.02383

[8] J. Hurwitz, Machine Learning For Dummies®, IBM

Limited Edition. 2018. [Online]. Available:

https://www.ibm.com/downloads/cas/GB8ZMQZ3

[9] P. M. Nadkarni, L. Ohno-Machado, and W. W.

Chapman, “Natural language processing: an

introduction,” J. Am. Med. Inform. Assoc., vol. 18,

no. 5, pp. 544–551, Sep. 2011, doi:

https://doi.org/10.1136/amiajnl-2011-000464.

[10] T. Young, D. Hazarika, S. Poria, and E. Cambria,

“Recent Trends in Deep Learning Based Natural

Language Processing,” ArXiv170802709 Cs, Nov.

2018. [Online]. Available:

https://arxiv.org/pdf/1708.02709.pdf

[11] A. Mandelbaum and A. Shalev, “Word Embeddings

and Their Use In Sentence Classification Tasks,”

ArXiv161008229 Cs, Oct. 2016, Accessed: Sep. 17,

2020. [Online]. Available:

http://arxiv.org/abs/1610.08229

[12] C. Wang, P. Nulty, and D. Lillis, “A Comparative

Study on Word Embeddings in Deep Learning for

Text Classification,” in Proceedings of the 4th

International Conference on Natural Language

Processing and Information Retrieval, Seoul

Republic of Korea, Dec. 2020, pp. 37–46. doi:

https://doi.org/10.1145/3443279.3443304.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean,

“Efficient Estimation of Word Representations in

Vector Space,” ArXiv13013781 Cs, Sep. 2013,

Accessed: Sep. 11, 2020. [Online]. Available:

http://arxiv.org/abs/1301.3781

[14] P. Sitikhu, K. Pahi, P. Thapa, and S. Shakya, “A

Comparison of Semantic Similarity Methods for

Maximum Human Interpretability,”

ArXiv191009129 Cs, Oct. 2019, Accessed: Sep. 11,

2020. [Online]. Available:

http://arxiv.org/abs/1910.09129

[15] V. M.K and K. K, “A Survey on Similarity Measures

in Text Mining,” Mach. Learn. Appl. Int. J., vol. 3,

no. 1, pp. 19–28, Mar. 2016, doi:

https://doi.org/10.5121/mlaij.2016.3103.

[16] A. Mohamed, W. Bagawathinathan, U. Iqbal, S.

Shamrath, and A. Jayakody, “Smart Talents

Recruiter - Resume Ranking and Recommendation

System,” in 2018 IEEE International Conference on

Information and Automation for Sustainability

(ICIAfS), Colombo, Sri Lanka, Dec. 2018, pp. 1–5.

doi: https://doi.org/10.1109/ICIAFS.2018.8913392.

[17] S. N, S. V, A. S, and S. P, “Validating effective

resume based on employer’s interest with

recommendation system,” Int. J. Pure Appl. Math.,

vol. 119, 2018, [Online]. Available:

https://hal.archives-ouvertes.fr/hal-

01826687/document

[18] S. T. Gopalakrishna and V. Varadharajan,

“Automated Tool for Resume Classification Using

Sementic Analysis,” Int. J. Artif. Intell. Appl., vol.

10, no. 01, pp. 11–23, Jan. 2019, doi:

https://doi.org/10.5121/ijaia.2019.10102.

[19] G. Deepak, V. Teja, and A. Santhanavijayan, “A

novel firefly driven scheme for resume parsing and

matching based on entity linking paradigm,” J.

Discrete Math. Sci. Cryptogr., vol. 23, no. 1, pp.

157–165, Jan. 2020, doi:

https://doi.org/10.1080/09720529.2020.1721879.

[20] P. K. Roy, S. S. Chowdhary, and R. Bhatia, “A

Machine Learning approach for automation of

Resume Recommendation system,” Procedia

Comput. Sci., vol. 167, pp. 2318–2327, 2020, doi:

https://doi.org/10.1016/j.procs.2020.03.284.

[21] C. Daryani, G. S. Chhabra, H. Patel, I. K. Chhabra,

and R. Patel, “An Automated Resume Screening

System Using Natural Language Processing And

Similarity,” In Ethics And Information Technology,

Jan. 2020, pp. 99–103. doi:

https://doi.org/10.26480/etit.02.2020.99.103.

[22] M. Maroun and A. Ivanova, “Ontology-based

approach for cybersecurity recruitment,” Tomsk,

Russia, 2021, p. 070014. doi:

https://doi.org/10.1063/5.0042320.

[23] “Natural Language Toolkit,” NLTK 3.5

documentation, 2020. https://www.nltk.org/

[24] T. Kenter and M. de Rijke, “Short Text Similarity

with Word Embeddings,” in Proceedings of the 24th

ACM International on Conference on Information

and Knowledge Management - CIKM ’15,

Melbourne, Australia, 2015, pp. 1411–1420. doi:

https://doi.org/10.1145/2806416.2806475.

[25] A. R. Lahitani, A. E. Permanasari, and N. A.

Setiawan, “Cosine similarity to determine similarity

measure: Study case in online essay assessment,” in

2016 4th International Conference on Cyber and IT

Service Management, Bandung, Indonesia, Apr.

2016, pp. 1–6. doi:

https://doi.org/10.1109/CITSM.2016.7577578.

[26] F. Rahutomo, T. Kitasuka, and M. Aritsugi,

“Semantic Cosine Similarity,” in The 7th

International Student Conference on Advanced

Science and Technology ICAST, 2012, p. 3.

[Online]. Available:

https://www.researchgate.net/profile/Faisal-

Rahutomo/publication/262525676_Semantic_Cosin

e_Similarity/links/0a85e537ee3b675c1e000000/Se

mantic-Cosine-Similarity.pdf

https://www.researchgate.net/profile/Faisal-Rahutomo/publication/262525676_Semantic_Cosine_Similarity/links/0a85e537ee3b675c1e000000/Semantic-Cosine-Similarity.pdf
https://www.researchgate.net/profile/Faisal-Rahutomo/publication/262525676_Semantic_Cosine_Similarity/links/0a85e537ee3b675c1e000000/Semantic-Cosine-Similarity.pdf
https://www.researchgate.net/profile/Faisal-Rahutomo/publication/262525676_Semantic_Cosine_Similarity/links/0a85e537ee3b675c1e000000/Semantic-Cosine-Similarity.pdf
https://www.researchgate.net/profile/Faisal-Rahutomo/publication/262525676_Semantic_Cosine_Similarity/links/0a85e537ee3b675c1e000000/Semantic-Cosine-Similarity.pdf

624 Informatica 45 (2021) 617–623 A. Najjar et al.

