
https://doi.org/10.31449/inf.v45i6.3458 Informatica 45 (2021) 63–75 63

ESPS: Energy Saving Power Spectrum-Aware Scheduling to Leverage

Differences in Power Ratings of Physical Hosts in Datacenters

Mahendra Kumar Gourisaria

School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar - 751024 Odisha, India

E-mail: mkgourisaria2010@gmail.com

Pabitra Mohan Khilar

Department of Computer Science and Technology, National Institute of Technology, Rourkela - 769008, India

E-mail: pmkhilar@nitrkl.ac.in

Sudhansu Shekhar Patra

School of Computer Applications, KIIT Deemed to be University, Bhubaneswar - 751024, Odisha, India

E-mail: sudhanshupatra@gmail.com

Keywords: cloud computing, task scheduling, energy consumption, virtual machine, resource allocation

Received: February 25, 2021

Cloud Computing has seen massive growth over the past couple of decades, leading to exponential growth

in energy consumption at data centres. Data centres consuming high amounts of energy leave a carbon

footprint of the same scale, hence Cloud Service Providers (CSPs) have been looking for energy-efficient

solutions to task scheduling in cloud to reduce the amount of carbon dioxide emission. Saving energy not

only helps reduce the carbon footprint datacentres have on the environment, but also helps cover the costs

of running multiple datacentres on the CSP’s end. In this paper, we propose an energy saving task

scheduling heuristic for heterogeneous cloud systems which selects the optimal physical host containing

virtual machines with the additional consideration of the utilization of any incoming task on that

particular virtual machine. We compare the energy efficiency of our proposed heuristic with recent

algorithms including ECTC, MaxUtil, Random, and FCFS on several benchmark and synthetic datasets

to display its superiority in energy-efficient task scheduling in heterogeneous cloud environments. FCFS,

MaxUtil, Random, and ECTC respectively consume approximately 38.65%, 33.59%, 53.02%. and 46.96%

more energy in a heterogeneous cloud environment as compared to our proposed heuristic namely Energy

Saving Power Spectrum-Aware Scheduling (ESPS).

Povzetek: Računalništvo v oblaku beleži močno rast, kar vodi do eksponentne rasti porabe energije v

podatkovnih centrih. V tem prispevku je predlagano hevristično načrtovanje naloge varčevanja z energijo

za heterogene sisteme v oblaku, ki izbere optimalnega fizičnega gostitelja, ki vsebuje navidezne stroje.

Energijska učinkovitost predlagane hevristike je primerjana z nedavnimi algoritmi, vključno z ECTC,

MaxUtil, Random in FCFS na več primerjalnih in sintetičnih naborih podatkov.

1 Introduction
Cloud computing enables consumers around the globe

have access to remote, shared computing resources [1, 30].

With the rapid increase in the capabilities of physical hosts

housing a number of virtual machines (VMs) in terms of

processing speed, storage capacity, cache memory, etc. the

CSPs are able to meet the equally rising demand for these

resources. Due to the increasing supply and demand of

these resources, various power and energy related

concerns are raised on behalf of the CSP. Moreover, with

the increase in energy consumption of the datacentres,

another environmental concern is raised with the massive

amount of 𝐶𝑂2 emissions [38]. It is estimated that the

hardware equipment of the IT sector is responsible for as

much as 2% of the global 𝐶𝑂2 emissions [2] and the

energy consumption that is coupled with this phenomenon

is expected to double every year [3]. A data centre may

take up as much energy as 25,000 households or a couple

hundred office spaces. One of the main objectives of CSPs

is to schedule the incoming tasks given by the user in such

a way that it meets the required QoS parameters such as

deadline, makespan, latency, packet loss, etc. adhering to

the Service Level Agreement (SLA) made between the

user and the CSP. Even security of user data is a prime

area of research in cloud computing [31]. Most

importantly, the CSP desires that the energy consumed by

the cloud resources during this workflow is minimized.

Although task scheduling plays a vital role in cloud

computing, bandwidth allocation and data storage are also

an important pillar in the cloud environments [36, 37].

Task or job scheduling is a NP-complete problem [4] and

various approaches have been proposed to minimize the

energy costs pertaining to running the resources in a

64 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

datacentre [28, 29]. To tackle this issue, we devise an

algorithm namely Energy Saving Power Spectrum-Aware

Task Scheduling (ESPS) which takes into consideration

the utilization of incoming tasks along with the awareness

of the different ranges of power spectra of the physical

hosts in a datacentre. Typically, a datacentre comprises 𝑚

number of physical hosts, and each physical host houses 𝑛

VMs. Each VM in the same physical host shares the same

operating power range which makes up for different sets

of ranges in a datacentre over all VMs. For example, Table

1 illustrates the different power spectra for different

physical hosts over the operation range in utilization from

active mode (0%) to peak load capacity (100%). The

differences of their power spectra is illustrated in Fig. 1.

From Table 1 it is easily realized that different

physical host models have different power spectra of

operation. ESPS exploits this fact by preferring to

schedule tasks to the VMs in the physical hosts having the

minimal power difference between the active mode and

peak load power, given the fact that the task consumes

relatively lower utilization in those VMs. This causes the

power difference along with resource utilization in the

energy model that we describe later to be minimized to

optimize the energy function. The results of this procedure

have been compared with algorithms like ECTC, MaxUtil

[9], random [33] and First Come First Serve (FCFS) [10]

on both benchmark and synthetic datasets. The main

contribution of our work is as follows:

 Creation of a novel on-line mode task scheduler

suited for heterogeneous cloud computing

environment.

 Rigorous testing by simulation of proposed

algorithm ESPS on several modified benchmark

[23, 24] and synthetic datasets.

 Additional consideration of power differences in

the operating characteristics of different physical

hosts which, to the best of our knowledge, has not

been exploited in order to augment energy

conservation in resource allocation problems.

 Evaluation of proposed algorithm ESPS in terms

of energy consumption.

 Simulation of existing algorithms ECTC,

MaxUtil, Random and FCFS and juxtaposing

their results with proposed algorithm ESPS to

show reduction in energy consumption.

The rest of the paper is organized as follows. Section

2 describes other works relating to ours done before.

Section 3 explains the cloud model used in the approach

along with the energy model. Section 4 talks in detail

about the proposed algorithm ESPS along with a hand-

traced illustration of the model over a fixed dataset

compared with other algorithms. Section 5 encapsulates

the results of performance of all algorithms simulated over

all the datasets. A discussion section has been added in

Section 6 where our proposed work is compared with

existing related work and finally, Section 7 holds the

concluding remarks of our work.

2 Related work
In previous works, researchers have considered the server

power efficiency to propose task scheduling heuristics for

cloud environments. This means that different servers or

physical hosts have different ranges of active mode power

and peak load power. In this context, Lin et al. (2017) [35]

proposed a heuristic ECOTS that uses the fact that

different hosts have different power ratings and also

mentioned that the active mode power and peak load

power can be obtained directly by measurement of the

Host Model CPU Clock Cores RAM
AAMP

(watt)

APLP

(watt)

Fujitsu

Primergy

RX1330 M1

Intel Xeon E3-

1275 8MB L3

Cache

2.5

GHz
4

16

GB
13.8 63.7

Inspur

NF5280M4

Intel Xeon E5-

2699 v3 45 MB

L3 Cache

2.3

GHz
18

64

GB
44.4 301

Dell

PowerEdge

R820

Intel Xeon E5-

4650 v2 25 MB

L3 Cache

2.4

GHz
40 4 GB 71.8 374

IBM

NeXtScale

nx360 M4

Intel Xeon E5-

2660 v2 25 MB

L3 Cache

2.2

GHz
20

24

GB
497 2414

Table 1: Operating power characteristics for different host models [5-8], where AAMP and APLP refer to Average

Active Mode Power and Average Peak Load Power.

Figure 1: Power range differences of different physical

hosts listed in Table 1 [34, 35]. According to the

proposed algorithm, Fujitsu Primergy RX1330 M1

would be preferred more over other hosts for

scheduling. The y-axis values are in logarithmic scale.

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 65

CPU idle power and peak power respectively, and that all

the different physical hosts or servers have their own

power models. This difference may arise due to different

hardware configurations from server to server [5-8].

Task scheduling in cloud recently has witnessed a

healthy amount of research work done to minimize energy

related costs. Hsu et al. (2011) [11] proposed an Energy-

Aware Task Consolidation (ETC) algorithm defined in a

multi-cloud architecture on homogeneous computing

resources. The main focus in the work was to set a fixed

threshold to each VM’s utilization lesnivel at 70% and

migrate the tasks that could not be accommodated based

on the threshold to other clouds. Due to the different

bandwidths of connections between different clouds, the

cost of task migration varies with recipient and receiving

cloud. The idea behind setting a threshold at 70% for

maximum VM utilization was that the energy vs.

utilization curve increases non-linearly after 70% and for

every small change in utilization there is noticed a high

change in energy. However, the problem with ETC is that

it includes the high costs of migration of tasks which

increases energy consumption. Lee et al. (2010) [9]

proposed two energy-saving heuristics namely ECTC

(Energy-Conscious Task Consolidation) and MaxUtil

which had two different objective functions to maximize.

Both the heuristics mainly aim to consolidate tasks on

fewer virtual machines but differ in their own ways. ECTC

prefers to schedule tasks such that they mostly run in

parallel with other tasks in the VM throughout their

lifetime of execution, while MaxUtil prefers to schedule

tasks where they may result in a higher average utilization

level of the VM. However, both MaxUtil and ECTC

increase task concentration over a few VMs which leads

to higher energy consumption due to utilization levels of

>70%.

Meisner et al. (2009) [12] propose an approach

PowerNap to tackle the problem of idle power

consumption and the overhead incurred due to the in-out

transition of the low-power nap state. While this can

eliminate idle power consumption, it suffers from poor

performance of maintenance tasks such as buffer flushing,

memory zeroing, etc. Ismail et al. (2018) [13] suggest an

algorithm for task scheduling which is more energy

efficient (EATSVM) and incorporates the idea of the

augment in completion times of tasks running in a VM if

the number of tasks in the same VM increase. Based on

this increase, EATSVM selects the most optimized energy

function for scheduling of tasks. Wu et al. (2013) [15]

proposed a task scheduling algorithm for energy-saving by

leveraging DVFS (Dynamic Voltage Frequency Scaling)

which allocates resources to jobs based on the job’s

requirement without sacrificing system performance,

which is an issue noticed with systems that use DVFS

technique [16-18]. Khan et al. (2014) [19] propose an

energy-aware task scheduling algorithm that uses

reinforcement learning cooperatively on WSNs (wireless

sensor networks) based applications. Their technique uses

a reward-based system as done in most reinforcement

learning algorithms where the model tries to maximize the

reward achieved by trading the performance of the

application along with the required energy consumption.

Wen et al. (2011) [20] propose a hierarchical scheduling

algorithm which minimizes energy consumption of

network devices and servers, but, in their algorithm the

nodes with lower temperature are selected by the

application for scheduling. More recently, Panda et al.

(2018) [14] propose a bi-objective task scheduling

heuristic for heterogeneous environment which tries to

minimize both makespan and energy consumption. It

achieves the optimization of both objectives by taking the

estimated time to compute matrix for each task along with

the total utilization matrix over all VMs and normalizes

the sum of each entry for each VM and finds the minimum

value to schedule the task to the VM corresponding to the

index of the minimum value. Mishra et al. (2019) [21]

survey the current energy efficient service allocation

techniques in cloud systems and divide the various

techniques based on a taxonomy. The techniques consider

tasks of either real-time or non-real time. They present a

generalized system architecture for service allocation to

minimize energy.

Quan et al. (2012) [26] proposed an algorithm that

amasses data and statistics of the CO2 emission and energy

consumption of different servers in a datacentre. After this

step, it predicts the server with optimal (lowest) values of

energy consumption and CO2 emission and through the

use of two optimization algorithms namely Power Usage

Effectiveness (PUE) and Carbon Usage Effectiveness

(CUE). Finally, it migrates all the heavily loaded VMs to

the most optimal server. The algorithm also incorporates

SLA for the selection of the best server. However, the

issue with VM migration is that it involves heavy cost in

terms of energy to migrate VMs. Based on this dilemma,

Zhang et al. (2018) [25] argue that the dynamic

consolidation of VMs to as few physical machines as

possible incurs a heavy overhead due to the migration

costs in terms of energy. Many VM migration-based

scheduling strategies do not consider this overhead and

hence they propose an energy saving heuristic to exploit

the fact that many tasks have loose deadlines. Thus, their

heuristic postpones the execution of such tasks without the

need of waking up any other physical machines and thus

minimize energy without VM migration

Kliazovich et al. (2010) [27] propose a task

consolidation heuristic based on balancing the energy

consumption in datacentres by scheduling jobs to servers

based on their thermal profiles or the workload and

communication potential. This approach finds the

optimum trade-off point between the consolidation of jobs

to a few servers and avoiding hotspots in the datacentre.

As seen above, we infer that there has not been much work

in the literature which consider task allocation strategies

in environments with different hosts. Almost all the work

done on task scheduling deals with a single host consisting

of a number of VMs, while in our work we also consider

a number of physical hosts with varying capabilities to be

a part of the system.

66 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

3 System model

3.1 Cloud model

We assume the resources of the cloud model to be

heterogeneous in the sense that each VM has a different

processing speed, memory, etc. Consider there to be 𝑝

physical hosts given by the 4-tuple, 𝐻𝑝 =

{𝐼𝐷, 𝑉𝐼𝐷, 𝑃𝐼𝐷
𝑚𝑖𝑛 , 𝑃𝐼𝐷

𝑚𝑎𝑥} where 𝐼𝐷 is the identity of the

host, 𝑉𝐼𝐷 refers to the set of VMs that the host with

identity 𝐼𝐷 houses, , 𝑃𝐼𝐷
𝑚𝑖𝑛 and 𝑃𝐼𝐷

𝑚𝑎𝑥 are the minimum and

maximum values of operating power respectively for the

host. Each VM set 𝑉𝐼𝐷 has 𝑚 VMs given by 𝑉𝐼𝐷 =

{𝑉𝐼𝐷
1 , 𝑉𝐼𝐷

2 , … , 𝑉𝐼𝐷
𝑚}. Now, each VM instance 𝑉𝐼𝐷

𝑗
 (1 ≤ 𝑗 ≤

𝑚) has different processing speed, memory capacities,

etc. as assumed earlier which means that each VM will

behave differently for the same task. Fig. 2 demonstrates

this cloud model. The cloud manager handles all requests

that are submitted by users and schedules them according

to the scheduling strategy of ESPS.

3.2 Task model

Consider there to be 𝑛 tasks given by 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}

where each task 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) is given by a 3-tuple

as, 𝑇𝑖 = {𝐴𝑇𝑖 , 𝐸𝑇𝐶𝑖, 𝑇𝑈𝑖} where 𝐴𝑇𝑖 refers to the arrival

time of task 𝑇𝑖, 𝐸𝑇𝐶𝑖 is the estimated time to compute over

all VMs for task 𝑇𝑖 and 𝑇𝑈𝑖 is the total utilization matrix

which shows the utilization consumed by the task 𝑇𝑖 on all

the different VMs. Note that the values of ETC and TU for

each task will be different on each VM due to the

heterogeneous nature of the cloud model. Both ETC and

TU matrices are of the dimensions 𝑛 × 𝑚 which are

demonstrated by Table 2.

3.3 Energy model

Consider there to be 𝑛 tasks and 𝑚 virtual machines, then

the utilization of a virtual machine 𝑗 where 1 ≤ 𝑗 ≤ 𝑚 is

given by the total sum of all the utilizations of the tasks

running in virtual machine 𝑗. For now, we consider that all

VMs from different hosts have been pooled in a universal

VM set 𝑉 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑗 , … , 𝑉𝑀𝑚}.

Mathematically, if we denote 𝑘 as the time instant, we

have,

𝑈𝑉𝑗
𝑘 = ∑ 𝑇𝑈𝑖𝑗 × 𝐵𝑖,𝑗

𝑘𝑛
𝑖=1 (1)

Where, 0 ≤ 𝑈𝑉𝑗
𝑘 ≤ 100, 1 ≤ 𝑇𝑈𝑖,𝑗 ≤ 100, and

𝐵𝑖,𝑗
𝑘 = {

1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 → 𝑉𝑀𝑗 (𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

𝑇𝑈𝑖,𝑗 refers to the utilization taken by task 𝑇𝑖 on

virtual machine 𝑉𝑀𝑗. As discussed before, the energy

consumption of machine 𝑉𝑗 at a given time 𝑘 is given by

[22],

𝐸𝑗
𝑘(𝑈𝑉𝑗

𝑘) = (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 + 𝑝𝑚𝑖𝑛,𝑗 (3)

This energy model is used in various other research

works [9, 14]. The values 𝑝𝑚𝑎𝑥,𝑗 and 𝑝𝑚𝑖𝑛,𝑗 refer to the 𝑗th

VM’s peak load and active mode power consumption

respectively. At any instant 𝑘 the energy consumed by all

the resources over the cloud system is given by,

Figure 2: The proposed cloud model. Each host In a datacentre consists of multiple virtual machines as a result of

virtualization.

𝑻𝒊 (𝟏 ≤ 𝒊 ≤
𝒏)

𝑽𝑴𝟏 𝑽𝑴𝟐 ….. 𝑽𝑴𝒎

1 56 23 ….. 24

2 99 35 ….. 73

….. ….. ….. ….. …..

𝑛 5 45 ….. 35

Table 2: Illustration of the ETC or TU matrix for each

task on each VM.

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 67

𝐸𝑘(𝑈𝑉𝑘) = ∑ 𝐸𝑗
𝑘(𝑈𝑉𝑗

𝑘)

𝑚

𝑗=1

= ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

+ 𝑝𝑚𝑖𝑛,𝑗

 (4)

The energy of the system for the total makespan time

period given by 𝑀 can be expressed as,

𝐸 = ∑ 𝐸𝑘(𝑈𝑉𝑘)

𝑀

𝑗=1

= ∑ ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

𝑀

𝑘=1

+ 𝑝𝑚𝑖𝑛,𝑗

 (5)

It is worthy to mention that VMs residing in the same

host will share the same values of 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 . In this

way, there are different sets of values of 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛

which correspond to each physical host which

parameterize each VM’s energy properties.

4 Proposed approach
Our goal is to minimize the function 𝐸 given by eqn. (5)

through a mapping 𝑓: 𝑇 → 𝑉 where, we know as a

preliminary that (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 ≫ 𝑝𝑚𝑖𝑛,𝑗

whenever the system (or physical host) is in non-idle

condition. By non-idle condition, we assume 𝑈𝑉𝑗
𝑘 > 0.2

(20%). Hence, to fulfil our objective to optimize 𝐸, ESPS

employs two approaches in the algorithm –

i) Minimizing E as

min(𝐸) = min (∑ ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

𝑀

𝑘=1

+ 𝑝𝑚𝑖𝑛,𝑗)

 (6)

This is possible by minimizing the term (𝑝𝑚𝑎𝑥,𝑗 −

𝑝𝑚𝑖𝑛,𝑗) such that the product (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) ×

𝑈𝑉𝑗
𝑘 is minimized. Our algorithm chooses the

physical host that has the least difference of

maximum and minimum power consumptions and

prefers to schedule tasks more in such hosts.

ii) Minimizing 𝐸 as,

𝑎𝑟𝑔𝑚𝑖𝑛
𝑈𝑉𝑗

𝑘(𝐸) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑈𝑉𝑗

𝑘 (∑ ∑(𝑝𝑚𝑎𝑥,𝑗

𝑚

𝑗=1

𝑀

𝑘=1

− 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 + 𝑝𝑚𝑖𝑛,𝑗)

 (7)

Here, the utilization of VM j at time k can be

minimized by preferring to schedule tasks to such VMs

where they consume lower CPU utilization.

4.1 Scheduling technique

ESPS follows the following scheduling strategy according

to the proposed approach:

i) For any incoming task 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) we have the

utilization matrix TU which conveys the utilization

consumed by 𝑇𝑖 on all the different virtual machines. We

proceed by normalizing all entries of 𝑇𝑈𝑖𝑗 for 𝑇𝑖 over all

virtual machines 𝑉𝑀𝑗 (1 ≤ 𝑗 ≤ 𝑚),

𝑛𝑇𝑈𝑖𝑗 =
𝑇𝑈𝑖𝑗

max(𝑇𝑈𝑖)

 (8)

Here, max (𝑈𝑇𝑖) refers to the maximum value of the

entire row of the TU matrix for 𝑇𝑖. Similarly, for each

physical host we assume that the values of their 𝑝𝑚𝑎𝑥

and 𝑝𝑚𝑖𝑛 are different. For example, let there be 2

different hosts 𝐻1 and 𝐻2 containing 3 VMs each such

that 𝐻1 ← {𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3} and 𝐻2 ← {𝑉𝑀4, 𝑉𝑀5, 𝑉𝑀6}.

Then, we assume 𝑝𝑚𝑎𝑥
1 ← 𝑝, 𝑝𝑚𝑖𝑛

1 ← 𝑞, 𝑝𝑚𝑎𝑥
2 ← 𝑟

and 𝑝𝑚𝑖𝑛
2 ← 𝑠 where 𝑝1 and 𝑝2 are the power consumed

by hosts 𝐻1 and 𝐻2 respectively.

ii) We create a new matrix 𝐴 which stores the

differences of each individual VM’s values of 𝑝𝑚𝑎𝑥

and 𝑝𝑚𝑖𝑛 as,

𝐴 =

{(𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1), (𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1), (𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1), (𝑝𝑚𝑎𝑥
2

− 𝑝𝑚𝑖𝑛
2), (𝑝𝑚𝑎𝑥

2 − 𝑝𝑚𝑖𝑛
2), (𝑝𝑚𝑎𝑥

2

− 𝑝𝑚𝑖𝑛
2)}

 (9)

Or,

𝐴 = {(𝑝 − 𝑞), (𝑝 − 𝑞), (𝑝 − 𝑞), (𝑟 − 𝑠), (𝑟 − 𝑠), (𝑟 − 𝑠)}

 (10)

The values of peak and active mode power

consumption for each VM is taken by the underlying

assumption that every VM in the same host has the same

set of values of 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 . For each entry 𝐴𝑗 in

matrix 𝐴 we normalize as follows,

𝑛𝐴𝑗 =
𝐴𝑗

max (𝐴)

 (11)

iii) To make a scheduling decision, we sum the values

in the matrices 𝑛𝑈𝑇 and 𝑛𝐴 and find the minimum

element, the index of which is the selected VM for

mapping,

V = index(min(𝑛𝑇𝑈 + 𝑛𝐴))

 (12)

68 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

Where index(min (𝑛𝑈𝑇 + 𝑛𝐴) returns the index of

the minimum summed pair to which the task 𝑇𝑖 is to be

scheduled. In this manner, the objective given

by 𝑎𝑟𝑔𝑚𝑖𝑛𝐸(𝑓: 𝑇 → 𝑉) is satisfied. Algorithm 1 contains

the algorithm of ESPS and all the symbols used in it are

described in Table 3.

Remark 1 The total normalized values given

by (𝑛𝑇𝑈 + 𝑛𝐴) ∈ [0, 2].

The worst time complexity of the proposed algorithm

of ESPS is 𝑂(𝑚 + 𝑛𝑚). Having 𝑛 tasks and 𝑚 VMs or

resources, we see the lines 3-4 require 𝑂(𝑚) in Algorithm

I. Then, the loop defined in line 6 requires 𝑂(𝑛) which

calls Procedure I, whose lines 1-2 in turn call Procedure

II. The lines 2-3 in Procedure II require 𝑂(𝑚) while in

Procedure I the lines 4-5, 9-17 require the

same 𝑂(𝑚).Hence, the overall time complexity of ESPS

is 𝑂(𝑚 + 𝑛𝑚).

4.2 An illustration

We shall describe a dry-run based on 6 tasks as shown by

Table 4. The 3 VMs shown in Table 4 are distributed

separately in 3 different hosts and the power rating of these

hosts is given by Table 5.

We can see from Table 5 that different hosts have

different values of 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 , an aspect that the

proposed algorithm ESPS exploits in order to minimize

the difference of these two variables as seen in the

function 𝐸. For instance, we see from Table 4 that 𝑇0 has

a very low resource utilization at 𝑉𝑀1 but 𝑉𝑀1 resides in

Host 1 which has a higher power difference as seen by

Table 5. Our algorithm tries to optimize this trade-off

between utilization and power differences of hosts to

capture the best scheduling decision.

Initially, 𝑇0 arrives at 1 time unit. Its utilizations on all

resources are 25%, 48% and 57% whose host power rating

differences are (50-20), (20-10) and (70-30) respectively.

The heuristic normalizes these two sequences and finds

the minimum sum value, which is 1.09 (i.e.
48

57
+

10

40
)

Symbol Meaning

𝑇𝑖 𝑖𝑡ℎ task

𝑉𝑀𝑗 𝑗𝑡ℎ virtual machine

𝑘 𝑘𝑡ℎ time unit

𝑈𝑉𝑗
𝑘 Utilization of 𝑗𝑡ℎ VM at time instant k

𝑚 Total number of VMs

GQ Global queue meant for tasks that are

waiting

𝑃𝑚𝑎𝑥(𝑉𝑀𝑗) Maximum power at peak load capacity

of 𝑗𝑡ℎ VM

𝑃𝑚𝑖𝑛(𝑉𝑀𝑗) Minimum power at active mode of 𝑗𝑡ℎ

VM

𝑄𝑘 Queue of all tasks arriving at time

instant 𝑘

𝑇𝑈𝑖𝑗 Utilization of 𝑖𝑡ℎ task on 𝑗𝑡ℎ VM

Table 3: Symbols used in Algorithm 1.

Input: 𝑇(1~𝑛), 𝑉𝑀(1~𝑚),

 𝑇𝑈(1~𝑛)(1~𝑚)

Output:

Minimized 𝐸

1. set 𝐺𝑄 ← {}

2. set 𝑃𝑑𝑖𝑓𝑓 ← {}

3. for j = 1, 2, …, m do

4. add (𝑃𝑚𝑎𝑥(𝑉𝑀𝑗) − 𝑃𝑚𝑖𝑛(𝑉𝑀𝑗)) to 𝑃𝑑𝑖𝑓𝑓

5. end for

6. for each 𝑇𝑖 ∈ 𝑄𝑘 , 𝐺𝑄 do

7. set 𝑣 ← Call GET-OPTIMAL-VM(𝑇𝑖)

8. if 𝑣 == -1 then

9. add 𝑇𝑖 to 𝐺𝑄

10. end if

11. else do

12. assign 𝑇𝑖 → 𝑣

13. end else

14. end for

Algorithm I: Energy Saving Power Spectrum-Aware

Task Scheduling (ESPS).

Input: 𝑇𝑖 , 𝑃𝑑𝑖𝑓𝑓 Output: Optimal 𝑉𝑀𝑗 for

scheduling

1. set 𝑃𝑛𝑜𝑟𝑚 ← Call GET-NORMALIZED-

VECTOR(𝑃𝑑𝑖𝑓𝑓)

2. set (𝑇𝑈𝑖)𝑛𝑜𝑟𝑚 ← Call GET-NORMALIZED-

VECTOR(𝑇𝑈𝑖)

3. set 𝜎 ← {}

4. for j = 1, 2, ..., m do

5. add (𝑃𝑛𝑜𝑟𝑚[𝑗] + (𝑇𝑈𝑖)𝑛𝑜𝑟𝑚[𝑗]) to 𝜎

6. end for

7. set 𝜎𝑚𝑖𝑛 ← 𝑖𝑛𝑑𝑒𝑥(min(𝜎)) + 1

8. set flag ← 0

9. while True do

10. if 𝜎𝑚𝑖𝑛 == 𝑖𝑛𝑑𝑒𝑥(max(𝜎)) + 1 then

11. set flag ← 1

12. break

13. end if

14. if 𝑈𝑉𝜎𝑚𝑖𝑛
𝑘 + 𝑇𝑈𝑖,𝜎𝑚𝑖𝑛

≤ 100 then

15. break

16. end if

17. set 𝜎𝑚𝑖𝑛 ← next 𝑖𝑛𝑑𝑒𝑥(min(𝜎)) + 1

18. end while

19. if flag == 1 then

20. return -1

21. end if

22. return 𝑉𝑀𝜎𝑚𝑖𝑛

Procedure I: GET-OPTIMAL-VM(𝑇𝑖)

Input: 𝐴 Output: 𝐴𝑛𝑜𝑟𝑚

1. set 𝐴𝑛𝑜𝑟𝑚 ← {}

2. for j = 1, 2, …, m do

3. add (𝐴[𝑗]/max (𝐴)) to 𝐴𝑛𝑜𝑟𝑚

4. return 𝐴𝑛𝑜𝑟𝑚

Procedure II: GET-NORMALIZED-VECTOR(A)

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 69

on 𝑉𝑀2. Similarly, when 𝑇1 arrives in the system, the

minimum sum of normalized values is 1.25 (i.e.
48

48
+

10

40
)

again, on 𝑉𝑀2. We can already see how the heuristic

prefers to schedule tasks with relatively lower utilization

level to 𝑉𝑀2 as it resides in the host having the least power

difference. The rest of the scheduling of ESPS is shown

by Fig. 3 (a), where each VM’s utilization level per time

is shown along with the tasks assigned to that VM in the

particular time instant. The tasks end when they appear

towards the left of the time units hence reducing the

assigned VM’s utilization level at that time instant. The

tilde (~) mark indicates range of values, and GQ indicates

the tasks that are placed in global queue at that particular

time instant (row). Similarly, the same set of tasks are

simulated using Random, MaxUtil, ECTC and FCFS

shown by Fig. 3 (b), Fig. 4 (b), (c) and (a) respectively.

We present the energy consumption on the list of 6 task

taken for each algorithm in Table 6.

It is clear from Table 6 that our proposed heuristic

ESPS performs better on the given list of tasks. More

specifically, it saves 34.78%, 45.86%, 49.97%, and

64.95% more energy as compared to algorithms FCFS,

MaxUtil, ECTC and Random respectively. Clearly, we

can see the efficacy of ESPS when there are different hosts

with varying power rating differences.

5 Performance evaluation
This section encapsulates all the results done through

simulations of ESPS and other algorithms (ECTC, FCFS,

MaxUtil, and Random) on several benchmark and

synthetic datasets to show the efficacy of ESPS in terms

of energy consumption.

5.1 Description of datasets and simulations

We have used two benchmark datasets, considering

different configurations of datasets generated by Ali et al.

(2000) [24] and Braun et al. (2001) [23]. The advantage

of using these two benchmark datasets is that they offer a

wide variety of tasks in terms of task heterogeneity and

also offer estimated time to compute values by varying

machine heterogeneity. These values are obtained from

real world applications and are a good choice to use for

testing the performance of a task scheduling heuristic in a

heterogeneous cloud system. The datasets are

characterized by their names given by the general

form: 𝑢_𝑎_𝑏𝑏𝑐𝑐, 𝐴. 𝑢_𝑎_𝑏𝑏𝑐𝑐, 𝐵. 𝑢_𝑎_𝑏𝑏𝑐𝑐 where 𝑢

stands for uniform distribution, 𝑎 takes the values 𝑐, 𝑖
and 𝑠 which refer to consistent, inconsistent and semi-

consistent ETC matrices respectively, 𝑏𝑏 indicates task

heterogeneity which takes values ℎ𝑖 and 𝑙𝑜 which refer to

high or low task heterogeneity respectively, and finally 𝑐𝑐

indicates machine heterogeneity which also takes

values ℎ𝑖 and 𝑙𝑜 referring to high or low machine

heterogeneity respectively. 𝐴 and 𝐵 refer to dataset of Ali

al. (1024×32; 1024 tasks and 32 machines) and dataset of

Braun et al. (1024×32; 1024 tasks and 32 machines). The

benchmark datasets of the form 𝑢_𝑎_𝑏𝑏𝑐𝑐 is also one of

Braun et al.’s generated datasets but has 512 tasks to be

scheduled to 16 machines (512×16). In total, the number

of benchmark datasets that we perform simulations on is

36, each having different ETC instances. To pre-process

the data, we divide the values by a) 100 for datasets of the

form 𝑢_𝑎_𝑏𝑏𝑐𝑐 and 𝐵. 𝑢_𝑎_𝑏𝑏𝑐𝑐, and b) 1000 for datasets

of form 𝐴. 𝑢_𝑎_𝑏𝑏𝑐𝑐. Finally we round the values to the

nearest integer value for simplicity. Each dataset is

coupled with its own total utilization matrix TU which is

generated for 𝑛 × 𝑚 numbers (where 𝑛 refers to number

of tasks and 𝑚 refers to number of machines) using a

random function which fall in the range [1, 100], both

limits inclusive. For each benchmark dataset we use a) 4

hosts housing 4 VMs each for the 512×16 Braun et al.

dataset, and b) 4 hosts housing 8 VMs each for the

1024×32 Braun et al. and Ali et al. datasets. The power

rating specifications of these hosts is given by Table 13.

In the case of synthetic datasets, we take 5 instances

comprising 100, 500, 1000, 5000 and 10000 tasks mapped

on to 10, 20, 30, 40 and 50 resources, respectively. The

ETC and TU matrices generated for each dataset are done

randomly by restricting the values (inclusive) in the range

[1, 40]. Table 7 describes the details of the cloud model

used for the synthetic dataset simulations. Table 8

Host 𝒑𝒎𝒊𝒏 𝒑𝒎𝒂𝒙

Host 1 (VM 1) 20 50

Host 2 (VM 2) 10 20

Host 3 (VM 3) 30 70

Table 5: Power spectra of different physical hosts used in

the illustration based on active mode and peak load power.

 ETC TU

Tasks AT VM 1 VM 2 VM 3 VM 1 VM 2 VM 3

0 1 10 4 14 25 48 57

1 3 10 6 12 44 48 17

2 5 11 9 12 76 40 19

3 6 8 10 7 36 57 71

4 8 8 13 10 43 56 99

5 9 6 7 6 38 92 45

Table 4: Task table containing 6 tasks with their respective arrival time and ETC and TU matrices.

Algorithm FCFS MaxUtil ECTC Random ESPS

Energy 59560 71740 77640 110840 38840

Table 6: Energy consumption (watts time) of all algorithms based on the task list given by Table 4.

70 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

specifies the power ratings of the different hosts used for

the synthetic dataset. All the experiments were performed

using Python 3.5 on an Intel ® Core ™ i5-6200U CPU @

2.30 GHz and 8 GB RAM on Windows 10 Pro 64-bit, x64

based processor.

5.2 Simulation results

We compare our proposed algorithm ESPS with other

existing algorithms namely FCFS, MaxUtil, ECTC and

random. The simulations were done on 36 instances of

benchmark datasets and 5 instances of synthetic self-

created datasets. We notice that ESPS performs better in

terms of energy consumption in all instances of the

datasets, benchmark or synthetic. The main reason for this

is that ESPS combines two objectives, namely least

utilization and least power difference to optimize the

energy function 𝐸 given by eqn. (5). For the benchmark

datasets, we denote the percentage increase in power

consumption of heuristics FCFS, MaxUtil, ECTC and

Figure 3: (a) Scheduling of the list of 6 tasks on ESPS, and (b) scheduling on random algorithm.

Figure 4: (a) Scheduling of the 6 tasks on by FCFS, (b) scheduling using MaxUtil, and (c) scheduling on ECTC.

Synthetic Dataset # Tasks # VMs # Hosts #VMs in each host

1 100 10 2 5

2 500 20 4 5

3 1000 30 5 6

4 5000 40 5 8

5 10000 50 5 10

Table 7: Cloud model specifications used for synthetic dataset simulations.

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 71

random in Table 14. These calculations were made by

taking the average energy consumed of all the heuristics

over the three benchmark datasets individually and

comparing the percentage increase in energy consumption

with our proposed heuristic.

The data for these percentages can be found in Table 9,

Table 10 and Table 11. The same comparison has not been

done for the synthetic datasets as it is evident from the

values that ESPS outperforms other heuristics in terms of

energy consumed. We have discussed further on synthetic

dataset performance in Section 6. The results of

simulations of all the algorithms for 512×16 (Braun et

al.), 1024×32 (Braun et al.), and 1024×32 (Ali et al.) are

shown in table form by Table 9, Table 10, Table 11, and

Table 14 and graphically by Fig. 5, Fig. 6, and Fig. 7

respectively. The results of the synthetic dataset

simulations are given by Table 12 and Fig. 8. Based on our

simulations, we notice that FCFS, MaxUtil, Random and

ECTC respectively consume approximately about

38.65%, 33.59%, 53.02%, and 46.96% more energy over

all benchmark datasets when compared to our proposed

approach. This behavior is seen throughout the variety of

datasets that we use, i.e. also in case of synthetic dataset

and dry run.

Dataset Host 1 Host 2 Host 3 Host 4 Host 5

 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙

100×10 20 50 30 40 - - - - - -

500×20 20 50 30 60 40 50 30 40 - -

1000×30 20 50 30 60 40 50 30 40 20 40

5000×40 20 50 30 60 40 50 30 40 20 40

10000×50 20 50 30 60 40 50 30 40 20 40

Table 8: Host power rating (watts) taken for synthetic dataset simulations.

Instances FCFS MaxUtil Random ECTC ESPS

u_c_hihi 8.88E+08 8.82E+08 9.00E+08 9.67E+08 7.62E+08

u_c_hilo 1.74E+07 1.91E+07 3.99E+07 2.05E+07 7.84E+06

u_c_lohi 3.97E+07 4.79E+07 6.69E+07 6.65E+07 2.53E+07

u_c_lolo 1.37E+06 1.04E+06 2.75E+06 1.37E+06 8.27E+05

u_i_hihi 1.25E+09 1.17E+09 1.11E+09 1.26E+09 1.02E+09

u_i_hilo 2.96E+07 2.58E+07 4.49E+07 3.68E+07 8.95E+06

u_i_lohi 6.63E+07 6.06E+07 7.16E+07 7.68E+07 2.81E+07

u_i_lolo 2.26E+06 2.68E+06 2.63E+06 2.23E+06 8.41E+05

u_s_hihi 1.06E+09 1.03E+09 1.08E+09 1.06E+09 8.35E+08

u_s_hilo 2.19E+07 2.36E+07 4.23E+07 3.01E+07 8.64E+06

u_s_lohi 4.96E+07 4.48E+07 7.05E+07 6.70E+07 2.51E+07

u_s_lolo 1.55E+06 1.93E+06 2.75E+06 1.60E+06 8.39E+05

Table 9: Simulation results of all algorithms on the 512×16

Braun et al. dataset.

Instances FCFS MaxUtil Random ECTC ESPS

u_c_hihi 1.31E+09 1.41E+09 1.40E+09 1.47E+09 1.03E+09

u_c_hilo 2.06E+07 1.68E+07 8.76E+07 1.52E+07 1.06E+07

u_c_lohi 3.30E+07 4.81E+07 1.87E+08 5.76E+07 2.66E+07

u_c_lolo 3.66E+06 3.27E+06 6.20E+06 3.66E+06 2.54E+06

u_i_hihi 1.93E+09 1.72E+09 1.80E+09 1.90E+09 1.34E+09

u_i_hilo 5.55E+07 4.78E+07 1.01E+08 7.21E+07 1.15E+07

u_i_lohi 1.25E+08 1.07E+08 2.12E+08 1.91E+08 3.23E+07

u_i_lolo 5.52E+06 5.50E+06 6.07E+06 5.48E+06 2.55E+06

u_s_hihi 1.84E+09 1.86E+09 1.72E+09 1.77E+09 1.28E+09

u_s_hilo 3.80E+07 3.93E+07 9.27E+07 5.03E+07 1.16E+07

u_s_lohi 1.01E+08 9.96E+07 2.05E+08 1.56E+08 3.28E+07

u_s_lolo 4.62E+06 3.90E+06 5.80E+06 4.61E+06 2.55E+06

Table 10: Simulation results of all algorithms on the 1024×32

Braun et al. dataset.

Instances FCFS MaxUtil Random ECTC ESPS

u_c_hihi 4.55E+08 4.52E+08 5.04E+08 4.80E+08 3.55E+08

u_c_hilo 3.33E+07 4.79E+07 1.86E+08 5.03E+07 2.66E+07

u_c_lohi 5.65E+06 5.06E+06 4.95E+06 4.65E+06 2.36E+06

u_c_lolo 3.65E+06 3.26E+06 3.65E+06 3.65E+06 2.36E+06

u_i_hihi 6.29E+08 5.98E+08 6.70E+08 6.79E+08 4.64E+08

u_i_hilo 1.32E+08 1.12E+08 2.10E+08 1.77E+08 3.44E+07

u_i_lohi 4.25E+06 4.96E+06 5.05E+06 4.75E+06 2.36E+06

u_i_lolo 3.85E+06 3.46E+06 3.85E+06 3.75E+06 2.56E+06

u_s_hihi 6.32E+08 5.69E+08 6.73E+08 6.23E+08 4.52E+08

u_s_hilo 1.00E+08 9.43E+07 2.06E+08 1.51E+08 3.41E+07

u_s_lohi 4.95E+06 4.06E+06 5.65E+06 4.55E+06 2.36E+06

u_s_lolo 3.65E+06 3.26E+06 3.65E+06 3.65E+06 2.36E+06

Table 11: Simulation results of all algorithms on the 1024×32

Ali et al. dataset.

Algorithm 100×10 500×20 1000×30 5000×40 10000×50

FCFS 9.44E+05 6.80E+06 1.48E+07 7.58E+07 1.62E+08

MaxUtil 7.18E+05 6.63E+06 1.36E+07 7.60E+07 1.61E+08

Random 9.35E+05 5.56E+06 1.12E+07 6.29E+07 1.34E+08

ECTC 1.01E+06 7.88E+06 1.66E+07 9.02E+07 1.89E+08

ESPS 2.37E+05 1.62E+06 4.03E+06 2.32E+07 5.47E+07

Table 12: Simulation results of all algorithms on the synthetic

datasets.

Host 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙

Host 1 20 50

Host 2 10 20

Host 3 30 70

Host 4 10 40

Table 13: Host power rating specifications in watts used

for the simulation of all algorithms on benchmark datasets.

Benchmark
FCFS

(%)

MaxUtil

(%)

Random

(%)

ECTC

(%)

Braun et al.

[23] 512×16
25.99 21.50 25.99 32.15

Braun et al.

[23]

1032×32

44.76 41.90 53.96 50.47

Ali et al [24]

1032×32
45.21 37.39 79.13 58.26

Avg.

increase
38.65 33.59 53.02 46.96

Table 14: Increase in power usage of other heuristics in

comparison to proposed heuristic ESPS.

72 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

6 Discussion
The main novelty of our proposed work is that it takes into

account the power difference of different physical host in

peak and active mode. Real life datacenters consist of

different physical host which may have different power

rating (as seen in Fig. 1). It is also clearly understood from

Table 1 that in real life scenario, the physical host may

have different power rating in peak and idle mode. Other

implementations focuses mainly on energy where as our

proposed work focuses on two important objectives

namely least power difference and least utilization. First it

minimizes energy by choosing an optimal physical host

which has least difference of maximum and minimum

power consumption in peak and active mode, respectively.

Secondly, it minimizes energy through minimization of

utilization by preferring to schedule tasks to such VMs

where they consume lower CPU utilization. It is

economical in nature when compared with other existing

algorithm. Even in case of synthetic dataset, our proposed

algorithm saves around 72.41%, 67.69%, 67.38% and

60.84% more energy when compared with ECTC, FCFS,

MaxUtil and Random, respectively. We have also

compared our approach with other related work in Table

15. Most of the related work uses either synthetic data set

or benchmark dataset, however, we have used one

synthetic dataset and two benchmark datasets.

Additionally, we have dry run our algorithm on some

sample values. Our proposed work outperform in all cases

of the datasets.

7 Conclusion and future directions
We propose a new heuristic namely Energy Saving Power

Spectrum-Aware Task Scheduling (ESPS) that keeps

track of the least power difference in the operating power

characteristics of different hosts in a cloud datacenter.

ESPS has a time complexity of 𝑂(𝑚 + 𝑛𝑚) if we have 𝑛

tasks to be mapped to 𝑚 virtual machines. Along with this,

it schedules task with a relatively lower utilization level

onto those VMs that are hosted by machines having a

lower power rating difference in a manner to balance

between the utilization level and the power difference.

Note that energy consumption of the FCFS, MaxUtil,

Random, and ECTC algorithm are about 38.65%, 33.59%,

53.02% and 46.96% more than our proposed algorithm

respectively. ESPS normalizes the values of the arrived

task’s utilizations on different VMs in the system and the

power differences of the peak load capacity and active

mode powers. Post normalization it picks the least sum of

the two to make a scheduling decision. It is worthy to

mention that the power differences taken in the simulation

of benchmark and synthetic dataset were chosen by us and

they may vary in the case of real life applications. This

implies that our algorithm has the potential to outperform

any other heuristic for task scheduling solely based on the

power differences of the different hosts present at a data

center.

As we just mentioned that the performance of our

algorithm relies heavily on the power differences of

different hosts, future work may extend the idea of

exploiting this aspect and apply this technique to some

Figure 5: Energy consumption of each algorithm on

the 512×16 Braun et al. dataset.

Figure 6: Energy consumption of all algorithms on the

1024×32 Braun et al. dataset.

Figure 7: Energy consumption of all algorithms on the

1024×32 Ali et al. dataset.

Figure 8: Energy consumption of all algorithms on the

synthetic datasets.

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 73

Ref. Technique Advantage / Result Disadvantage/ Future work

[35]

Consider the different power rating for different host,

power model and performance model are combined in

the proposed work.

Saves energy in the range of 21% to

22% without violating the resource

requirements of the cloud task.

The power model is not adaptive

to a wide range of infrastructure.

Server components are not taken

into account.

[11]

Fixed threshold of 70% utilization of VM is proposed

and the task above threshold level is migrated to other

VM.

Significant saving in power

consumption. 17% better than

ECTC and MaxUtil.

Increase in overall cost due to

migration of task between

clusters.

[9]

Proposed two different heuristic ECTC and MaxUtil.

First approach considers the actual energy

consumption of ongoing task and in the second

approach, average utilization is considered.

Both active and idle energy

utilization is considered. Both the

proposed algorithm outperform

Random scheduling regardless of

adoption of migration by 18% and

13%.

Energy consumption increases

with utilization. The decision to

schedule a new task is based upon

the current state of task bindings.

[12]

Introduced a new approach called PowerNap where

the system transitions between active and idle state.

Also introduced Redundant Array for Inexpensive

Load Sharing (RAILS).

Reduced average server power

consumption by 74%.

It suffers from poor performance

of maintenance tasks such as

buffer flushing, memory zeroing,

etc.

[13]

Assigned task to those VMs where the increase in

energy consumption is the least. This approach

considers both active and idle virtual machines.

Performs better than ECTC in terms

of energy consumption by 14.06%.

The algorithm does not consider

the execution of the individual

tasks when they are not

overlapping.

[15]

In this approach priority of job scheduling is

considered. Weight and SLA level is also taken into

account along with the DVFS approach to control the

voltage supply.

Found to be efficient in reducing

the energy consumption up to 5%-

25% without sacrificing the system

performance. Proves 23% better

than ECS in terms of energy.

No limitations or drawback of the

proposed work is listed in the

paper.

[19]

The proposed work makes use of cooperative

reinforcement learning in WSN-based network. They

use a reward-based system where the model tries to

maximize the reward achieved by trading the

performance of the application along with the required

energy consumption

Proves better than non-cooperative

reinforcement learning approach.

Server energy limitations pose a

particular challenge. Not

compared with other variant of

reinforcement learning methods.

Non-consideration of a real world

motion model for the targets and

data association as a task.

[20]

Energy of both network devices and server is reduced

by proposing a hierarchical scheduling algorithm but,

in their algorithm the nodes with lower temperature

are selected by the application for scheduling.

Minimizes the energy consumption

of both server and network devices.

Amount of data transfer also

reduced.

Limited energy aware factor is

considered.

[14]

The approach tries to minimize both makespan and

energy consumption. Makes use of both ETC matrix

and Task Utilization matrix.

Saves considerable amount of

energy and makespan as compared

to ECTC, ETC and MaxUtil etc.

Energy and execution cost are not

considered in this paper.

[26]

Proposed an algorithm which moves the workload to

the lowest energy consumption server and CO2

emission server.

Save up to 10% to 31% in terms of

energy and 10% to 87% in terms of

carbon emission.

VM migration involves heavy cost

in terms of energy migration.

[25]
Proposed EDA-NMS which takes care of task

deadlines without inducing VM migration overhead

Good in terms of energy saving

when compared with other

algorithm. No compromise in

deadlines is done.

The proposed work did not

experiment on real-word trace

data.

[27]

The algorithm is based on DENS approach which

balances the energy consumption in data centers by

scheduling job based on their thermal profile and

communication potential.

Able to optimize the tradeoff

between job scheduling the

distribution of traffic pattern.

Did not test the DENS approach

in realistic setup using testbuds.

[Our]

Our proposed work is mainly based on the power

difference of different physical host. It schedules task

to those VMs which have the lower power rating

difference. ESPS considers the least sum of

normalized values of the incoming task utilization on

different VM and the power difference of peak load

capacity and active mode of different hosts.

Our proposed work outperforms in

dry run, two benchmark datasets

and one synthetic dataset and saves

hefty amount of energy in the range

of 35% to 72% as compared with

other heuristics. The main novelty

of our algorithm is that it is also

considers the power difference of

different physical host.

Our proposed work only focuses

on power, energy and utilization.

Other parameters like SLA and

makespan has not been considered

which may be considered as

future work.

Table 15: Literature review analysis.

74 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

meta-heuristic task allocation strategies [32] that not only

focus on energy but also other parameters such as

makespan, conform to SLA constraints, etc.

Acknowledgement
The author would like to thank all the co-authors for their

guidance, support and useful comments.

References
[1] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., &

Brandic, I. (2009). Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation

Computer Systems, Vol. 25, No. 6, pp. 599–616.

https://doi.org/10.1016/j.future.2008.12.001

[2] Gombiner, J. (2011). Carbon Footprinting the

Internet. Consilience, (5), 119-124. Retrieved July 7,

2020, from www.jstor.org/stable/26167805

[3] Krug, L., Shackleton, M., & Saffre, F. (2014).

Understanding the environmental costs of fixed line

networking. Proceedings of the 5th International

Conference on Future Energy Systems - e-Energy

’14. https://doi.org/10.1145/2602044.2602057

[4] Ullman, J. D. (1975). NP-complete scheduling

problems. Journal of Computer and System Sciences,

10(3), 384–393. https://doi.org/10.1016/s0022-

0000(75)80008-0

[5] SPEC, Fujitsu FUJITSU Server PRIMERGY

RX1330 M1,

https://www.spec.org/power_ssj2008/results/res2014

q3\/power_ssj2008-20140804-00662.html.

[6] SPEC, Inspur Corporation NF5280M4,

https://www.spec.org/power_ssj2008/results/res2014

q4/power_ssj2008-20140905-00673.html.

[7] SPEC, Dell Inc. PowerEdge R820 (Intel Xeon E5-

4650 v2 2.40 GHz),

https://www.spec.org/power_ssj2008/results/res2014

q2/power_ssj2008-20140401-00654.html.

[8] SPEC, IBM Corporation IBM NeXtScale nx360 M4

(Intel Xeon E5-2660 v2),

https://www.spec.org/power_ssj2008/results/res2014

q2/power_ssj2008-20140421-00657.html.

[9] Lee, Y. C., & Zomaya, A. Y. (2010). Energy efficient

utilization of resources in cloud computing systems.

The Journal of Supercomputing, Vol. 60, No. 2, pp.

268–280. https://doi.org/10.1007/s11227-010-0421-3

[10] Gourisaria, M. K., Gupta, P., GM, H., Patra, S. S.,

Khilar, P. M. (2020). A Comparative Study of Various

Task Scheduling Algorithms in Cloud

Computing. International Journal of Control and

Automation, Vol. 13, No. 4, pp. 1152-1169.

[11] Hsu, C.-H., Chen, S.-C., Lee, C.-C., Chang, H.-Y.,

Lai, K.-C., Li, K.-C., & Rong, C. (2011). Energy-

Aware Task Consolidation Technique for Cloud

Computing. 2011 IEEE Third International

Conference on Cloud Computing Technology and

Science. https://doi.org/10.1109/cloudcom.2011.25

[12] Meisner, D., Gold, B. T., & Wenisch, T. F. (2009).

PowerNap Eliminating Server Idle Power, ACM

SIGARCH Computer Architecture News, Vol. 37,

No. 1, pp. 205.

https://doi.org/10.1145/2528521.1508269

[13] Ismail, L., & Materwala, H. (2018). EATSVM:

Energy-Aware Task Scheduling on Cloud Virtual

Machines. Procedia Computer Science, Vol. 135, pp.

248–258. doi:10.1016/j.procs.2018.08.172

[14] Panda, S. K., & Jana, P. K. (2018). An energy-efficient

task scheduling algorithm for heterogeneous cloud

computing systems. Cluster Computing.

https://doi.org/10.1007/s10586-018-2858-8

[15] Wu, C.-M., Chang, R.-S., & Chan, H.-Y. (2014). A

green energy-efficient scheduling algorithm using the

DVFS technique for cloud datacenters. Future

Generation Computer Systems, Vol. 37, pp. 141–147.

https://doi.org/10.1016/j.future.2013.06.009

[16] Kong, J., Choi, J., Choi, L., & Chung, S. W. (2008).

Low-cost application-aware DVFS for multi-core

architecture. In 2008 Third International Conference

on Convergence and Hybrid Information Technology,

Vol. 2, pp. 106-111.

https://doi.org/10.1109/ICCIT.2008.124

[17] Kimura, H., Sato, M., Imada, T., & Hotta, Y. (2008).

Runtime DVFS control with instrumented code in

power-scalable cluster system. In 2008 IEEE

International Conference on Cluster Computing, pp.

354-359.

https://doi.org/10.1109/CLUSTER.2008.4663795

[18] Genser, A., Bachmann, C., Steger, C., Weiss, R., &

Haid, J. (2010). Power emulation based DVFS

efficiency investigations for embedded systems. In

2010 International Symposium on System on Chip,

pp. 173-178.

https://doi.org/10.1109/ISSOC.2010.5625559

[19] Khan, M. I., & Rinner, B. (2014). Energy-aware task

scheduling in wireless sensor networks based on

cooperative reinforcement learning. 2014 IEEE

International Conference on Communications

Workshops (ICC).

https://doi.org/10.1109/iccw.2014.6881310

[20] Wen, G., Hong, J., Xu, C., Balaji, P., Feng, S., &

Jiang, P. (2011). Energy-aware hierarchical

scheduling of applications in large scale data centers.

In 2011 International Conference on Cloud and

Service Computing, pp. 158-165.

https://doi.org/10.1109/CSC.2011.6138514

[21] Mishra, S. K., Sahoo, S., Sahoo, B., & Jena, S. K.

(2019). Energy-Efficient Service Allocation

Techniques in Cloud: A Survey. IETE Technical

Review, pp. 1–14.

https://doi.org/10.1080/02564602.2019.1620648

[22] Fan, X., Weber, W.-D., & Barroso, L. A. (2007).

Power provisioning for a warehouse-sized computer.

ACM SIGARCH Computer Architecture News, Vol.

35, No. 2, pp. 13.

https://doi.org/10.1145/1273440.1250665

[23] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L.,

Maheswaran, M., Reuther, A. I., … Freund, R. F.

(2001). A Comparison of Eleven Static Heuristics for

http://www.jstor.org/stable/26167805

ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 75

Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems.

Journal of Parallel and Distributed Computing, Vol.

61, No. 6, pp. 810–837.

https://doi.org/10.1006/jpdc.2000.1714

[24] Ali, S., Siegel, H. J., Maheswaran, M., Hensgen, D.,

& Ali, S. (n.d.). Task execution time modeling for

heterogeneous computing systems. Proceedings 9th

Heterogeneous Computing Workshop (HCW 2000)

(Cat. No.PR00556).

https://doi.org/10.1109/hcw.2000.843743

[25] Zhang, Y., Cheng, X., Chen, L., & Shen, H. (2018).

Energy-efficient Tasks Scheduling Heuristics with

Multi-constraints in Virtualized Clouds. Journal of

Grid Computing, Vol. 16, No. 3, pp. 459–475.

https://doi.org/10.1007/s10723-018-9426-6

[26] Quan D. M., Somov, A., & Dupont, C. (2012). Energy

usage and carbon emission optimization mechanism

for federated data centers. In Energy Efficient Data

Centres. Lecture Notes in Computer Science, Vol.

7396. Springer, Berlin, 129–140. https://doi.org/

10.1007/978-3-642-33645-4_12

[27] Kliazovich, D., Bouvry, P., & Khan, S. U. (2010).

DENS: Data Center Energy-Efficient Network-Aware

Scheduling. 2010 IEEE/ACM Int’l Conference on

Green Computing and Communications & Int’l

Conference on Cyber, Physical and Social

Computing. https://doi.org/10.1109/greencom-

cpscom.2010.31

[28] Gourisaria, M.K., Patra, S.S., & Khilar, P.M. (2016).

Minimizing Energy Consumption by Task

Consolidation in Cloud Centers with Optimized

Resource Utilization. International Journal of

Electrical and Computer Engineering, Vol. 6, No. 6,

pp. 3283-3292.

https://doi.org/10.11591/ijece.v6i6.12251

[29] Gourisaria, M. K., Patra, S. S., & Khilar, P. M. (2018,

December). Energy saving task consolidation

technique in cloud centers with resource utilization

threshold. International Conference on Advanced

Computing and Intelligent Engineering. In Progress

in Advanced Computing and Intelligent Engineering,

pp. 655-666. Springer, Singapore. Bhubaneswar,

https://doi.org/10.1007/978-981-10-6872-0_63

[30] Gourisaria, M. K., Samanta, A., Saha, A., Patra, S. S.,

& Khilar, P. M. (2020, March). An Extensive Review

on Cloud Computing. 3rd International Conference

on Data Engineering and Communication

Technology, In Data Engineering and

Communication Technology, pp. 53-78. Springer,

Singapore. https://doi.org/10.1007/978-981-15-1097-

7_6

[31] Sharma, R., Gourisaria, M. K., Patra, S. S. (2021).

Cloud Computing—Security, Issues, and Solutions.

Lecture Notes in Networks and Systems, Vol. 134,

pp. 687–700. https://doi.org/10.1007/978-981-15-

5397-4_70

[32] Bhardwaj, A. K., Gajpal, Y., Surti, C., & Gill, S. S.

(2020). HEART: Unrelated parallel machines

problem with precedence constraints for task

scheduling in cloud computing using heuristic and

meta‐heuristic algorithms. Software: Practice and

Experience, Vol. 50, No. 12, pp. 2231-2251.

https://doi.org/10.1002/spe.2890

[33] Mohialdeen, I. A. (2013). Comparative study of

scheduling al-gorithms in cloud computing

environment. Journal of Computer Science, Vol. 9,

No. 2, pp. 252-263.

https://doi.org/10.3844/jcssp.2013.252.263

[34] Ruan, X., Chen H., Tian Y., & Yin, S. (2019). Virtual

machine allocation and migration based on

performance-to-power ratio in energy-efficient

clouds. Future Generation Computer Systems, Vol.

100, pp. 380-394.

https://doi.org/10.1016/j.future.2019.05.036

[35] Lin, W., Wang, W., Wu, W., Pang, X., Liu, B., &

Zhang, Y. (2017). A heuristic task scheduling

algorithm based on server power efficiency model in

cloud environments. Sustainable computing:

informatics and systems, Vol. 20, pp. 56-65.

https://doi.org/10.1016/jsuscom.2017.10.007

[36] Chen, H. L., & Lv, S. (2015). Adaptive bandwidth

allocation strategy under cloud platform.

Informatica. Vol. 39, No. 4, pp. 347-352.

[37] Deshpande, P., Sharma, S. C., Peddoju, S. K., &

Abraham, A. (2015). Efficient multimedia data

storage in cloud environment. Informatica, vol. 39,

No. 4, pp. 347-352.

[38] Dhaini, M., Jaber, M., Fakhereldine, A., Hamdan, S.,

& Haraty, A.R. (2021). Green Computing

Approaches – A Survey. Informatica, vol. 45, No. 1,

pp. 1-12. https://doi.org/10.31449/inf.v45i1.2998

76 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.

