
Informatica 35 (2011) 141–156 141

A Data Model and an XQuery Extension for Concurrent XML Structures

Emmanuel Bruno and Elisabeth Murisasco
LSIS - UMR CNRS 6168
Université du Sud Toulon-Var, BP 20132
83957 La Garde Cedex, France
E-mail: {bruno,murisasco}@univ-tln.fr

Keywords: multistructure, concurrent hierarchy, textual document, tree-like structure, XML data model, XQuery

Received: March 13, 2009

An XML document is mainly hierarhical, but some applications need to simultaneously associate more
than one hierarchy to the same data. In general, concurrent hierarchies cannot be merged in order to
get a well-formed XML document. This work stands in this context: it aims at describing and querying
hierarchical XML structures defined over the same textual data in a concurrent way. Our proposal called
MSXD is composed of a data model (which can be seen as an index over the data and between all the
structures) and a dedicated query language defined as an extension of XQuery. The key idea is to propose a
method for a compact description of multiple tree-like structures over a single text based on segmentation.
Segmentation encoding allows querying overlap/containment relations of markups belonging to different
structures. This paper also tackles a solution to define a multistructured schema in order to describe the
relationships (as weak constraints) between parts of concurrent structures. Finally, this paper focuses on
the architecture of the XML environment implementing our proposals.

Povzetek: Sistem omogoča uveljavljanje več hierarhij v dokumentih XML.

1 Motivation

XML [10] is the de facto standard to describe structured
data. Several applications in the context of information
systems are based on their use: electronic publishing,
language engineering, technical documentation, digital li-
braries, Web, etc.

XML documents are mainly hierarchical. The hierar-
chy, captured in a tree-like structure [23], corresponds to
one level of analysis of the data contained in the document
(e.g a logical analysis). A large set of tools are now avail-
able and widely used in particular for edition, querying
(XPath [16], XQuery [7]) or transformation (XSLT [15]).
According to us, this success is due to the hierarchical
structure which is easier to exploit compared to the graph
structure. Moreover, manipulation remains simple in an
XML environment.

Recently, the title of an article published in the SIG-
MOD conference [27] claims that “ One hierarchy is not
enough ” for data-centric application context. Indeed, the
CONCUR feature of SGML [24] first pointed out this need
in the nineties but in context of document-centric encoding
where some applications need to consider more than one
hierarchy over the same text in a concurrent way. These last
years, several other works about concurrent markups have
been published [31, 30, 32, 22, 33, 19, 25, 14, 21]. All
these different works propose solutions to describe multi-
ple tree-like structures (with overlapping) into a single doc-
ument. The main problem with concurrent hierarchies is
that they cannot be merged in order to get a well-formed

XML document without using a flat representation or hy-
perlinks that make the structure difficult to query.

Our work stands in this context. It aims at representing
and querying concurrent hierarchical XML structures de-
fined over the same textual data. We call such data “ mul-
tistructured textual documents ”. The key idea is to pro-
pose a method for a compact description of multiple trees
over a single text based on its segmentation. Segmentation
encoding allows querying overlap/containment relations of
markups belonging to different structures. The solution
proposed, called MSXD for MultiStructured XML Docu-
ments1, is entirely XML compatible.

This paper describes on the first hand the MSXD model
and its relative query language, and on the other hand, it
details the way these proposals are implemented under an
XML environment. We also tackle the description of rela-
tionships between structures (as weak constraints) in order
to propose a solution to define a multistructured schema
enabling validation across multiple hierarchies [20].

This paper is an extended version of different prelimi-
nary contributions ([11], [12] and [13]).

1.1 A running example
To illustrate the problem, we consider a mediæval
manuscript (Princeton, Garrett 80 (PG)) related to medico-
pharmaceutical recipes written in Occitan language [8].
This kind of text is studied by philologists of the University

1Funded by the french research agency (ANR) – Semweb project
(2004-2007)

142 Informatica 35 (2011) 141–156 E. Bruno et al.

of Pisa (Italy) in the Department of Language and Romance
Literature. Philology is a science that studies ancient or
mediæval civilizations by the mean of literary documents.

Researchers are interested in studying the text of the
manuscript according to different points of view corre-
sponding to different uses of the document. Each analysis
results in a mainly hierarchical markup of the text which
could be easily represented in XML.

From the document represented as an image (see Fig-
ure 1), for illustrating our intention, we have extracted the
following textual content:
... Per recobrar maniar Ad home cant a perdut lo maniar

prin de l erba blanca ...

This same text has been segmented and marked up in
three ways: its physical structure S1 (the manuscript is or-
ganized into pages, on two columns composed of lines),
its syntactic structure S2 (the manuscript is composed of
sentences and words) and its semantic structure S3 (the
manuscript describes medical prescriptions which have
signs, ingredients, plants and effects). The result is shown
in Figure 2 where three XML documents hierarchically
organize the same text according to these three different
points of views.

Each structure marks up the text differently from an-
other (see Figure 3). For example the segment of text ‘Ad
home cant a perdut lo maniar’ is tagged by
Sign in S3, while it is tagged differently in S1: ‘Ad
home cant a perdut’ is marked by Line whereas
‘lo maniar’ begins another textual segment marked
also by Line. Moreover notice that a Sign can overlap
two lines. Therefore, these documents are independent
with potential overlapping.

Structures (but not the relations between them) could
be defined by means of a grammar like a DTD, an XML
schema [6] or a RelaxNG schema [17].

These XML documents are currently considered sep-
arately even if researchers identify correlations between
them. In particular, they would like to be able to express
the following queries: What are the sentences that follow
the signs? (this query combines syntactic and semantic
structures); What is the prescription that contains the larger
number of lines? (this query combines physical and seman-
tic structures); What are the words cut by an end of line?
(this query combines physical and syntactic structures).

Usual XML manipulation languages do not support con-
current structures, thus our issue is (1) to model multiple
hierarchical structures in order to query them in a concur-
rent way and (2) to provide an XML environment to sup-
port multistructured documents.

Finally, notice that the relationship (eventually weak) be-
tween parts of these three structures are not defined: for
example, one can remark that a page (in the physical struc-
ture) always begins with a prescription (in the semantic
structure). It could be useful to use this kind of constraint
during querying and to check consistency between struc-
tures. We tackle this issue by defining a schema to describe
the relationships between parts of the concurrent structures.

1.2 Objectives

Our objectives are the following:

A suitable – XML compatible – data model. This
model dedicated to multistructured textual documents is
called MSXD. It enables (1) to consider several segmen-
tations of the same text, and (2) to define a hierarchical
structure for each of these segmentations. Notice that the
structures could be weakly coupled and that there is no
main structure. The set of segmentations and the set of
hierarchical structures are deduced automatically from the
given XML structured documents (for example produced
by philologists). That is why they could be developed in
a distributed way. The replication of the common text (in
each XML document) can be seen as a drawback but (i) the
data storage according to the volume is not really a prob-
lem, and (ii) synchronisation is not an issue because the
common text is never updated: the only changing part (the
structure) is not replicated. Moreover, each user can then
edit its own copy offline. This data model is based on the
use of hedges [28], the foundation of grammar language
RelaxNG [17] (REgular LAnguage description for XML
New Generation);

An extension of XQuery [7]. Our objective is to query
the structures and the textual content in a concurrent way
and to use an as much as possible unchanged XQuery. One
of the original contribution of our proposal is that the Mul-
tiStructured document is never instantiated. As we said be-
fore, the set of structures can be syntactically described as
a distributed set of XML documents: we want to keep each
structure safe to use available XML tools and languages for
its construction and its manipulation. Given a set of XML
documents over the same textual value, a MSXD instance
can be seen as an index over the textual value and between
all the structures. This index is used to evaluate queries
using concurrent structures;

The description of relationships between structures.
We propose a solution to define a multistructured schema
in order to describe the relationships (as weak constraints)
between parts of the concurrent structures. This is done
as a set of rules by means of Allen’s relations to constrain
the relative position of fragments in the structures. This
work is a first step towards validation across multiple hier-
archies [20].

This paper is organized as follows: Section 2 defines the
MSXD data model and shows the XML syntax associated
to an MSXD instance. Section 3 presents an extension of
XQuery to multistructure. Section 4 proposes a schema
enabling to express constraints between concurrent struc-
tures. Section 5 specifies the MSXD architecture. Section 6
is dedicated to the related works and section 7 concludes.
Currently, we only consider the definition of multiple struc-
tures in the single textual modality.

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 143

Figure 1: A page from the manuscript

2 The MSXD model
We first choose to define the notion of a multistructured
document and then to introduce all the concepts used in
this definition. We illustrate the MSXD model with our
running example. Our data model is based on the use of
hedges (the foundation of RelaxNG). Informally, a hedge
is a sequence of trees. In the XML terminology, a hedge
is a sequence of elements possibly intervened by character
data; in particular, an XML document is a hedge [28].

2.1 Formal model definition

Definition 1. A Multistructured document is a triplet
(V, I,S) where V is a textual value, I a set of segmentations
of V and S a set of structures associated to segmentations
from I.

A multistructured document can be seen as a textual
value augmented with different hierarchical structures de-
fined over it. These structures share the same text but con-
cern (in general) different strings extracted from that text.

Definition 2. A segmentation of the textual value V of
length l is a list XV of strings such that XV = {xi|xi =
V [bi..ei] and b0 = 0 and ei ≥ bi and bi = ei−1 + 1 and
e|Xv|−1 = l− 1}, bi and ei are respectively the start and the
end positions of the fragment in V . We define two functions
for each XV [i], start(XV [i]) = bi and end(XV [i]) = ei. The
set XV makes a total partition of the textual value V .

For our example, V is the text extracted from
the manuscript (“...Per recobrar maniar Ad home cant a

perdut lo maniar prin de l erba blanca...”) and we con-
sider three segmentations X1

V , X2
V and X3

V (corresponding to
the set of textual contents of the XML elements from each
structure S1, S2 and S3, see Figure 2):

– X1
V = x1

1... ∪ ...x1
4, with in particular x1

1 = "Per
recobrar maniar" and x1

4 = "blanca...",

– X2
V = x2

1...∪ ...x2
15, with in particular x2

1 ="Per" and
x2

15 ="blanca",

– X3
V = x3

1... ∪ ...x3
4, with in particular x3

1 = "Per
recobrar maniar", and x3

4 = "erba
blanca".

144 Informatica 35 (2011) 141–156 E. Bruno et al.

<!-- S1 physical structure -->
<?xml version="1.0" encoding="utf-8"?>
<Manuscript>...

<Page>
<Column>...
<Line>Per recobrar maniar</Line>
<Line>Ad home cant a perdut</Line>
<Line>lo maniar prin de l erba</Line>
<Line>blanca ...</Line>...

</Column> ...
</Page>...

</Manuscript>

<!-- S2 syntactic structure -->
<?xml version="1.0" encoding="utf-8"?>
<Manuscript>
<Syntax>...
<Sentence><W>Per</W><W>recobrar</W><W>maniar</W></Sentence>
<Sentence><W>Ad</W> <W>home</W> <W>cant</W><W>a</W>
<W>perdut</W><W>lo</W> <W>maniar</W> <W>prin</W>
<W>de</W><W>l</W> <W>erba</W><W>blanca</W> ...</Sentence>...

</Syntax>
</Manuscript>

<!-- S3 semantic structure -->
<?xml version="1.0" encoding="utf-8"?>
<Manuscript>
<Prescriptions>...
<Prescription>Per recobrar maniar <Sign>Ad home cant
a perdut lo maniar</Sign>prin de l <Ingredient><Plant>erba
blanca</Plant>...</Ingredient></Prescription>...

</Prescriptions>
</Manuscript>

Figure 2: Physical (S1), Syntactic (S2) and Semantic (S3) structures

Per recobrar maniar Ad home cant a perdut lo maniar prin de l erba blanca ...

Line Line Line Line

Sign Plant

Ingredient

Figure 3: Multiple segmentations of the text

We use the concept of fragment to define structures:
fragments mark up a segmentation. Fragment positions in
the textual value are useful to compute their relative posi-
tions.

Definition 3. A fragment f is defined over a segmentation
XV of the textual value V and an alphabet ΣV , a set of la-
bels:

1. f = ε (the empty fragment),
start(f) = end(f) = 0

2. f = vi with vi ∈ XV , start(f) = start(XV [i]),
end(f) = end(XV [i])

3. f = v < x > with v ∈ ΣV and x a fragment,
start(f) = start(x),
end(f) = end(x) (f is called a tree)

4. f = xy with x and y two fragments and
start(y) = end(x)+ 1,
start(f) = start(x), end(f) = end(y).

Notice some remarks about definition 3:

– Rule 1 defines the empty fragment. Recall that we
want to represent several segmentations of the same

text in order to define a hierarchical structure for
each of these segmentations (producing several struc-
tured documents over the same text). Using empty
fragments (as milestones) is not compatible with our
model because a fragment has to be related to a seg-
mentation. The only legal empty fragment is the one
associated with the empty document.

– Rule 3 uses the alphabet ΣV , which is a set of labels for
fragments having a tree-like structure corresponding
to XML element names:
for the physical analysis,
Σ1

V = {Manuscript,Page,Column,Line},
for the syntactic analysis,
Σ2

V = {Manuscript,Syntax,Sentence,W},
for the semantic analysis,
Σ3

V = {Manuscript,Prescription, Ingredient,
Sign,Plant}.

– Rule 4 produces sequences of fragments. We do not
make a distinction between a fragment and a single-
ton sequence containing that fragment and we do not
consider nested sequences.

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 145

We now give some examples of fragments respectively
constructed over segmentations X1

V and X3
V :

– Over X1
V (two fragments):

(1) f 1
1 = x1

1 with x1
1 ="Per recobrar maniar",

start(f 1
1) = 1, end(f 1

1) = 19 and
(2) f 1

2 = Line < x1
1 >, start(f 1

2) = start(f 1
1),

end(f 1
2) = end(f 1

1);

The fragment f 1
2 is represented in XML syntax by

<Line>Per recobrar maniar</Line>.

– Over X3
V (three fragments):

(1) f 3
4 = x3

4 with x3
4= "erba blanca",

start(f 3
4) = 60, end(f 3

4) = 70
(2) f 3

5 = Plant < f 3
4 >, start(f 3

5) = start(f 3
4),

end(f 3
5) = end(f 3

4) and
(3) f 3

6 = Ingredient < f 3
5 >, start(f 3

6) = start(f 3
5),

end(f 3
6) = 92) (we supposed that 92 is the end

position of the textual fragment marked by “..." in our
example);

The fragment f 3
6 is represented in XML by

<Ingredient>
<Plant>erba blanca</Plant>...

</Ingredient>.

Definition 4. A structure is a tree f (a labelled fragment)
over a segmentation of the textual valueV , end(f)= |XV |−
1 and start(f) = 0.

Figure 4 illustrates our model over the two X1
V and X3

V
segmentations (we do not show the third segmentation to
make the reading of the figure easier) and the two struc-
tures S1 and S3 defined over them. The figure is composed
of two parts: the first indicates the segmentations (start and
end positions are associated to each textual segment inside
a segmentation; for convenience the numbering of start and
end positions only takes into account the segments used in
our example), and the second part shows the hierarchical
organization of fragments into a structure (physical struc-
ture on the left, semantic structure on the right).

In summary, from the XML documents of Figure 2, we
can extract the text V , we can deduce three structures (S1,
S2 and S3) built on three segmentations (X1

V , X2
V and X3

V).
Fragments are constructed over segmentations.

2.2 Relative position of two fragments

Our model is designed so that Allen’s relations [2] can be
used on fragments in order to calculate their relative posi-
tion inside a segmentation or between two segmentations.

Definition 5. Predicates on two fragments f1 and f2 are
defined over one or two segmentations on the same textual
value:

be f ore(f1, f2) ≡ f inishes(f2, f1)
≡ end(f1)< start(f2)

be f ore(f1, f2,n) ≡ f inishes(f2, f1,n)
≡ start(f2)− end(f1) = n

meets(f1, f2) ≡ met-by(f2, f1)
≡ end(f1) = start(f2)

during(f1, f2) ≡ contains(f2, f1)
≡ start(f1)> start(f2)
and end(f1)< end(f2)

overlaps(f1, f2) ≡ is-overlapped(f2, f1)
≡ start(f1)< start(f2)
and end(f1)> start(f2)
and end(f1)< end(f2))

starts(f1, f2) ≡ started-by(f2, f1)
≡ start(f1) = start(f2)
and end(f1)< end(f2)

f inishes(f1, f2) ≡ f inished-by(f2, f1)
≡ end(f1) = end(f2)
and start(f1)> start(f2)

equals(f1, f2) ≡ start(f1) = start(f2)
and end(f1) = end(f2)

Notice that if f1 and f2 are defined on the same segmen-
tation the predicates meets and overlaps are always false.

Finally, we need to compute the level of a fragment in a
structure. This level captures the parent/child relationship
between two fragments in a structure.

Definition 6. Let F(s) (s is a structure) be the set of frag-
ments f such that f = s or ∃x∈ F(s), ∃a∈ΣV |x= a< f >.
The function level(s, f) returns the level of the fragment f
in the structure s, it is calculated with the following algo-
rithm :

– level(s,s) = 0

– level(s,y) = level(s,x)+ 1 with x = a < y >
(x and y ∈ F(s)).

Figure 4 also shows the relative position of two frag-
ments in two segmentations. In particular, the two follow-
ing Allen’s predicates are true (they indicate that a Plant
overlaps two Lines):
overlaps(Plant(s′5,e′5),Line(s5,e5)) = true
overlaps(Plant(s′5,e′5),Line(s6,e6)) = true.

Lastly, notice that in Figure 4, we have associated to each
fragment its level in the hierarchical structure to which it
belongs. For example, in S1,
level(S1,Manuscript <>) = 0
level(S1,Page<>) = 1
level(S1,Column <>) = 2
level(S1,Line <>) = 3.

2.3 MSXD XML syntax
We see that for a given multistructured document, each
structure can be described using an XML syntax, thus its
schema can be described using RelaxNG (see Figure 5).
We choose RelaxNG because our model relies on hedges

146 Informatica 35 (2011) 141–156 E. Bruno et al.

...Per recobrar maniar Ad home cant a perdut lo maniar prin de l erba blanca

s1 e1

s2 e2
s3 e3 s4 e4 s5 e5 s6 e6

s’3 e’3 s’5 e’5
s’4 e’4

s’1 e’1
s’2 e’2

Manuscript(s0,e0)
level=0

Page(s1,e1)
level=1

Column(s2,e2)
level=2

Line(s3,e3)
level=3

Line(s4,e4)
level=3

Line(s5,e5)
level=3

Line(s6,e6)
level=3

Prescriptions(s’1,e’1)
level=1

Prescription(s’2,e’2)
level=2

Sign(s’3,e’3)
level=3

Ingredient(s’4,e’4)
level=3

Plant(s’5,e’5)
level=4

Figure 4: Illustration of our model

to represent XML documents and the design of RelaxNG
is based on this theory [28]. Another equivalent solution
could have been to use XML Schemas.

We define an XML syntax for an MSXD instance (see
Figure 6). In this figure, we refer to the textual value of the
manuscript (identified by an uri), each structure (identified
by an uri) and its associated schema. Notice that segmen-
tations are implicit.

3 Querying MSXD instances

Our data model is close to XDM (XML Data Model)[23]
used in XQuery and XPath. Recall that XDM defines
unnested sequences of items (nodes or atomic values). For
querying, we propose an extension of XQuery to deal with
a multistructured document.

Indeed, we propose to define an XQuery item as an
atomic value or a fragment (instead of a node) and then we
still deal with sequences of items. Thus, the XQuery lan-
guage can be adapted to query a multistructured document.
A XQuery on an MSXD instance with a single structure is
equivalent to the same XQuery on the XML document cor-
responding to this structure. In the case of multiple struc-
tures, we extend the semantics of the filters of XQuery. For
that, we successively study and extend:

– The accessors defined in the XQuery Data Model
(XDM) [23]. Accessors can be seen as a set of prim-
itives to access an instance of the XML data model
(parent, child, . . .).

– The axis defined in XQuery [7]. Axis are an higher
level access mode to instances of the XML data
model. An axis can be an accessor (for instance parent
and child) or can be based on accessors (for instance

the axis ancestor is defined by the recursive applica-
tion of the accessor parent).

– The normalization of an extended XQuery into a
core XQuery (as defined in the XQuery Formal se-
mantics [18]). To formally define the semantics of
XQuery, a subset of XQuery named XQuery core has
been defined. Every XQuery can be expressed in the
core. For instance, an XPath step is translated in a
For Let Where Return (FLWR) expression. The dy-
namic environment existing during the evaluation of
an XQuery is explicitly defined by binding a set of
standard variables in the XQuery core.

Our objective is to use an as much as possible unchanged
XQuery, that is why we choose to rely on the XQuery nor-
mative documents.

3.1 Extending XDM accessors and XQuery
axis

To navigate in every structure and to adapt Allen’s rela-
tions, we choose to slighty modify the semantics of some
accessors or operators (close to Allen’s relations). In other
cases, we define new functions.

Accessors. First, to express the containment we adapt
the parent/child relationship: The dm:children and
dm:parent accessors have been extended to return ev-
ery parent and every child of a fragment in every structure
it belongs to.

Axis. As a fragment does not belong to every structure
and as we want them to be as general as possible, the
axis ancestor and descendant cannot be defined
by applying recursively the accessors dm:parent and
dm:children as it is done in XQuery2. Thus, we define

2http://www.w3.org/TR/xquery/
id-full-axis-feature

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 147

<!-- Physical Structure -->
start =

element Manuscript {

element Page {
element Column {

element line {
text+

}+
}+

}+
}

<!-- Syntactic Structure -->
start =

element Manuscript {
element Page {

element Column {
element line {

text+
}+

}+
}+

}

<!-- Semantic structure -->
start =

element Manuscript {
element Prescriptions {
element Prescription {
(text | Dosage | Effect | Ingredient

| AdministrationMode
| element Sign { text }
| element Concoction {

(text
| Effect
| AdministrationMode
| element Action { (text | Ingredient)+ })+

})+
}+

}
}

Effect = element Effet { text }
Sign =

element Ingredient {
(text | Dosage
| element Mineral { text }
| element Plant { text })+

}
AdministrationMode = element AdministrationMode { text }
Dosage = element Dosage { text }

Figure 5: Schemas for the Physical (S1), Syntactic (S2) and Semantic (S3) structures

<MsXmlDoc xmlns="http://lsis.univ-tln.fr/msxd/doc/v1/">
<TextalValue
uri="http://lsis.univ-tln.fr/msxd/value/manuscript"/>

<Structure
type="http://lsis.univ-tln.fr/msxd/structure/manuscript/physical"
uri="http://lsis.univ-tln.fr/msxd/instance/S1.xml"/>

<Structure
type="http://lsis.univ-tln.fr/msxd/structure/manuscript/syntactic"
uri="http://lsis.univ-tln.fr/msxd/instance/S2.xml"/>

<Structure
type="http://lsis.univ-tln.fr/msxd/structure/manuscript/semantic"
uri="http://lsis.univ-tln.fr/msxd/instance/S3.xml"/>

</MsXmlDoc>

Figure 6: XML syntax for the multistructured manuscript

148 Informatica 35 (2011) 141–156 E. Bruno et al.

two new accessors:
dmmsxd:ancestor and dmmsxd:descendant
which respectively return the sequence of fragments con-
taining a fragment or contained in a fragment (according
to start and end positions).

Order. We need to consider Allen’s relations used to
compute relative position between two fragments inside a
segmentation or between two segmentations. A partial or-
der on fragments in a given multistructured document can
be defined on start and end positions. As in XQuery, the
boolean operators n1 << n2, n1 >> n2 and n1 is n2 can
be defined. They are respectively true for the fragments n1
and n2, if n1 is before n2, n1 is after n2 and if n1 and n2
are the same fragment. We use the two first boolean op-
erators (<<, >>) to express the following (after) and
preceding (before) Allen’s relations.

New functions. We introduce each of the remaining re-
lations as functions (evaluated according to the relative po-
sitions of two fragments). We only give here the definition
of two Allen’s relations (equals and overlaps) and the
corresponding operators because they are used in the query
examples given below. The remaining relations can be de-
fined in the same way.

– the function msxd:is-equal(n1,n2) and the op-
erator is-equal, are true if n1 and n2 have the same
start and end positions in the same multistructured
document,

– the function msxd:is-overlapping(n1,n2)
and the operator is-overlapping, are true if
start(n1) < start(n2) and end(n1) > start(n2) and
end(n1)< end(n2).

3.2 Extending the dynamic evaluation
In the formal semantics of XPath and XQuery, the dynamic
context is explicitly defined by binding variables. In partic-
ular $fs:sequence, $fs:dot, $fs:position and
$fs:last variables respectively represent the sequence
of context items, the context item, the context position, and
the context size. The side effect of each operator is also
explicit in the core XQuery.

It is necessary to extend the dynamic context to carry
information about every structure associated with an
MSXD instance. We extend it by binding a new vari-
able $msxd:selected_structures to a sequence of
strings that represents the set of ids of the structures to be
taken into account during the evaluation of the query.

In our example, when the document is loaded by default:
$msxd:selected_structures =
{"http://lsis.univ-tln.fr/msxd/instance/S1.xml",
"http://lsis.univ-tln.fr/msxd/instance/S2.xml",
"http://lsis.univ-tln.fr/msxd/instance/S3.xml"};

This variable can be used to restrict the set of structures.
If it is set to a subset of the structures, only this subset is
taken into account by the XQueries.

We need to define two basic functions to return exist-
ing structures in a document and to create the instance of a
document:

– msxd:structures($arg as
fragment()*) as xs:string*
returns a sequence of strings which represents the ids
of structures to which every fragment of the sequence
$arg belongs.

– msxd:doc($uri as xs:string?) as
document-node()?
retrieves the XML description of an MSXD instance
using $uri and returns its document fragment
$root (equivalent to fn:doc() in http:
//www.w3.org/TR/xpath-functions/).
This changes the dynamic context by bind-
ing $msxd:selected_structures to
msxd:structures($root), ie by default
every structure of a document are consired during a
query.

Finally, we slightly modify the normalization of a path
expression in XQuery (a step followed by a relative path
expression) to return only fragments of the selected struc-
tures. The new rule is given in Figure 7.

The standard normalization transforms an XPath step
into a FLWR expression and it sets the dynamic environ-
ment after the evaluation of the first step, and for each item
of the result ($fs:sequence) the relative path is eval-
uated (Lines 3,4 and 5). In our extension, we restrict the
results to items from the selected structures (Lines 6, 7 and
8). Lines 1 and 2 ensure that each fragment is unique and
that every fragment is sorted according to the document
global order.

3.3 Query examples
We propose some queries for our running example:
Prolog - Binding the multistructured document to a global
variable
declare variable

$msdoc := msxd:doc("manuscript.msxd");

Q1 – Children of Manuscript
$msdoc//Manuscript/*
returns every child of the fragmentManuscriptwhich is
shared by every structure (the results is the sequence Page
from S1, Syntax from S2 and Prescriptions from
S3, see Figure 2),

Q2 – First Sentence of Prescriptions described on
one Column
$msdoc//Column//Prescription//Sentence[1]

Q3 – Words cut by an end of Line
for $v in $msdoc//Line
return $msdoc//W[. is-overlapping $v]

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 149

[StepExpr / RelativePathExpr]Expr
==

1 fs:apply-ordering-mode (
2 fs:distinct-doc-order-or-atomic-sequence (
3 let $fs:sequence as node()* := [StepExpr]Expr return
4 let $fs:last := fn:count($fs:sequence) return
5 for $fs:dot at $fs:position in $fs:sequence return
6 for $msxd:fragment in [RelativePathExpr]Expr return
7 if ([(msxd:structures($msxd:fragment)) = $msxd:selected_structures]Expr)
8 return $msxd:fragment
9 else return ();))

Figure 7: Extended normalization of a Path expression

Q4 – Columns which are Sentences
for $v in $msdoc//Sentence
return $msdoc//Column[. is-equal $v]

Q5 – Sentences containing Plant
$msdoc//Sentence[descendant::Plant]

Q6 – First Sentence after a Sign
$msdoc//Sign/following::Sentence[1]

Q7 – First Sentence after a Sign
for $h in $msdoc//Sign
return $msdoc//Sentence[. >> $h][1]
is the same as Q6 but using the order operator instead of
the following axis.

Q8 – Children of Manuscript in S1
let $msxd:selected_structures :=
"http://lsis.univ-tln.fr/msxd/instance/
S1.xml"
return $msdoc/Manuscript/*
is the same as Q1 but returns only children from S1 be-
cause the variable $msxd:selected_structures is
explicitly set to the identifier of S1.

4 A Schema for multistructured
documents

We define a schema for multistructured documents as a set
of rules (vs a content model definition) because our struc-
tures are weakly coupled and the multistructured docu-
ment is not hierarchical. Allen’s relations (starts, overlaps,
equals, . . .) enable to constrain the relative position of
fragments belonging to different structures. The constrains
are expressed using XPath based predicates, we suppose
that an XPath expression applied to a structure returns a
sequence of fragments.

Definition 7. A Multistructured document schema is a pair
(GS,C) where GS is a set of grammars defining valid struc-
tures and C = {ci|ci = c(p1 in s1, p2 in s2)} is a set of
constrains, where c is the name of an Allen’s predicate

and p1, p2 are XPath expressions applied to the structures
s1 and s2. The constrain is true if for each fragment f1
in val(p1), it exists a fragment f2 in val(p2) such that
c(f1, f2) is true. A document is valid according to the
schema if and only if every constrains in C are true.

Figure 8 (see comments in the figure) shows an XML
syntax for multistructured documents schemas and illus-
trates some constrains between fragments of the three
structures of our running example (notice that each con-
strain is applied to two structures). Every constrain could
be read in the same way, for example

– Rule 1: Root fragments of physical and syn-
tactic structures are equal. Each fragment
matching /Manuscript in every document
valid according to the structure (whose alias is)
manuscript_physical must be equal to at least
one fragment matching /Manuscript in every
document valid according to the structure (whose
alias is) manuscript_syntactic;

– Rule 3: A page starts by a prescription. Each fragment
matching Page in every document valid according to
the structure (whose alias is)
manuscript_physical starts by at least one
fragment matching Prescription in every docu-
ment valid according to the structure (whose alias is)
manuscript_semantic;

– Rule 4: A prescription contains sentences. Each
fragment matching /Prescription in every doc-
ument valid according to the structure (whose alias
is) manuscript_semantic contains at least a
fragment matching sentence in every document
valid according to the structure (whose alias is)
manuscript_syntactic.

This work is a first step towards validation across multi-
ple hierarchies [20]. It enables to check the conformance
of concurrent annotations attached to the same textual doc-
ument related to predefined weak relationships between
parts of different structures. Even if the validation is op-
tional, it is useful to use this kind of constraints in case
of distributed annotation to check the consistency of struc-
tures before querying.

150 Informatica 35 (2011) 141–156 E. Bruno et al.

<MsXmlSchema xmlns="http://lsis.univ-tln.fr/msxd/v1/">
<!-- IDENTIFICATION OF THE STRUCTURES -->
<MsXmlDoc>
<Structure type="http://lsis.univ-tln.fr

/msxd/structure/manuscript/physical"
alias="manuscript_physical"
grammar="manuscript_physical.rnc"/>

<Structure type="http://lsis.univ-tln.fr
/msxd/structure/manuscript/syntactic"

alias="manuscript_syntactic"
grammar="manuscript_syntactic.rnc"/>

<Structure type="http://lsis.univ-tln.fr
/msxd/structure/manuscript/semantic"

alias="manuscript_semantic"
grammar="manuscript_semantic.rnc"/>

</MsXmlDoc>
<Constraints>
<!-- RELATIVE CONSTRAINTS BETWEEN STRUCTURES -->
<!-- Rules 1 and 2: Manuscripts in the

three structures are Equals -->
<Equals>

<Fragments name="manuscript_physical
select="/Manuscript"/>

<Fragments name="manuscript_syntactic"
select="/Manuscript"/>

</Equals>
<Equals>

<Fragments name="manuscript_physical"
select="/Manuscript"/>

<Fragments name="manuscript_semantic"
select="/Manuscript"/>

</Equals>
<!-- Rule 3: A page starts by a prescription -->
<Starts>

<Fragments name="manuscript_semantic"
select="Prescription"/>

<Fragments name="manuscript_physical"
select="Page"/>

</Starts>
<!-- Rule 4: A prescription contains sentences -->
<Contains>

<Fragments name="manuscript_semantic"
select="Prescription"/>

<Fragments name="manuscript_syntactic"
select="Sentence"/>

</Contains>
</Constraints>

</MsXmlSchema>

Figure 8: A grammar for our multistructured document

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 151

Figure 9: MSXD functional architecture

5 Implementation of the MXSD data
model and query language

In this section, we describe the architecture of an imple-
mentation of the MSXD data model and of a XQuery en-
gine extended to support multistructured documents. Fig-
ure 9 presents the functional architecture of our prototype
and a typical use case in four steps. The figure is organized
in two lines and two columns. The first line presents the
user level and the second the MXSD engine level. The first
column describes the design and the indexing an MSXD
instance from a set of XML documents, the second column
illustrates the querying.

5.1 User space: An almost usual XML
environment

The user space (parts 1 and 3 in Figure 9) is close to an
usual XML environment. First, each user can describe its
structures in XML documents which mark up the same text
(see Figure 2). Notice that the structures could be dis-
tributed over a network. Then the user defines a (virtual)
MXSD instance with respect to MSXD XML syntax (see
Figure 6). To do this the user only needs an XML editor,
he does not have to change its habits.

To query an MXSD instance, a user can express it using
the language defined in Section 3. The indexing is auto-
matically done if needed (see next section). Recall that the
language extends XQuery: if the user queries a single struc-

ture, it is the standard XQuery. Query result is a sequence
of fragments represented in XML.

5.2 MSXD Engine: indexing and querying
structures and content

As we have shown in Section 2, an MSXD document is a
XML meta-document which refers to one XML document
for each structure (both of them sharing the same textual
value); our implementation of the data model can be seen
as a dynamically built index between them (part 2 in Fig-
ure 9). We choose to separate the indexing of the structure
and the indexing of the content.

The analysis of the first structure enables us to deduce
the textual value. The textual value is indexed only once
in a specific component which is in charge of the textual
indexing (to answer full text queries) and in charge of the
access to the textual values of fragments (to build XML
answers to the queries). When the other structures are ana-
lyzed, the consistency of the text is checked, and an align-
ment by means of spaces, tabulations or end of line is au-
tomatically processed if necessary. For the storage of the
textual value and its indexing, we use Apache Lucene3.

The analysis of each structure enables the creation of a
relational representation of the structures. We define three
main relations for a given document to store: (1) the frag-
ments with their node type (element, attribute, text, . . .),
their start and end positions in the normalized textual

3http://lucene.apache.org

152 Informatica 35 (2011) 141–156 E. Bruno et al.

value, their label, (2) the structures and (3) the structure
contents (id of the structure, id of the fragment, level of
the fragment in the structure). Notice that this representa-
tion is independent from the textual value, it uses start
and end positions (the textual value manager stores real
values) and it computes the level of fragments into each
structure (a fragment can then be shared between struc-
tures). In our prototype, we choose to embed a java
RDBMS4 but an external one can also be used.

We define an API consisting in usual DOM [1] API ac-
cessors extended with operators based on Allen’s relations
(as defined in definition 5). We store segmentations as tu-
ples in a RDBMS, so we implemented it in SQL. This API
provides a high level access to multistructured documents.
MSXD instances conform to the DOM API and provide
new methods such as the access to overlapping fragments.
The query langage prototype relies on this API.

To implement the query engine (part 4 in Figure 9) for
this academic prototype, we choose to work step by step
and to use standards. First, we translate the user query in
the XQuery Core language5. Even if it is not designed to
be the foundation of prototypes, we choose it because we
need a clean “ simple ” language with a well defined se-
mantics. Then, the XQuery Core query is used to build a
query tree, which is optimized before its evaluation. Most
of our operators are implemented to work in pipe line, the
XQuery filters operators (operators which give access to
children, ancestors, ... of a given fragment) use the ex-
tended DOM API. Notice that, the SQL translation remains
visible at query time for future optimization (for example
by grouping several SQL queries nested with FLWR oper-
ators into a single SQL query).

Figures 10 and 11 show two screenshots of the main win-
dow of the application and of the query tree display win-
dow. Figure 10 shows a capture from our prototype dur-
ing the evaluation of query Q2. A user can select (from a
set of test cases) or edit an extended XQuery (top/right).
The automatic translation in XQuery Core is shown bot-
tom/right and the result (either in XML or in internal for-
mat by means of start and end positions) is displayed at
bottom/left.

The second figure displays the query tree corresponding
to the core query and displays dynamic information dur-
ing the execution (number of items created or filtered by
operators, . . .).

Finally, we developed an implementation of the multi-
structured schema validation where constraints are checked
sequentially. In order to obtain a more efficient valida-
tion and to provide a more intuitive way to express con-
traints, we are investigating the use of ontologies. We
currently tackle this proposal with a linguistic application
of multilevel analysis of multimodal data (OTIM–http:
//lpl-aix.fr/~otim).

4http://www.hsqldb.org/
5http://www.w3.org/TR/xquery-semantics/

6 Related works
If we look at XML standards, it seems clear that the stan-
dard tree-like model [23] and namespaces [9] could be used
to represent multistructured documents if each structure is
hierarchical and can be merged with others. But, this is not
the case in general. In our example, some elements from
the physical and syntactic structures can overlap (Line
and Sentence). The problem of overlapping is not recent
see [20] for a review. Several works have studied multi-
structured documents in the context of XML for document-
centric encoding. We classify the main proposals into three
categories.

The first one concerns the very first works about the
representation of several hierarchical structures inside the
same text (the CONCUR feature [24] of SGML, TEI6);
these solutions are often syntactic. TEI’s solutions need
to choose either a flat representation of the multistructured
document or a main (hierarchical) structure and to use ref-
erences (ID/IDREF) for the description of the other struc-
tures.

The second category is based on proprietary graph mod-
els. LMNL7 proposes a new markup language and model
such as to overcome the limitations of hierarchical markup
in XML and to get an instance of a multistructured docu-
ment. LMNL graph-based model is not XML compatible
even if it is able to import/export. Notice that LMNL con-
siders user annotations but no solution for querying. Mul-
tiX [14] is a proprietary graph-based model. It is possible to
serialize an instance of it in an unique XML document. The
multistructured querying is achieved by means of a set of
XQuery [7] functions which in particular, deals with over-
lapping. Based on [14], [29] proposed a methodology for
the construction of multistructured documents. This high
level approach aims at defining structures during the con-
struction process. To our knowledge, none other contri-
bution considers a priori the problem of that construction
which leads to restructuring and automatic differentiation
of structures. We did not yet consider the problem of mul-
tistructured document edition.

MVDM (Multiview Document Model) [21] is a propri-
etary graph-based model. The model aims at considering
multimedia documents and therefore at representing dif-
ferent kind of relationship between two document entities
(and not only hierarchical relation). MVDM focuses on
the notion of view which corresponds to a particular or-
ganization of a document. Stored in a document reposi-
tory, multistructured documents can be queried according
to criteria linked to one or several views of that document
(automatic generation of SQL queries taking into account
overlapping); another solution to navigate in the repository
is proposed with a multidimensional analysis (OLAP).

At last, Annotation graphs (AG) [5] are coming from the
linguistic domain. Annotation graphs propose a proprietary
formal model for the representation over the same flow (au-

6http://www.tei-c.org/P4X/NH.html
7http://www.lmnl.net/

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 153

Figure 10: Evaluation of XQuery Q2 in our prototype

Figure 11: Tree of the XQuery Core for Q2 in our prototype

154 Informatica 35 (2011) 141–156 E. Bruno et al.

D
at

a
m

od
el

s

X
M

L
C

om
pa

tib
le

M
ai

n
st

ru
ct

ur
e

Va
lid

at
io

n

O
pe

ra
to

rs

CONCUR none SGML Syntax no no no
TEI (mile-
stones)

None XML Syntax yes no yes

Annotation
graphs (AG)

Proprietary graph XML Syntax for serialisation no no not for querying Multistructure but only an XPath
linguistic extension

LMNL Proprietary graph specific markup and XML import / ex-
port

no no no

MultiX Proprietary graph XML import / export yes no specific XQuery functions for querying and struc-
ture manipulation

Colored trees Extension of the
XML data model

XML export no no XPath step extension

Based on
Goddag

Goddag DOM Extension and XML import/export no no XPath axis extension

MSXD Extension of the
XML data model

An XML document for each structure no weak
con-
straints

XQuery semantics extension and new functions

MVDM Proprietary graph XML Syntax by structure no no repository (SQL with overlapping management and
multidimensional analysis)

Figure 12: Proposals related to Multistructure

dio, text, . . .) of several structures (may not be hierarchi-
cal). An XML “ flat ” representation of an AG is proposed
but no solution for querying.

The third category presents XML compatible contribu-
tions. A very interesting framework is proposed in [19]. It
is a new model based on the Goddags data structure [31]
which can be seen as a generalization of DOM trees for the
representation of multi hierarchical XML documents. This
proposal defines also an extension of XPath [26] to navi-
gate between different structures sharing the same textual
data (with a specific axis for concurrent querying such as
overlapping, xancestor or xdescendant). An-
other proposal, the colored trees [27], deals with multi-
ple hierarchies in a data-centric context. It aims at sharing
atomic data and it does not consider overlapping thus it is
out of our scope. The idea is to build several hierarchies
(called colors) over the same set of values (text nodes).
Thus, nodes are multicolored. In order to navigate between
colors/hierarchies, the authors extend the notion of step in
XPath. A step begins by a choice of a color (and thus of a
structure) before the usual selection of an axis, a test node
and some predicates.

Figure 12 summarizes the main features of each pro-
posal related to multistructured documents according to
some criteria: Data model, XML compatibility, Existence
of a main structure (the user at the logical level or the sys-
tem at the physical level chooses a main structure so others
structures have to be set with regard to this main structure),
Validation of a multistructured document (is it possible
to define a schema for multistructured documents valida-
tion across multiple hierarchies [20]) Operators (for query-
ing several structures and content in a concurrent way).
No query language has been defined for querying annota-
tion graphs, but it exists operators that complete the XML
propositions (XPath in particular [3, 4]), they are related to
the linguistic context .

Our proposal belongs to the third category, our objective

is to remain close to XML standard. Our model is close to
Goddags. Indeed, we want to keep the hierarchical aspect
of each structure, so that classical XML tools remain avail-
able. But, Goddag does not provide mechanisms to add
annotations (as LMNL does) and it does not describe rela-
tionships between structures for enabling validation across
multiple hierarchies [20] (none of these proposals, what-
ever the approach is, proposes it). We do not detail user an-
notation but our proposal considers it (see [11] and [12]).
Annotations represent textual data added by a user to the
text in one structure and so missing in the other structures.
It represents specific information que the user needed to
integrate to its analysis.

For querying several hierarchies over the same textual
content in a concurrent way, we chose to extend the seman-
tics of the filter of XQuery. Our objective is not to add new
axis (like Goddag) or to extend XPath step with colors (as
with colored trees). Moreover, even if we propose every
Allen’s relations, we choose to stay simple and to use an
as much as possible unchanged XQuery by only adding the
necessary function (Unlike MultiX).

7 Conclusion

In this paper, our intention was twofold. First, we defined
a XML compatible model for multistructured textual doc-
uments which is based on the use of hedges (the founda-
tion of RelaxNG). A multistructured textual document is
a text which has several concurrent hierarchical structures
defined over it. Each structure corresponds to an analysis of
the text according a specific use. Secondly, we proposed an
extension of XQuery in order to query structures and con-
tent in a concurrent way. We applied our proposals using a
medieval manuscript text written in occitan. Finally, we de-
scribe the architecture of an implementation of the MSXD
data model and of a XQuery engine extended to support

A DATA MODEL AND AN XQUERY EXTENSION FOR. . . Informatica 35 (2011) 141–156 155

multistructured documents. Our solution is entirely XML
compatible and conforms to standards.

A multistructured textual document is defined as a set of
fragments defined on the same textual value and grouped in
concurrent hierarchical structures. The key idea is to pro-
pose a method for a compact description of multiple trees
over a single text based on segmentation. Segmentation
encoding allows querying overlap/containment relations of
markups belonging to different structures. We showed how
each structure can be described in an XML document. The
multistructured textual document is never instantiated.

To query a multistructured textual document, we chose
to extend the semantics of the filter of XQuery. We show
how to take into account equality, overlapping and other
Allen’s relations. For that we added functions and opera-
tors to XQuery. We are trying to avoid changing the struc-
ture of XQuery (as colored trees did without considering
overlapping). Moreover, we did not simply add a new axis
(as goddag did by adding xancestor xdescendant),
but one can notice that it makes the query easier to read.
However, normalization of xancestor, xdescendant
or even a new axis associated to Allen’s relations can be
rewritten into our proposal.

Moreover, we defined a multistructured schema in or-
der to express weak constraints between structures; it is
defined as a set of rules, Allen’s relations are used to con-
strain the relative position of fragments in the structures.
An alternative solution could rely on the use of ontologies.
It could offer more flexibility. We currently tackle this pro-
posal with a linguistic application of multilevel analysis of
multimodal data (Project OTIM 8).

Our main perspective is the definition of multiple struc-
tures in other modalities than the single textual one. For
example, it could be useful to define one or several struc-
tures associated to the image of a manuscript as it is done
for its textual transcription. Then, the objective would be
to manipulate the set of all these structures in a concurrent
way. Secondly, we plan to extend our query engine to dis-
tribute parts of queries in a P2P network and to enable data
sharing.

References
[1] A. Le Hors et al. Document object model (dom) level

3 core specification. Recommendation, W3C, 2004.

[2] J. Allen. Time and time again : The many ways to
represent time. International Journal of Intelligent
Systems, 6(4):341–355, july 1991.

[3] S. Bird, Y. Chen, S. B. Davidson, H. Lee, and
Y. Zheng. Extending XPath to support Linguistic
Queries. In Proceedings of The ACM Workshop Pro-
gramming Language Technologies for XML (PLAN-
X), pages 35–46, january 2005.

8http://lpl-aix.fr/~otim

[4] S. Bird, Y. Chen, S. B. Davidson, H. Lee, and
Y. Zheng. Designing and evaluating an XPath di-
alect for linguistic queries. In Proceedings of The
22nd International Conference on Data Engineering
(ICDE’06), april 2006.

[5] S. Bird and M. Liberman. A formal framework
for linguistic annotation. In Speech Communication
33(1,2), pages 23–60, september 2001.

[6] P.-V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes second edition. Recommendation, W3C,
2004.

[7] S. Boag. XQuery 1.0 : An XML Query Language.
Recommendation, W3C, 2007.

[8] M.S. Corradini Bozzi. Etude des textes de matiï£¡re
medico-pharmaceutique en langue d’oc. In Bulletin
de l’Association Internationales d’Etudes Occitanes,
VIII, pages 29–34, 1990.

[9] T. Bray, D. Hollander, A. Layman, and R. Tobin.
Namespaces in XML 1.1 second edition. Recommen-
dation, W3C, 2006.

[10] T. Bray, J. Paoli, and C.-M. Sperberg-McQueen. Ex-
tensible Markup Language (XML) 1.0. Recommen-
dation, W3C, 1998.

[11] E. Bruno and E. Murisasco. MSXD : a formal model
for concurrent structures defined over the same tex-
tual data . In Proceedings of The International Con-
ference on Database and Expert Systems Applications
(DEXA 2006), pages 172–181. LNCS, 2006.

[12] E. Bruno and E. Murisasco. Describing and querying
hierarchical structures defined over the same textual
data. In Proceedings of the ACM Symposium on Doc-
ument Engineering (DocEng 2006), pages 147–154,
Amsterdam, The Netherlands, October 2006.

[13] E. Bruno and E. Murisasco. An xml environment for
multistructured textual documents. In Proceedings of
the Second International Conference on Digital In-
formation Management (ICDIM’07), pages 230–235,
Lyon, France, October 2007.

[14] N. Chatti, S. Kaouk, S. Calabretto, and J.M. Pinon.
Multix: an xml based formalism to encode multi-
structured documents. In Proceedings of Extreme
Markup Languages Conference, August 6-10 2007.

[15] J. Clark. XSL Transformations (XSLT) V1.0. Rec-
ommendation, W3C, 1999.

[16] J. Clark and S. Derose. XML Path Language (XPath)
V1.0. Recommendation, W3C, 1999.

[17] J. Clark and M. Murata. RELAX NG Specification.
Technical report, OASIS, 2001.

156 Informatica 35 (2011) 141–156 E. Bruno et al.

[18] D. Draper et al. XQuery 1.0 and XPath 2.0 Formal
Semantics . Recommendation, W3C, 2007.

[19] A. Dekhtyar and I.-E. Iacob. A framework for man-
agement of concurrent xml markup. Data and Knowl-
edge Engineering, 52(2):185–208, 2005.

[20] S. DeRose. Markup overlap : a review and a horse. In
Proceedings of The Extreme markup language Con-
ference, 2004.

[21] K. Djemal, Soule-Dupuy, and Valles-Parlangeau C.
Modeling and exploitation of multistructured doc-
uments. In Proceedings of the IEEE 3rd Inter-
national Conference on Information and Communi-
cation Technologies: From Theory to Applications
(ICTTA’ 08)., Damascus, Syria, April 2008.

[22] P. Durusau and M. Brook O’Donnell. Concurrent
markup for xml documents. In Proceedings of XML
Europe Atlanta, 2002.

[23] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model.
Recommendation, W3C, 2007.

[24] C.-F. Goldfarb and Y. Rubinsky. The SGML hand-
book. Clarendon Press, Oxford, 1990.

[25] M. Hilbert, O. Schonefeld, and A. Witt. Making con-
cur work. In Proceedings of The Extreme Markup
Languages Conference, August 2005.

[26] I.-E. Iacob and A. Dekhtyar. Towards a query lan-
guage for multihierarchical xml: Revisiting xpath,. In
Proceedings of The Eighth International Workshop on
the Web and Databases (WebDB’05), pages 43 – 48,
june 2005.

[27] H.-V. Jagadish, L.-V.-S. Lakshmanan, M. Scanna-
pieco, D. Srivastava, and N. Wiwatwattana. Colorful
XML: One Hierarchy Isn’t Enough. In Proceedings
of The International Conference on Management of
Data (SIGMOD’04), pages 251–262, 2004.

[28] M. Murata. Hedge automata: a formal model for
XML schemata. Web page, 2000.

[29] P.-E. Portier and S. Calabretto. Creation and mainte-
nance of multi-structured documents. In Proceedings
of the ACM Symposium on Document Engineering
(DocEng 2009), Munich, Germany, Septembre 2009.

[30] C.-M. Sperberg-McQueen and L. Burnard. Tei p4
guidelines for electronic text encoding and inter-
change, 2001.

[31] C.-M. Sperberg-McQueen and C. Huitfeldt. Goddag:
A data structure for overlapping hierarchies. In
Proceedings of The Principles of Digital Document
and electronic publishing (DDEP/PODDP’00), pages
139–160, 2000.

[32] Jeni Tennison and Wendell Piez. Layered markup and
annotation language (lmnl). In Proceedongs of The
Extreme Markup Languages Conference, 2002.

[33] A. Witt. Multiple hierarchies : news aspects of an
old solution. In Proceedings of The Extreme markup
language Conference, 2004.

