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The availability of qualitative knowledge has been recently used to simulate human negotiations accurately. 
During real-life negotiation sessions, people accumulate their knowledge to opt for most adequate bids by 
which both negotiating parties reach a win-win agreement. Unfortunately, existing research mainly 
concentrates on few negotiation bids. This paper proposes order statistics Bayesian-mining agent approach to 
automate bilateral multi-issue multi-session win-win negotiation problems. The proposed agent applies a real-
life social bid ranking based on historical bids of all previous negotiation sessions to dynamically update all 
issues’ weights and preferences. Moreover, it uses our proposed deterministic Trade-Off counter offer method, 
rather than the existing haphazard estimation method, to estimate precisely the next bid. Experiments are 
conducted on 3-issue, 5-issue, 6-issue and 10-issue having 27, 3169, 3122 and 13219200 bids respectively. The 
selected evaluation analysis methods are mainly Pareto optimality, utility, cost and step-wise measurements. 
Compared with existing agent sorts, such as ABMP, Trade-Off, Bayesian and Mining agents, the proposed 
agent approach is proved that it is more efficient, effective, scalable and sensitive (adaptable to the opponent 
steps). Also, it works better to maximize its utilities and to minimize the negotiation costs (the number of 
rounds).

Povzetek: Opisana je agentna metoda pogajanj, ki se odloča na osnovi Bayesovske statistike.

1 Introduction
The paper aims to automate bilateral multi-issue multi-
session win-win human negotiation. Negotiation is the 
process in which two or more parties, having conflicts in 
their interests, can mutually reach a beneficial agreement 
on the related set of issues by exchanging some bids. In 
any bilateral negotiation [20], there are only two parties 
who exchange their bids using some negotiation 
protocols. In multi-issue negotiations [20], each bid has 
many issues such that each issue consists of several 
discrete items. The negotiator goal is to adjust all issues’ 
preferences to maximize his bid utility. The essential 
assumption of win-win multi-issue bilateral negotiation
is that the two negotiators are rational and they are eager
to find a solution of bid utilities that is acceptable to both 
parties [19]. So, each party has to know the preferences 
of its opponent to reach an agreement. In reality, the 
negotiators are hardly willing to disclose their private 
preferences. Consequently, both parties have incomplete
information about each other and so may hardly reach an
optimal deal. A typical real-life negotiation may need 
more than one session to reach a successful deal such 
that each party commences the new session having some 
gained knowledge about his opponent from previous 
sessions, where a session is defined as the time duration 
in which the negotiators decide to communicate with 
each other to reach a satisfied agreement, if any.

Automated negotiation recently has become a 
disputed solution to compensate the human disability to 
do complicated negotiation calculations accurately. 

Automated negotiation applications range from simple 
auctions, in which agents merely have to bid truthfully 
[29], to complex strategic models, in which agents argue 
for positions and aim to persuade their opponents of the 
particular course of action [24].

Some multi-agent research [2, 9, 12] presented 
strategies to automate multi-issue negotiation. Such 
research was usually motivated with the high 
complexity of multi-issue negotiation calculations 
executed with the lack of available knowledge about the 
opponent. Recently, some research [7, 12] investigated 
the use of available knowledge about the environment’s 
bids, issues, or opponent preferences while negotiation 
sessions move forward. However, they either 
concentrated on cases having one issue or they 
depended on few bids from previous/current single 
session negotiation. Moreover, their assumptions of 
issue ranking and the data distribution are theoretical 
rather than experimental; real-life applications are 
complex in which the agreement is met after successive 
negotiations having massive hidden information about 
the environment’s preferences and issues that could be 
mined, i.e. extracted and accumulated, while the 
negotiation sessions ensue.

This paper presents non-parametric Bayesian-
mining agent modelling that depends on all historical 
successive sessions to solve the complexity of real-life 
applications. It proposes the following two crucial ideas. 

First, while negotiation sessions advance, the 
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proposed model gradually learns how to reduce the 
number of session rounds and to maximize the expected 
utility upon the ratio of accepted bids. To do that, the 
model weighs the bids, similar to the human ranking, by 
which the first bid from each session is the most 
significant bid and the current session is the most vital 
session. The model then utilizes order statistics, non-
parametric, Bayesian learning to model the opponent 
preferences and profiles which deals with any unknown 
data distribution.

Second, a proposed trade-off counter-offer method 
is used to estimate the next bid more precisely. This is 
done by replacing existing randomness trade-off method 
with a proposed partial derivative utility function. 

Our experiments are set up against some well-known 
existing agent approaches using 3-issue, 5-issue, 6-issue
and 10-issue applications. We use some evaluation 
criteria, namely Pareto optimality, utility, cost (number 
of rounds), step-wise (sensitivity analysis and class 
studies), and confidence interval calculations. It is 
experimentally proved that any agent following our 
proposed model is efficient, effective and sensitive to the 
opponent steps. Also, the proposed agent scalability is 
verified as the agent guarantees these features on 10-
issue applications.

In comparison with current negotiation approaches, 
the contributions of the proposed non-parametric 
Bayesian-mining approach are as follows:

1-It works with any negotiation data distribution; all 
current approaches assume normal distribution of 
data, which is not necessarily true.

2-The agent outcomes are more effective and sensitive 
as the agent can benefit from the historical data of all 
previous negotiation sessions.  

3-When our agent is involved in the negotiation, better 
agreement is reached fast. 

4-When our agent is involved in the negotiation, both 
negotiators tend to maximize their utilities.

5- Our approach is scalable for large data set, while 
authors of the other approaches state that they have to 
adapt their models, if possible, to make them acquire 
such a feature.
The remainder of this paper is organized as follows. 

The next section discusses other negotiation approaches. 
Section 3 outlines the evaluation methods stated in the 
literature. Section 4 presents the overall proposed 
approach with its assumptions and parameters. Section 5 
demonstrates the proposed Bayesian-mining approach.
Section 6 presents the proposed counter-offer 
enhancement. Section 7 shows the experimental results. 
The paper is concluded with Section 8.

2 Related work
ABMP strategy [15, 16] takes the agent’s own utility 
space in which the next bid utility has less value than the 
previous one.  Unfortunately, the strategy does not use 
any domain or opponent knowledge. Also it does not 
search through the negotiation outcome space for results 
that are mutually beneficial for both parties. Therefore, 
this strategy is inefficient in complex negotiation 

domains although it is shown that it outperforms humans 
in small domains [1].  

Trade-off strategy [9] is based on similarity and iso-
curve criteria. In this strategy, the agent tries to find a 
bid similar to his previously proposed one and to be 
simultaneously suitable for his opponent. However the 
random nature of its search impacts on its efficiency. 
Another disadvantage is its difficulty to determine the 
bid suitability for the opponent’s utility without having 
any knowledge about his preferences. So, it always 
needs a complement strategy to detect the opponent 
preferences.

Bazaar model [33] is a learning approach for 
sequential decision making in a single session single 
issue (the price) negotiation. It works by generating 
random numbers of upper and lower limits for the 
agent’s reservation price to ensure the existence of 
agreement zone. However, the negotiation model is 
dedicated only to the price issue which is already known 
earlier to both agents.

A Bayesian Markov chain model [21] was 
presented to learn the opponent preferences in single 
issue negotiation. Its major defect is that it does not 
have a state-memory to save all negotiation movements 
since it depends only on the negotiation current state to 
predict the future bids. Moreover, it works only on a 
single issue.

Kernel Density Estimator model [7], based on [9], 
provided a kernel estimation method that depends on the 
difference between two bids to predict the issue weight. 
Therefore, the estimator doesn’t use its whole available 
negotiation history to define its kernel. Moreover, it 
does not provide a learning method for estimating the 
issue weights, hence, it may be used effectively only 
with single issue negotiations.

A Bayesian learning modelling [12] was presented 
to learn an opponent model, i.e. the issue preferences 
and priorities of the opponent. Unfortunately, the model 
uses single session only to know the opponent 
preferences. In most cases, the session has few bids to 
learn and thus the gained knowledge is often imperfect. 
Also, it enumerates all possible issue-weight ranks to 
form the weighted issue hypothesis space which makes 
the space considerably huge. Moreover, as most 
strategies do, it assumingly considers the negotiation 
data to follow the normal distribution which contradicts 
with real human negotiations.

[18] proposed a theoretical means to acquire 
negotiation knowledge from a batch of previous bids in 
previous sessions of negotiations within the e-
Marketplace field. The model gives weights for each 
issue and related items based on the accept/reject 
probabilities. Then it sums these probabilities to weigh 
the related bid and finally it ranks the bids’ weights to 
select the bid with the highest weight given that it was 
not previously selected. The authors report that they 
theoretically open the door for mining negotiation 
research. Unfortunately, the issue weight calculation 
doesn’t consider the shape of issue evaluation function 
which yields some wrong bid selections. Moreover, the 
selected bid may not be the optimum choice for both 
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buyers.  
As shown above, current automated negotiation 

strategies don’t exploit all historical bids to enhance the 
negotiation outcomes. Moreover, they follow some 
theoretical assumptions which make the negotiation 
relatively far from reality.

We compare our work with the above mentioned 
approaches to prove our approach’s efficiency, 
effectiveness, sensitivity to the opponent steps, and 
scalability. Fortunately, some research, such as [12, 23], 
tried to prove the scalability of their approaches. They 
report that it is not easy for any model to sustain high 
dimensional specifications. The authors of Bayesian 
Learning model [12] show that they modify their model 
to make it scalable for 10-issue applications and when 
compared with the Trade-Off agent, both performances 
were similar to each other as the agents stay close to the 
Pareto frontier. In [23], a system of artificial adaptive 
agents (AAAs), is created and tested for 10-issue against 
the human agents to evaluate their performance. The 
authors find that in high dimensions, such as 10-issue, it 
is very complicated to make a suitable comparison of 
the behavior and the performance between AAA and 
human agents since neither the two agents may 
outperform each other.

Before presenting the proposed framework strategy 
(Sections 4, 5 and 6), it is also worth exploring the real-
life win-win bilateral game strategy. Three cases are 
possible. The first case is when both players are 
unprofessional or not able to accumulate knowledge 
about each other, then the game outcomes are weak. The 
second case is when one of them is skilful to gain 
experience from his opponent tactics, then he 
outperforms his opponent even if he commences the 
game weakly. Moreover, the game outcomes are 
relatively high. The last case is when both players are 
professional, i.e. they can benefit or learn knowledge 
about the tactics of each other, which may positively 
affect both of them on the general results of the game. If 
such game is negotiation, then people benefit from the 
past/current sessions to achieve the best, even if they 
have little initial data about their opponents. People 
always give the highest priority to the first bid in each 
session and lower priorities to successive bids. Also, 
they give weights to previous sessions and their bids but 
the weights reduce as the sessions are further away from 
the current session.

3 Evaluation methods
Most existing automated negotiation approaches consider 
mainly Pareto optimality [6, 8, 27], utility [17, 31], cost 
(number of rounds) [33] and step-wise (sensitivity 
analysis and class studies) [13] criteria as their evaluation 
methods. They consider the negotiation of an agent 
efficient if its outcomes have rapidly reached the Pareto 
Frontier with the maximum utilization and the minimum 
number of rounds. Also, they prove the agent 
effectiveness using Pareto optimality and sensitivity 
analysis. People, then, apply sensitivity analysis and 
class studies to test the negotiator adaptability to the 

opponent preferences. We use all these methods to 
evaluate our proposed model.  

3.1 Pareto Optimality  
This method is to measure the distance of the negotiation 
outcome to the Pareto Frontier. A deal is Pareto optimal 
(or Pareto efficient), if it is not dominated by any other 
deal. In other words, a deal is Pareto optimal if it is the 
best agreement among all negotiation agents. When the 
deal is Pareto optimal, the negotiation should end with 
such an agreement [17, 31].

3.2 Cost Analysis
The cost of a negotiation process is measured by the 
number of proposals (rounds) exchanged before reaching 
an agreement [33]. The agent is efficient if it does fewer 
rounds to reach optimum agreement with its opponent. 

3.3 Utility Analysis
An automated negotiation strategy should guarantee its 
agent to reach the maximum utilities when the agreement 
deal is committed. An efficient negotiation strategy 
models its agent such that it swiftly increases the 
outcomes while the negotiation sessions advance. 

3.4 Sensitivity Analysis
In the sensitivity analysis [13], not only the study of 
negotiation outcomes is essential, but also the 
investigation of the agent faults which are realized 
throughout the negotiation activities. Another useful 
sensitivity analysis of the opponent preferences is to 
dynamically find out the negotiation characterizations. It 
can be defined by comparing the percentage (Equation 
1) of fortunate, nice and concession steps that increases 
the opponent’s utility to the percentage of selfish, 
unfortunate and silent steps that decreases it. 
Spontaneously, an agent which only achieves steps 
increasing its opponent utility can be said to be sensitive 
to its opponent requirements.

A single negotiation step between an agent current 
bid and the previous one for that agent which is written 
as [13] based on utilities as follows:

     bUbUs aaa    (1)

For a step aa bbs  ,  OSa , , for the Agent 

S and its Opponent O , to denote the utility difference 
of two bids b and b’ in the utility space of agent A. From 
the point of view of the agent S, the negotiation step s is 
classified as [13]: 

 Fortunate Step, denoted by (S+, O+),   iff: 
∆S(s)>0, and ∆O(s)>0.

 Selfish Step, denoted by (S+, O≤), iff: 
∆S(s)>0, and ∆O(s)≤ 0.

 Concession Step, denoted by (S-, O≥), iff: 
∆S(s)<0, and ∆O(s)≥ 0.

 Unfortunate Step, denoted by (S≤, O-), iff: 
∆S(s) ≤0, and ∆O(s) <0.
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 Nice Step, denoted by (S=, O+), iff: 
∆S(s)=0, and ∆O(s)>0.

 Silent Step, denoted by (S=, O=), iff: 
∆S(s)=0, and ∆O(s)=0.

The measure for sensitivity of the agent A
(Equation 2) to its opponent’s preferences is defined for a 
given trace t [13] which includes all session bids for both 
agents.
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If sensitivitya(t)<1, then an agent is more or less 
insensitive to opponent preferences. If sensitivitya(t)>1, 
then an agent is more or less sensitive to the opponent’s 
preferences. The sensitivity notion is asymmetric, i.e. 
one agent may be sensitive to the other’s preferences, 
but not vice-versa.

3.5 Class Studies
Given a trace (session offers) ...,, 321

sos bbbt  of 

offers, it denotes the ith element of this sequence, 

st ( ot ) denotes the sequence of steps from t that are 

made by the agent himself (opponent), ct denotes the 

subsequent steps that belong to a class c and finally 

cat ,
, written tac, denotes the subsequent steps by  

 OSa , that belong to class c; where the class c 

{Fortunate, Nice, Concession, Selfish, Unfortunate, 
Silent} (Section 3.4).  In this research, we are interested 
in two essential metric measures namely:

 Total utility difference per class

The pair Totalc(t) of sums of utility differences in all 
steps of class c in a sequence t of steps is defined by:

                  Totalc(t) = TotalSc(t)                            (3)

Where for any agent 
               

i

i
caac ttTotalOSa :,

 Average Utility Difference per Class

The pair u-Avec(t) of average differences in utility in 
all steps in class c in a sequence t of steps is defined by:

             u-Avec(t) = u-AveSc(t)                         (4)  

Where for any agent 
      ci

i
caac tttTotalOSa #/:,  

Here #tc is the number of steps of class c in trace t. 

This metric measures the average utility conceded 
per negotiation step [8]. Negotiation strategies could be 
observable as negotiation dance patterns. For example, 
the success of a strategy that is supposed to learn its 
opponent’s preferences can be verified by checking 
whether the frequency and/or the size of unfortunate 
steps over a negotiation trace decreases. Such patterns 

can be seen as a measure of adaptability of a party to its 
opponent.

4 The proposed approach
The proposed framework handles a bilateral multi-issue 
multi-session win-win negotiation (Section 1); the 
agents are rational to be involved in such negotiation. 
All negotiating agents work independently to maximize 
their utilities such that all of them win. The negotiation 
bids are independent which means that the values of bid 
preferences and issues are not derived from the other bid 
values. One essential assumption is that the data 
distribution is unknown. Two other crucial assumptions 
are related to bids’ ranking and bid selection (Section 5). 
Finally, the model utility function is assumed to be a 
linear summation (Equation 5)





n

i
ii ewU

1

[8, 12]    (5)

Where
iw is the issue weight and 

ie is the issue 

evaluation function; ]1,0[ie .  

Beside the model utility function, the main model 
equations are issue hypothesis space function (Equation 
13) and order statistics Bayesian-mining conditional 
probability function (Equation 14). Using the evaluation 
methods (Section 3) to test the proposed model, the 
following steps are orderly done:
1. The model utility function is calculated.
2. Using the above assumptions, bid weighted issues W is 
calculated (Sections 5.2 and 5.3).
3. Issue hypothesis space (Equation 13) of all bids is 
defined as the Cartesian product of the shapes of the 

issue evaluation functions ie (Equation 5) and W (Step 2). 

4. At each bid arrival, the prior probability )( jHP ; HH j 

is updated using Bayesian-Mining Learning approach 
(Section 5.4) and the Bayesian rule of historical bids 
order statistics (Equation 14).
5. The proposed counter-offer 

1tb (Equation 22) using 

expected utility )( tbu (Equation 21) is updated using 

(Equations 20 and 5).
Throughout the Steps (2-5), all possible bids 

transactions are recorded including session id, bid 
<issues, items, weights, utility, rank>, and opponent 
acceptance status (Yes/No).

5 Mining the opponent profiles  
The order statistics Bayesian-mining strategy is to 
minimize the number of session rounds of an agent as 
well as to maximize its utility. The agent rationality is 
increased whilst the negotiation sessions advance. Also, 
it is proportionally boosted with the opponent 
rationality. The opponent results depend on its 
preferences and behaviour. Fortunately, any opponent 
always gains from playing against the proposed agent 
since the game session rounds are extremely diminished, 
hence, the agreement is reached faster.
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In order to apply skilfully its strategy, the proposed 
agent should have twofold essential properties.  First, it 
mines all historical data from all previous sessions 
regardless of the underlying data distribution. Second, it 
uses order statistics Bayesian-mining approach to learn 
successfully the opponent profiles/preferences and to 
make good weight estimation for all negotiation issues 
based on the proposed ranking and bid weighing.        

5.1 Ranking Bids 
In a multi-session negotiation, the current session is 
considered the most important session. All current (last) 
session bids take higher ranks than other previous 
sessions bids.  Also, each session first bid is considered 
the most important one [22] so it takes higher rank than 
the consequent bids in the same session. Thus the bids 
are proposed orderly in sequence such that no bid is 
proposed twice in the same session. The session ranks 

(the first bid in each session) s
ir is assigned and to a 

negotiation session i according to:

 yxsessions
i er  int   (6)

Where x, y is user defined according to the 
importance of the session, taking a reasonable x for the 
starting session ranking; in this research y=1, x=3.

In addition, the rank of each bid j, ijr , inside the 

session is ranked in sequential order as follows:

 
i

s
i

s
i

iij
N

rr
jrr 11 

 [18]  (7)

Where
iN is the total number of bids in the 

negotiation session i. 

5.2 Bid Selection 
All framework agents are assumed to be rational such 
that the agent selects the bid once to allow win-win 
situation for both negotiating parties. Through the 
session activities, the utilities of bids are calculated to 
gauge the bid acceptance/rejection status.  Hence, if the 
proposed bid utility is less than or equal to the opponent 
expected utility, then the agent has to make an 
agreement and the related session is accordingly 
stopped. Otherwise, the agent rejects the opponent bid 
and the agent bid is proposed. 

5.3 Bid Weighing
As follows, the weight factor can be estimated using the 
historical sequence of bids, each bid items, the status of 
the opponent acceptance, and the rank of each bid.

P(accept) =  bid ranks (opponent accept = YES) / N   (8)

P(reject)=  bid ranks(opponent accept = NO)/ N      (9)

Where N is the summation of all ranks. Thus the 
weight of each item in the issues can be estimated using 
[30, 5] as follows: 

wi = P(item(i)|accept)=  bid ranks containing 

item i of (opponent accept = YES) / total ranks of 
accepted bids in all sessions for all issues.              (10)

If each issue is composed of more than one item, then 
the bigger item weight is considered as the issue weight 
with the normalization as follows:
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Where n is the number of issues. Then, the remaining 
item set in each issue is adjusted.

5.4 Issue Hypothesis Space
[12] utilizes the issue weighted hypothesis space H as a 
Cartesian Product of e

n
eew HHHH  ...21

. wH presents 

all combinations of issues’ weights related to each 

possible issue ranks and e
iH is the shape of issue 

evaluation function; the function shape may be downhill, 

uphill, or triangular. However, since wH is calculated 
based on all enumerations of issue weights and the 
related ranks, its size is relatively huge. 

Fortunately, the proposed weighting issue mechanism 
(Section 5.3) estimates the issue weights based on the 
accepted ranked bids and hence the combinations 
of wH weights are limited to the estimated issue weights 
W (Equation 12). Therefore, the size of the proposed 
H (Equation 13) becomes smaller, the number of session 
bids is reduced, and the bid acceptance likelihood is 
increased.  

e
n

ee HHHWH  ...21 (13)

5.5 Bayesian-Mining Opponent Modelling 
In the proposed Bayesian-Mining approach, it is needed 
to update the probability associated with all hypotheses 
given to the new bid, i.e. the posterior probability given 
by Eq.14. In reality, the negotiation information about 
bids may be too imperfect or hidden to be easily 
estimated, i.e. there is no specific distribution for the 
historical negotiation data. So, it is decided to utilize the 
nonparametric and order statistics techniques. 

Let bt-n, bt-n+1, bt-n+2,…, bt denote the order statistics of 
size n of  a total number of opponent bids; the utilities of 
these bids are previously estimated. Let H be the class in 
which some of these utilities exist. In the proposed 
Bayesian approach, the most likely class value 

jH is the 

one that maximizes Equation 14:
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Using similar thinking as presented in [10], where 
the conditional probability [14] is:

  jtntntnt HbubububuP ))(...,),(),(,),(( 21 
= 

        jtjntjnt HbuPHbuPHbuP )(...)()( 1  
     (15)

Equation 14 dominator could be calculated from 
Equation 16, which is the joint probability density 
function using the equation used in [4, 10, 14] and 
defined as follows
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The conditional probability   jt HbuP )( (Equation 

15) can be estimated effectively using M-estimate 
approach [26] as follows:

  
mn

pmn
HbuP c

jt 


)( (17)

Where 
cn is the number of transactions from 

class jH that takes the value )( tbu ; n is the total number of 

transactions from class jH . p is a user-defined parameter 

and can be computed as the prior probability ))(( tbup . 

m is a parameter known as the equivalent sample size 
and it determines the trade-off between the prior 
probability p and the observed probability nnc / [26]; 

the parameter m is set to 2.0 (this setting is usually used 
as a default and experimentally it gives satisfactory 
results) [32].

)( tbu is estimated as ))(( tbup (Equation 16) which 

could be calculated as follows using the equation used in 
[4,  14] :
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Where ijI is the item of the issue iI , )(acceptP

calculated by (Equation 8), and )|( acceptIP ij
calculated 

by (Equation 10). 

 )(...,),(),(),( 21 tntntntj bubububuHP 
normalization 

[21, 25] is as follows:
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)( jHP is updated proportional to Equation 8 to get:
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j
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The expected utility u (bt) is updated when the 
current opponent counter-offer is proposed during the 
negotiation process, as follows, using Equation 5:

    UHPbu
H

j
jt 









 

1

[12, 21] (21)

Where

 HH j  is a hypothesis, and 
tb is the new bid. 

 )( jHP is the prior probability of jH : the probability 

that jH is correct before the new bid
tb is seen or it is the 

current probability of hypothesis jH [12].

   jt HbuP )( is the conditional (likelihood) probability 

of the new bid
tb that its utility might be proposed given 

that the hypothesis
jH is true.  

 ))(( tbup is the marginal probability of )( tbu

6 The proposed counter-offer
It is assumed that any agent starts any negotiation session 
by proposing the offer (bid) which has the maximum 
utility for his owner. The opponent can accept the 
proposed offer if the utility of that proposal is higher than 
the offer he last proposed or the offer he intends to 
propose, else he rejects and proposes a counter-offer. The 
trade-off algorithm [9], based on the iso-curve concept, 

starts at the opponent’s last bid with a utility  tbu
(Equation 21); where the process is performed in S steps 
and E is the utility difference between steps. In each 
step, N children are generated which is closer to the 

agents iso-curve with small tolerance  , the most 
similar to the opponent’s bids is selected as a stating bid 
for another step until the S steps are completed. This last 
selected one is sent to the opponent. Thus the counter-
offer is estimated as follows:     

 
)(maxarg

arg)(

1 bub
ettown uxuxb

t


  [9] (22)

This is similar to what was mentioned in [12, 9]. 
However, in [9] the children are generated by distributing 
the utility gain randomly among the issues under 
negotiation as being mentioned in the algorithm [9] line 
(5): 

)),(min(
i

n
ii w

EE
Erandomr


 [9]   (23)

Where 
iE is the maximum evaluation gain for the 

issue i at this step and En is the total amount of consumed 
utility. 

i

n

w

EE  is used to limit the final gain to E . 
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The weak point in this algorithm is that it may 
increase the utility of a certain issue that has less effect 
on the opponent utility due to randomization. 

Thus it needs to insert a third item to ensure that the 
increased utility E is distributed fairly among the issues, 
and to increase the search effectiveness by performing a 
more directed search for the children at each step in the 
direction that causes the smallest amount of satisfaction 
loss to the opponent while increasing the agent’s own 
utility.  To do so, the proposed solution is as follows:

Consider a vector };..1|{;  j< njivvIv i  , 

the set of issues under negotiation, where n is the total 
number of issues, and vi is computed by normalizing the 
partial derivatives 

i

t

I

bU


 )( . Thus, the proposed 

enhancement to (Equation 23) is written as:

),)(,(min
i

n
i

i

i
i w

EE
E

v

E
randomr










         (24)

This equation is repeated for all issues similar to the 
algorithm in [9].  

7 Experimental work
The experimental environment is built as follows. First, 
all the previously mentioned aspects (Sections 3, 4 and 5) 
are implemented. Second, four agent types are selected 
and implemented to compete namely, ABMP (A) [15, 
16], Trade-Off (T) [9], Bayesian (B) [12], Mining (M) 
[18] and the proposed Bayesian-Mining (BM) Agent. 
Finally, three data sets are generated with 3-issue [33], 5-
issue [12], 6-issue1 and 10-issue [8] having respectively
27, 3169, 3122 and 13219200 bids. For each data set, the 
following bilateral experiments (Opponent vs. Me)/( A 
vs. B) are carried out:

- Single-Session Experiments 
- ABMP vs. ABMP
- ABMP vs. Trade-Off 
- ABMP vs. Bayesian
- ABMP vs. Mining 
- Trade-Off vs. ABMP
- Trade-Off vs. Trade-Off
- Trade-Off vs. Bayesian
- Trade-Off vs. Mining
- Bayesian vs. ABMP
- Bayesian vs. Trade-Off
- Bayesian vs. Bayesian
- Bayesian vs. Mining
- Mining vs. Mining 
- ABMP vs. Bayesian-Mining 
- Trade-Off vs. Bayesian-Mining 
- Bayesian vs. Bayesian-Mining 
- Mining vs. Bayesian-Mining 
- Bayesian-Mining vs. Bayesian-Mining 

- Multi-Session Experiments(1, 3, and 5 sessions) 
- ABMP vs. Mining 
- Trade-Off vs. Mining
- Bayesian vs. Mining

                                                          
1 We use the online-site: http://interneg.concordia.ca/  

- Mining vs. Mining 
- ABMP vs. Bayesian-Mining 
- Trade-Off vs. Bayesian-Mining 
- Bayesian vs. Bayesian-Mining 
- Mining vs. Bayesian-Mining 
- Bayesian-Mining vs. Bayesian-Mining

7.1 Enhanced Trade-Off Experiments

(3-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic 
TRADE-OFF

Mean 0.658 0.510
std dev. 0.080 0.087

Confidence 0.070 0.077
confidence interval 1 0.728 0.587
confidence interval2 0.588 0.4328

Table 1: Statistical Results for 3-issues

(5-issue) 
(1 session)

Enhanced-
TRADE-OFF

Basic 
TRADE-OFF

Mean 0.4132 0.2168
std dev. 0.1084 0.1200

Confidence 0.0487 0.0539
confidence interval 1 0.4620 0.2708
confidence interval2 0.3645 0.1628

Table 2: Statistical Results for 5-issues

(6-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic 
TRADE-OFF

Mean 0.560 0.421
std dev. 0.145 0.155

Confidence 0.079 0.096
confidence interval 1 0.639 0.517
confidence interval2 0.481 0.325

Table 3: Statistical Results for 6-issues

(10-issue) 
(1 session)

Enhanced-
TRADE-OFF

Basic 
TRADE-OFF

Mean 0.560 0.421
std dev. 0.145 0.155

Confidence 0.079 0.096
confidence interval 1 0.639 0.517
confidence interval2 0.481 0.325

Table 4: Statistical Results For 10-issues

Sensitivity
Enhanced-

TRADE-OFF
Basic TRADE-

OFF
3-issue 2 1.5
5-issue 1.5 0.923077
6-issue 1.06666 0.380952

10-issue 3.083333 2.466667

Table 5:  Sensitivity for The Basic/Enhanced Trade-Off
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3-issue
A 0.6733 0.7566 12.376%
B 0.7 0.76 8.51%

5-issue
A 0.555 0.6675 20.27%
B 0.81 0.8125 0.309%

6-issue
A 0.82 0.85 3.659%
B 0.861 0.8656 0.455%

10-issue
A 0.703 0.707 0.624%
B 0.6436 0.7345 14.126%

Table 6: Performance for Both Algorithms for All issues

In order to weigh the enhanced trade-off contribution on 
the negotiation process, experiments are done on the 
mentioned data to compare both the  enhanced trade-off 
and the basic trade-off algorithms (Tables 1, 2, 3 and 4) 
for (3-issue, 5-issue, 6-issue and 10-issue) respectively. 
95% confidence interval is used and the increase in the 
confidence interval is found that it is between 24%-
36%.  It is noticed that the standard deviation, the data 
population variability measure and the confidence 
intervals, of the enhanced algorithm is smaller than the 
basic algorithm standard deviation. This means that the 
data is spread in smaller range of values leading to less 
marginal error (confidence). It is found that the 
agreement offers become more closely to the Pareto 
frontier raising the utilities for both the agent and his 
opponent (Table 6). 

In 3-issue experiments, while the performance (the 
utility) of the agent is increased by 8.571%, it is 
increased by 12.376% for the opponent. In 5-issue 
experiments, while the performance of the agent is 
increased by 0.309%, it is increased by 20.270% for the 
opponent. In 6-issue experiments, while the 
performance of the agent is increased by 0.455%, it is 
increased by 3.659% for the opponent. In 10-issue 
experiments, while the performance of the agent is 
increased by 14.126%, it is increased by 0.624% for the 
opponent. Also the enhanced algorithm is more sensitive 
than the basic algorithm (Table 5).

7.2 Bayesian Mining Experiments 
Experiments were run based on 3-issue, 5-issue, 6-issue, 
and to test the scalability of the approach, 10-issue is 
used. To compare the performance of the Bayesian 
mining approach, the agents using opponent modelling 
were compared with agents using the ABMP, Trade-off, 
Bayesian and mining strategies. All agents played against 
the same opponent to compare both negotiation trace 
(intra-transaction) and the final agreement (inter-
transaction). Negotiation takes place between agents A
and B assuming that the latter is the experiment target.    

7.2.1 Pareto analysis
The main objective for any automated negotiation is to 
stay as close as possible to the Pareto efficient frontier. 
However in current automated negotiation strategies, no 
player has prior information about the preferences of the 
negotiating parties, and so all players don’t know where 
the Pareto efficient frontier is located. It thus remains a 
challenge to stay close to that Frontier. In this research, 
the Bayesian–mining approach tries to predict the 
opponent preferences and to select a suitable bid near the 
Pareto Frontier. Figures 1, 2, 3 and 4 conclude that the 
Bayesian-mining approach often makes the best 
prediction to the opponent preferences compared with 
other strategies; hence, it selects the bids which are 
preferable to the opponent reaching an agreement close 
to the Pareto frontier. It may also be concluded that the 
Bayesian-mining approach gets the shortest distance 
between the final agreement and the Pareto Efficient 
Frontier. This is because the accumulated knowledge 
regarding the opponent behaviour and preferences 
shortens the distance between the final agreement and the 
Pareto Efficient Frontier. In 3-issue experiments (Figure 
1), after 5 sessions, when the agent B applies Bayesian–
mining strategy to negotiate with the opponent A 
following the same strategy, Bayesian, Trade-off, Mining 
or ABMP, it gets the distances of the final agreement to 
the Pareto Frontier equal to 0.020, 0.192, 0.192, 0.170 or 
0.209 respectively. Compared with these results, when a 
Mining strategy agent has opponents, Bayesian, Trade-
off, Mining or ABMP, its distances would be 0.2618, 
0.1828, 0.3753 or 0.261 respectively. Also, in 10-issue 
experiments (Figure 4), 5 sessions, when the agent B, 
having our proposed strategy, negotiates with its 
opponent A which follows the same strategy, Bayesian, 
Trade-off, Mining or ABMP, the distances of the final 
agreement to the Pareto Frontier are 0.009, 0.028, 0.072, 
0.042, 0127 respectively. Comparing these results with 
the agent using Mining strategy having the opponents, 
Bayesian, Trade-off, Mining or ABMP, the distances 
become 0.144, 0.164, 0.1266 or 0.129 respectively. 

Figure 1:3-issue Pareto Frontier Closeness Outcomes
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It is also noticed that when agent B follows the 
It is also noticed that when agent B follows the 

Bayesian–mining strategy, it generally achieves the 
shortest distance between the agreement and the Pareto 
Frontier when its opponent is more rational. However, 
when the agent uses the Mining strategy, there is no 
general rule to judge which opponent strategy would be 
better. When agent B follows the Trade-off strategy, it 
reaches better agreement when the opponent uses the 
Trade-off, then the Bayesian, and lastly ABMP. When 
agent B follows the Bayesian strategy (Figures 1, 2 and 
3), it reaches better agreements when the opponent is the 
ABMP, then the Trade-off, and lastly the Bayesian 
itself. However, in 10-issue experiments (Figure 4), the 
order of its opponent strategies are the Bayesian, then 
the Trade-off and lastly ABMP. When agent B follows 
the ABMP, it reaches better agreements when the 
opponent uses the Trade-off, then the Bayesian and 
lastly ABMP. 

7.2.2 Negotiation Cost and Utility
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Figure 2:5-issue Pareto Frontier Closeness Outcomes

Figure 3:6-issue Pareto Frontier Closeness Outcomes

Figure 4:10-issue Pareto Frontier Closeness Outcomes

Figure 5:3-issue Single-Session experiments

Figure 6. 5-issue Single-Session Experiments

Figure 7: 6-issue Single-Session Experiments

Figure 8: 10-issue Single-Session Experiments
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Figure 10: 5-issue Opponent vs. Bayesian-Mining 
Agent

Figure 9: 3-issue Opponent vs. Bayesian-Mining 
Agent



ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 133

ABMP VS. BAYESIAN-MINING  
(6 issues)

0.79
0.8

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

30

R
o

u
n

d
s Rounds

Ua

Ub

Trade-Off VS. BAYESIAN-MINING  
(6 issues)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

30

R
o

u
n

d
s Rounds

Ua

Ub

Bayesian VS. BAYESIAN-MINING  
(6 issues)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

1 session 3 sessions 5 sessions

SESSIONS

U
ti

lit
y

0
2
4
6
8
10
12
14
16
18

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. BAYESIAN-MINING  
(6 issues)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

lit
y

0

2

4

6

8

10

12

14

16

18

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. MINING  
(6 issues)

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

R
ou

nd
s Rounds

Ua

Ub

BAYESIAN-MINING VS. BAYESIAN-MINING  
(6 issues)

0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

2

4

6

8

10

12

14

R
o

u
n

d
s Rounds

Ua

Ub

ABMP  Vs Bayesian-Mining [10 issues]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 session 3 session 5 session

sessios

U
ti

lit
y

0

20

40

60

80

100

120

R
o

u
n

d
s Rounds

Ua

Ub

Trade-OFF Vs. Bayesian-Mining [10 issues]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 session 3 session 5 session

sessions

U
til

ity

0

20

40

60

80

100

120

R
ou

nd
s Rounds

Ua

Ub

Bayesian VS. Bayesian-Mining [10 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 session 3 session 5 session

sessions

U
ti

lit
y

0

20

40

60

80

100

120

140

R
o

u
n

d
s Rounds

Ua

Ub

Mining VS  Bayesian-Mining [10 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 session 3 session 5 session

sessions

U
ti

li
ty

0
10
20
30
40
50
60
70
80

R
o

u
n

d
s Rounds

Ua

Ub

Mining VS  Mining [10 issues]

0.52

0.54

0.56

0.58

0.6

0.62

0.64

1 session 3 session 5 session

100
105
110
115
120
125
130
135

Rounds

Ua

Ub

Bayesian-Mining VS  Bayesian-Mining [10 issues]

0.6
0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

1 session 3 session 5 session

sessions

U
ti

lit
y

0

10

20

30

40

50

60

R
o

u
n

d
s

Rounds

Ua

Ub

Figure 11: 6-issue Opponent vs. Bayesian-Mining Figure 12: 10-issue Opponent vs. Bayesian-Mining 
Agent
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Table 7: Average Sensitivities for all strategies

The negotiation cost is presented by the number of 
rounds and increase in utility. It should be noticed that 
single session experiments are the baseline to compare 
all agent strategies (Figures 5, 6, 7and 8). Additionally, 
in all multi-session experiments (Figures 9, 10, 11 and 
12), the curves of all existing agent strategies, except for 
our proposed strategy, are presented only by points as 
they never have previous session knowledge to shorten 
the negotiation rounds thus the related experiments are 
independent. To sum up the results, the following points 
may be stated.
 In all Bayesian–mining experiments, the agent 

wins its opponent from the first session. It gains 
more experience through negotiation steps and 
sessions such that gradually its utility is increased 
and the session rounds are decreased. For example, 
when Agent B follows Bayesian–mining and plays 
against an opponent Agent A which follows 
ABMP on 5-issue data set (Figure 10), Agent B 
utilities outcomes are (0.825, 0.83, 0.842) and the 
game session rounds are (35, 25, 17) in 1, 3 and 5 
sessions respectively. Moreover, when the 
opponent agent A is Bayesian on 6-issue data set 
(Figure 11), Agent B utilities are (0.9125, 0.92, 
0.92566) and the game session rounds are (17, 15, 
13) in 1, 3 and 5 sessions respectively. One may 
notice that the first session between these parties 
has 17 rounds only, which are less than 29 rounds 
of Bayesian (Agent A) vs. Bayesian (Agent B) 
single session experiment (Figure 7). 

 All other opponents (agent A) gain from playing 
with a Bayesian–mining agent (agent B). For 
example, agent A which follows ABMP (Figure 6) 
on 5-issue data set gets session rounds (75, 57, 43, 
35) vs. Agent B which follows ABMP, Trade-Off, 
Bayesian, Bayesian–mining respectively. Also, the 
Trade-Off fastest single-session agreements 
(Figures 5, 6 and 7) occurred with the Bayesian–
mining agent; 9 session rounds (3-issue data set) 
and 25 session rounds (5-issue and 6-issue data 
set).

 The Bayesian–mining agent outcomes (agent B) in 
all its experiments on 3-issue, 5-issue, 6-issue and 
10-issue data sets effectively prove its principles.

 It is illustrated that the Bayesian–mining approach 
has less offers to reach rapidly the final agreement 
and the final utility. In most cases, especially in 
10-issue experiments, it raises the opponent 

utilities. The Bayesian–mining approach works 
with larger number of sessions having several 
issues as the accumulated knowledge becomes 
valuable.

 It is noticed that in terms of the overall negotiation 
quality and number of proposals exchanged to 
reach an agreement, the Bayesian–mining 
approach outperformed the other strategies. This 
confirmed the intuition that building mining and 
learning capability into agents help the agents to 
work more accurate with its opponent with better 
performance and less expensive process.

7.2.3 Sensitivity analysis
The sensitivity analysis is interested only in the 
negotiation intra-transaction. Table 7 summarizes the 
average sensitivity for all negotiation strategies used in 
this research. Figures 13, 14, 15 and 16 illustrate the 
values of this study for all the negotiation experiments.

The average sensitivity for the Bayesian-mining 
strategy is greater than all other strategies, which is also 
influenced by the preferences’ alternatives of each kind 
of issue (Table 7). In 3-issue experiments, the sensitivity 
increment ratio between Bayesian-mining (2.50) and the 
second highest sensitivity, i.e. Mining approach, (1.629) 
is 53%. In 5-issue experiments, the sensitivity increment 
ratio between Bayesian-mining (3.443) and second 
highest sensitivity, i.e. Bayesian approach, (1.571) is 
119%. In 6-issue experiments, the sensitivity increment 
ratio between Bayesian-mining (3.750) and the second 
highest sensitivity, i.e. Bayesian approach, (1.703) is 
120%. In all 10-issue experiments, the sensitivity 
increment ratio between Bayesian-mining (8.622) and 
the second highest sensitivity, i.e. Bayesian approach 
(3.03) is 184%. Figures 13, 14, 15 and 16 show that the 
sensitivity has increased after the first session due to the 
nature of the Bayesian-mining strategy which ranks the 
proposed offers during the session at the end of each 
session; the higher sensitivity value means that the agent 
who owns the related strategy has more information 
about the behaviour and the weights of preferences 
which the opponent gives to the issues. 

In the sensitivity deep analysis, it can be found that 
for 3-issue, the Bayesian–mining approach sensitivity is 
between 2 and 4, but for other agent strategies, the 
sensitivity is between 0.667 and 2. For 5-issue, the 
Bayesian–mining approach is between 1.4 and 6, but for 
other agent strategies, the sensitivity is between 1.0 and 
2.33. For 6-issue, the Bayesian–mining approach 
sensitivity is between 2.143 and 7, but for other agent 
strategies, the sensitivity is between 0.5 and 2.50. For 
10-issue, the Bayesian–mining approach strategy is 
between 5.824 and 13, but for other agent strategies, the 
sensitivity is between 0.915 and 4.058. 

To sum up the sensitivity results, the following 
points should be clarified:  
 Increasing the issues number leads to increasing 

the sensitivity values of all strategies, because the 

3-issue 5-issue 6-issue 10-issue

ABMP 1.085 1.269 0.843 1.58

Trade-off 1.250 1.315 1.260 2.68

Bayesian 1.618 1.571 1.703 3.03

Mining 1.629 1.568 1.581 2.213

Bayesian-
Mining 2.500 3.443 3.750 8.622
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ability to select among great number of offers 
having many alternatives is increased. 

 The sensitivity is proportional to the agent 
rationality. Table 7 shows evidence that the 
descending rationality order would be Bayesian-
Mining, Bayesian, Mining, Trade-off, and ABMP. 

 The sensitivity for the agent uses the Bayesian–
mining strategy to the opponent in negotiation is 
more than any other strategy, which means that the 
agent outcomes are nearly closed to Pareto frontier.

 If the agent has several history proposals, it has 
enough knowledge to be more sensitive and more 
close to the Pareto Frontier. Consequently, the 
proposed agent records most sensitive steps to its 
opponent. 

 The sensitivity feature is asymmetric; one agent 
may be sensitive to the other's preferences, but not 
vice-versa.
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7.2.4 Class studies
In the class studies, Bayesian–mining sensitivity 
calculations, i.e. Fortunate Step, Selfish Step, 
Concession Step, Unfortunate Step, Nice Step, and 
Silent Step, are dependent on all historical bids. Hence, 
the selection of suitable bids which satisfy the 
conditions of these steps becomes almost granted. This 
may lead to more accurate/rational calculations than the 
other models’ criteria. In this section, the study focuses 
on the effect of the presence of the Bayesian mining 
strategy in any agent (A or B) in the negotiation process.   

The average unfortunate step over a negotiation 
trace decreases by 0.217 to 0.453 when the Bayesian–
mining approach is included ( average of all cases of 3-
issue, 5-issue, 6-issue and 10-issue experiments), 
However; the average unfortunate steps is between 
0.431 and 0.531 when the Bayesian–mining approach is 
not included. 

The average concession step is between 0.477 and 
0.952 when the Bayesian–mining approach is included; 
however, the average concession step is between 0.475 
and 0.78 when the Bayesian–mining approach is not 
included. Also the average fortunate step is between 
0.056 and 0.424 when the Bayesian–mining approach is 
included while the average fortunate step is between 
0.019 and 0.392 when the Bayesian–mining approach is 
not included.

In 5-issue experiments (Table 8), the average 
unfortunate steps over a negotiation trace decreases with 
using Bayesian-Mining. When Bayesian–mining 
approach is included, the average unfortunate step is 
0.369, while the average unfortunate step is 0.444 when 
Bayesian–mining approach is not included. Also the 
average fortunate step is 0.262 when the Bayesian–
mining approach is included while the average fortunate 
step is 0.182 when the Bayesian–mining approach is not 
included.

In 6-issue experiments (Table 8), the average 
unfortunate steps over a negotiation trace decreases with 
using Bayesian-Mining. When Bayesian–mining 
approach is included the average unfortunate steps is 
0.365, while the average unfortunate steps is 0.528 
when Bayesian–mining approach is not included. Also 
the average fortunate step is 0.224 when the Bayesian–
mining approach is included while the average fortunate 
step is 0.106 when the Bayesian–mining approach is not 
included. Also the average concession step is 0.635 

Figure 15: 6-issue Sensitivity Outcomes

Figure 14: 5-issue Sensitivity Outcomes

Figure 13:  3-issue Sensitivity Outcomes

Figure 16: 10-issue Sensitivity Outcomes
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when the Bayesian–mining approach is included while 
the average concession step is 0.545 when the 
Bayesian–mining approach is not included.

Bayesian-Mining

Not included Included
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10 0.375 0.673 0.473 0.409 0.828 0.294

6 0.106 0.545 0.528 0.224 0.635 0.365

5 0.182 0.541 0.444 0.262 0.580 0.396

3 0.041 0.522 0.448 0.231 0.552 0.363

Table 8: Averages of Some Class Studies

For 10-issue as illustrated in Table 8, the average 
unfortunate steps over a negotiation trace decreases with 
using Bayesian-Mining. When Bayesian–mining 
approach is included the average unfortunate steps is 
0.294, while the average unfortunate steps is 0.473 
when Bayesian–mining approach is not included. Also 
the average fortunate step is 0.409 when the Bayesian–
mining approach is included while the average fortunate 
step is 0.375 when the Bayesian–mining approach is not 
included. 

From the previous analysis, it is illustrated that the 
size of the unfortunate steps for an agent that uses the 
Bayesian–mining approach is lower than other agent 
strategies. The frequency size of the concession and 
fortunate steps for the Bayesian–mining agent is higher 
than other types of agent. Consequently, the Bayesian–
mining agent, in most cases, performs the steps that 
increase its opponent's utility being sensitive to its 
opponent needs.

8 Conclusion and future work
This paper proposes an agent approach for automated 
multi-session multi-issue win-win competitive bilateral 
negotiation. The proposed approach exploits the 
historical and accumulated knowledge while negotiation 
advances between two competitive agents having the 
same number of issues, to select the suitable bid for both 
negotiating sides. In this research, the order statistics 
Bayesian–mining agent is used to estimate the opponent 
thinking, and then the enhanced trade-off is used to 
propose the counter-offer, reducing the processing cost in 
terms of number of rounds and increasing the chances of 
reaching an agreement with higher utilities for both 
competitive agents.  

Extensive experiments are carried out to prove that 
the assumptions, hypothesis, and opponent modelling are 
effective. Furthermore, many proposed agent imperative 
features are verified. The proposed Bayesian–mining 

agent is sensitive and rational. When the agent meets its 
opponent, both parties win since they reach the 
negotiation agreement fast. Moreover, the Bayesian–
mining agent utility is increased while negotiation 
sessions advance. However, its opponent utility is 
dependent on the related opponent preferences. Further 
experiments are conducted on large-scale data sets 
having 10-issue data set. It is proved that the Bayesian–
mining strategy is valid for scalable number of issues. 

Handling continuous issues should be investigated in 
the future. Studying how to minimize the large number 
of offers before starting the negotiation process is 
another topic that needs further investigations. It is also 
needed to get benefit from the domain knowledge to spur 
the negotiation skilfully. Our approach is based on 
negotiation strategies among rational agents; it could be 
worth investigating how to handle cases when our 
rational agent negotiates with irrational or emotional 
agent.
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