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Cloud Computing has seen massive growth over the past couple of decades, leading to exponential growth 

in energy consumption at data centres. Data centres consuming high amounts of energy leave a carbon 

footprint of the same scale, hence Cloud Service Providers (CSPs) have been looking for energy-efficient 

solutions to task scheduling in cloud to reduce the amount of carbon dioxide emission. Saving energy not 

only helps reduce the carbon footprint datacentres have on the environment, but also helps cover the costs 

of running multiple datacentres on the CSP’s end. In this paper, we propose an energy saving task 

scheduling heuristic for heterogeneous cloud systems which selects the optimal physical host containing 

virtual machines with the additional consideration of the utilization of any incoming task on that 

particular virtual machine. We compare the energy efficiency of our proposed heuristic with recent 

algorithms including ECTC, MaxUtil, Random, and FCFS on several benchmark and synthetic datasets 

to display its superiority in energy-efficient task scheduling in heterogeneous cloud environments. FCFS, 

MaxUtil, Random, and ECTC respectively consume approximately 38.65%, 33.59%, 53.02%. and 46.96% 

more energy in a heterogeneous cloud environment as compared to our proposed heuristic namely Energy 

Saving Power Spectrum-Aware Scheduling (ESPS). 

Povzetek: Računalništvo v oblaku beleži močno rast, kar vodi do eksponentne rasti porabe energije v 

podatkovnih centrih. V tem prispevku je predlagano hevristično načrtovanje naloge varčevanja z energijo 

za heterogene sisteme v oblaku, ki izbere optimalnega fizičnega gostitelja, ki vsebuje navidezne stroje. 

Energijska učinkovitost predlagane hevristike je primerjana z nedavnimi algoritmi, vključno z ECTC, 

MaxUtil, Random in FCFS na več primerjalnih in sintetičnih naborih podatkov. 

 

1 Introduction 
Cloud computing enables consumers around the globe 

have access to remote, shared computing resources [1, 30]. 

With the rapid increase in the capabilities of physical hosts 

housing a number of virtual machines (VMs) in terms of 

processing speed, storage capacity, cache memory, etc. the 

CSPs are able to meet the equally rising demand for these 

resources. Due to the increasing supply and demand of 

these resources, various power and energy related 

concerns are raised on behalf of the CSP. Moreover, with 

the increase in energy consumption of the datacentres, 

another environmental concern is raised with the massive 

amount of  𝐶𝑂2 emissions [38]. It is estimated that the 

hardware equipment of the IT sector is responsible for as 

much as 2% of the global 𝐶𝑂2 emissions [2] and the 

energy consumption that is coupled with this phenomenon 

is expected to double every year [3]. A data centre may 

take up as much energy as 25,000 households or a couple 

hundred office spaces. One of the main objectives of CSPs 

is to schedule the incoming tasks given by the user in such 

a way that it meets the required QoS parameters such as 

deadline, makespan, latency, packet loss, etc. adhering to 

the Service Level Agreement (SLA) made  between the 

user and the CSP. Even security of user data is a prime 

area of research in cloud computing [31]. Most 

importantly, the CSP desires that the energy consumed by 

the cloud resources during this workflow is minimized. 

Although task scheduling plays a vital role in cloud 

computing, bandwidth allocation and data storage are also 

an important pillar in the cloud environments [36, 37]. 

Task or job scheduling is a NP-complete problem [4] and 

various approaches have been proposed to minimize the 

energy costs pertaining to running the resources in a 
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datacentre [28, 29]. To tackle this issue, we devise an 

algorithm namely Energy Saving Power Spectrum-Aware 

Task Scheduling (ESPS) which takes into consideration 

the utilization of incoming tasks along with the awareness 

of the different ranges of power spectra of the physical 

hosts in a datacentre. Typically, a datacentre comprises 𝑚 

number of physical hosts, and each physical host houses 𝑛 

VMs. Each VM in the same physical host shares the same 

operating power range which makes up for different sets 

of ranges in a datacentre over all VMs. For example, Table 

1 illustrates the different power spectra for different 

physical hosts over the operation range in utilization from 

active mode (0%) to peak load capacity (100%). The 

differences of their power spectra is illustrated in Fig. 1. 

From Table 1 it is easily realized that different 

physical host models have different power spectra of 

operation. ESPS exploits this fact by preferring to 

schedule tasks to the VMs in the physical hosts having the 

minimal power difference between the active mode and 

peak load power, given the fact that the task consumes 

relatively lower utilization in those VMs. This causes the 

power difference along with resource utilization in the 

energy model that we describe later to be minimized to 

optimize the energy function. The results of this procedure 

have been compared with algorithms like ECTC, MaxUtil 

[9], random [33] and First Come First Serve (FCFS) [10] 

on both benchmark and synthetic datasets. The main 

contribution of our work is as follows: 

 Creation of a novel on-line mode task scheduler 

suited for heterogeneous cloud computing 

environment. 

 Rigorous testing by simulation of proposed 

algorithm ESPS on several modified benchmark 

[23, 24] and synthetic datasets. 

 Additional consideration of power differences in 

the operating characteristics of different physical 

hosts which, to the best of our knowledge, has not 

been exploited in order to augment energy 

conservation in resource allocation problems. 

 Evaluation of proposed algorithm ESPS in terms 

of energy consumption. 

 Simulation of existing algorithms ECTC, 

MaxUtil, Random and FCFS and juxtaposing 

their results with proposed algorithm ESPS to 

show reduction in energy consumption. 

The rest of the paper is organized as follows. Section 

2 describes other works relating to ours done before. 

Section 3 explains the cloud model used in the approach 

along with the energy model. Section 4 talks in detail 

about the proposed algorithm ESPS along with a hand-

traced illustration of the model over a fixed dataset 

compared with other algorithms. Section 5 encapsulates 

the results of performance of all algorithms simulated over 

all the datasets. A discussion section has been added in 

Section 6 where our proposed work is compared with 

existing related work and finally, Section 7 holds the 

concluding remarks of our work. 

2 Related work 
In previous works, researchers have considered the server 

power efficiency to propose task scheduling heuristics for 

cloud environments. This means that different servers or 

physical hosts have different ranges of active mode power 

and peak load power. In this context, Lin et al. (2017) [35] 

proposed a heuristic ECOTS that uses the fact that 

different hosts have different power ratings and also 

mentioned that the active mode power and peak load 

power can be obtained directly by measurement of the 

Host Model CPU Clock Cores RAM 
AAMP 

(watt) 

APLP 

(watt) 

Fujitsu 

Primergy 

RX1330 M1 

Intel Xeon E3-

1275 8MB L3 

Cache 

2.5 

GHz 
4 

16 

GB 
13.8 63.7 

Inspur 

NF5280M4 

Intel Xeon E5-

2699 v3 45 MB 

L3 Cache 

2.3 

GHz 
18 

64 

GB 
44.4 301 

Dell 

PowerEdge 

R820 

Intel Xeon E5-

4650 v2 25 MB 

L3 Cache 

2.4 

GHz 
40 4 GB 71.8 374 

IBM 

NeXtScale 

nx360 M4 

Intel Xeon E5-

2660 v2 25 MB 

L3 Cache 

2.2 

GHz 
20 

24 

GB 
497 2414 

Table 1: Operating power characteristics for different host models [5-8], where AAMP and APLP refer to Average 

Active Mode Power and Average Peak Load Power. 

 

Figure 1: Power range differences of different physical 

hosts listed in Table 1 [34, 35]. According to the 

proposed algorithm, Fujitsu Primergy RX1330 M1 

would be preferred more over other hosts for 

scheduling. The y-axis values are in logarithmic scale. 
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CPU idle power and peak power respectively, and that all 

the different physical hosts or servers have their own 

power models. This difference may arise due to different 

hardware configurations from server to server [5-8]. 

Task scheduling in cloud recently has witnessed a 

healthy amount of research work done to minimize energy 

related costs. Hsu et al. (2011) [11] proposed an Energy-

Aware Task Consolidation (ETC) algorithm defined in a 

multi-cloud architecture on homogeneous computing 

resources. The main focus in the work was to set a fixed 

threshold to each VM’s utilization lesnivel at 70% and 

migrate the tasks that could not be accommodated based 

on the threshold to other clouds. Due to the different 

bandwidths of connections between different clouds, the 

cost of task migration varies with recipient and receiving 

cloud. The idea behind setting a threshold at 70% for 

maximum VM utilization was that the energy vs. 

utilization curve increases non-linearly after 70% and for 

every small change in utilization there is noticed a high 

change in energy. However, the problem with ETC is that 

it includes the high costs of migration of tasks which 

increases energy consumption. Lee et al. (2010) [9] 

proposed two energy-saving heuristics namely ECTC 

(Energy-Conscious Task Consolidation) and MaxUtil 

which had two different objective functions to maximize. 

Both the heuristics mainly aim to consolidate tasks on 

fewer virtual machines but differ in their own ways. ECTC 

prefers to schedule tasks such that they mostly run in 

parallel with other tasks in the VM throughout their 

lifetime of execution, while MaxUtil prefers to schedule 

tasks where they may result in a higher average utilization 

level of the VM. However, both MaxUtil and ECTC 

increase task concentration over a few VMs which leads 

to higher energy consumption due to utilization levels of 

>70%. 

Meisner et al. (2009) [12] propose an approach 

PowerNap to tackle the problem of idle power 

consumption and the overhead incurred due to the in-out 

transition of the low-power nap state. While this can 

eliminate idle power consumption, it suffers from poor 

performance of maintenance tasks such as buffer flushing, 

memory zeroing, etc.  Ismail et al. (2018) [13] suggest an 

algorithm for  task scheduling which is more energy 

efficient  (EATSVM) and incorporates the idea of the 

augment in completion times of tasks running in a VM if 

the number of tasks in the same VM increase. Based on 

this increase, EATSVM selects the most optimized energy 

function for scheduling of tasks. Wu et al. (2013) [15] 

proposed a task scheduling algorithm for energy-saving by 

leveraging DVFS (Dynamic Voltage Frequency Scaling) 

which allocates resources to jobs based on the job’s 

requirement without sacrificing system performance, 

which is an issue noticed with systems that use DVFS 

technique [16-18]. Khan et al. (2014) [19] propose an 

energy-aware task scheduling algorithm that uses 

reinforcement learning cooperatively on WSNs (wireless 

sensor networks) based applications. Their technique uses 

a reward-based system as done in most reinforcement 

learning algorithms where the model tries to maximize the 

reward achieved by trading the performance of the 

application along with the required energy consumption. 

Wen et al. (2011) [20] propose a hierarchical scheduling 

algorithm which minimizes energy consumption of 

network devices and servers, but, in their algorithm the 

nodes with lower temperature are selected by the 

application for scheduling. More recently, Panda et al. 

(2018) [14] propose a bi-objective task scheduling 

heuristic for heterogeneous environment which tries to 

minimize both makespan and energy consumption. It 

achieves the optimization of both objectives by taking the 

estimated time to compute matrix for each task along with 

the total utilization matrix over all VMs and normalizes 

the sum of each entry for each VM and finds the minimum 

value to schedule the task to the VM corresponding to the 

index of the minimum value. Mishra et al. (2019) [21] 

survey the current energy efficient service allocation 

techniques in cloud systems and divide the various 

techniques based on a taxonomy. The techniques consider 

tasks of either real-time or non-real time. They present a 

generalized system architecture for service allocation to 

minimize energy. 

Quan et al. (2012) [26] proposed an algorithm that 

amasses data and statistics of the CO2 emission and energy 

consumption of different servers in a datacentre. After this 

step, it predicts the server with optimal (lowest) values of 

energy consumption and CO2 emission and through the 

use of two optimization algorithms namely Power Usage 

Effectiveness (PUE) and Carbon Usage Effectiveness 

(CUE). Finally, it migrates all the heavily loaded VMs to 

the most optimal server. The algorithm also incorporates 

SLA for the selection of the best server. However, the 

issue with VM migration is that it involves heavy cost in 

terms of energy to migrate VMs. Based on this dilemma, 

Zhang et al. (2018) [25] argue that the dynamic 

consolidation of VMs to as few physical machines as 

possible incurs a heavy overhead due to the migration 

costs in terms of energy. Many VM migration-based 

scheduling strategies do not consider this overhead and 

hence they propose an energy saving heuristic to exploit 

the fact that many tasks have loose deadlines. Thus, their 

heuristic postpones the execution of such tasks without the 

need of waking up any other physical machines and thus 

minimize energy without VM migration 

Kliazovich et al. (2010) [27] propose a task 

consolidation heuristic based on balancing the energy 

consumption in datacentres by scheduling jobs to servers 

based on their thermal profiles or the workload and 

communication potential. This approach finds the 

optimum trade-off point between the consolidation of jobs 

to a few servers and avoiding hotspots in the datacentre. 

As seen above, we infer that there has not been much work 

in the literature which consider task allocation strategies 

in environments with different hosts. Almost all the work 

done on task scheduling deals with a single host consisting 

of a number of VMs, while in our work we also consider 

a number of physical hosts with varying capabilities to be 

a part of the system. 
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3 System model 

3.1 Cloud model 

We assume the resources of the cloud model to be 

heterogeneous in the sense that each VM has a different 

processing speed, memory, etc. Consider there to be 𝑝 

physical hosts given by the 4-tuple, 𝐻𝑝 =

{𝐼𝐷, 𝑉𝐼𝐷, 𝑃𝐼𝐷
𝑚𝑖𝑛 , 𝑃𝐼𝐷

𝑚𝑎𝑥} where 𝐼𝐷 is the identity of the 

host, 𝑉𝐼𝐷 refers to the set of VMs that the host with 

identity 𝐼𝐷 houses, , 𝑃𝐼𝐷
𝑚𝑖𝑛 and 𝑃𝐼𝐷

𝑚𝑎𝑥  are the minimum and 

maximum values of operating power respectively for the 

host. Each VM set 𝑉𝐼𝐷 has 𝑚 VMs given by 𝑉𝐼𝐷 =

{𝑉𝐼𝐷
1 , 𝑉𝐼𝐷

2 , … , 𝑉𝐼𝐷
𝑚}. Now, each VM instance 𝑉𝐼𝐷

𝑗
 (1 ≤ 𝑗 ≤

𝑚) has different processing speed, memory capacities, 

etc. as assumed earlier which means that each VM will 

behave differently for the same task. Fig. 2 demonstrates 

this cloud model. The cloud manager handles all requests 

that are submitted by users and schedules them according 

to the scheduling strategy of ESPS. 

3.2 Task model 

Consider there to be 𝑛 tasks given by 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} 

where each task 𝑇𝑖  (1 ≤ 𝑖 ≤ 𝑛) is given by a 3-tuple 

as, 𝑇𝑖 = {𝐴𝑇𝑖 , 𝐸𝑇𝐶𝑖, 𝑇𝑈𝑖} where 𝐴𝑇𝑖 refers to the arrival 

time of task 𝑇𝑖, 𝐸𝑇𝐶𝑖 is the estimated time to compute over 

all VMs for task 𝑇𝑖  and 𝑇𝑈𝑖  is the total utilization matrix 

which shows the utilization consumed by the task 𝑇𝑖  on all 

the different VMs. Note that the values of ETC and TU for 

each task will be different on each VM due to the 

heterogeneous nature of the cloud  model. Both ETC and 

TU matrices are of the dimensions 𝑛 × 𝑚 which are 

demonstrated by Table 2. 

3.3 Energy model 

Consider there to be 𝑛 tasks and 𝑚 virtual machines, then 

the utilization of a virtual machine 𝑗 where 1 ≤ 𝑗 ≤ 𝑚 is 

given by the total sum of all the utilizations of the tasks 

running in virtual machine 𝑗. For now, we consider that all 

VMs from different hosts have been pooled in a universal 

VM set 𝑉 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑗 , … , 𝑉𝑀𝑚}. 

Mathematically, if we denote 𝑘 as the time instant, we 

have, 

𝑈𝑉𝑗
𝑘 =  ∑ 𝑇𝑈𝑖𝑗 × 𝐵𝑖,𝑗

𝑘𝑛
𝑖=1  (1) 

Where, 0 ≤ 𝑈𝑉𝑗
𝑘 ≤ 100, 1 ≤ 𝑇𝑈𝑖,𝑗 ≤ 100, and 

𝐵𝑖,𝑗
𝑘 = {

1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 → 𝑉𝑀𝑗  (𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

𝑇𝑈𝑖,𝑗 refers to the utilization taken by task 𝑇𝑖  on 

virtual machine 𝑉𝑀𝑗. As discussed before, the energy 

consumption of machine 𝑉𝑗 at a given time 𝑘 is given by 

[22], 

𝐸𝑗
𝑘(𝑈𝑉𝑗

𝑘) = (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 + 𝑝𝑚𝑖𝑛,𝑗 (3) 

This energy model is used in various other research 

works [9, 14]. The values 𝑝𝑚𝑎𝑥,𝑗 and 𝑝𝑚𝑖𝑛,𝑗 refer to the 𝑗th 

VM’s peak load and active mode power consumption 

respectively. At any instant 𝑘 the energy consumed by all 

the resources over the cloud system is given by, 

 

Figure 2: The proposed cloud model. Each host In a datacentre consists of multiple virtual machines as a result of 

virtualization. 

𝑻𝒊 (𝟏 ≤ 𝒊 ≤
𝒏) 

𝑽𝑴𝟏 𝑽𝑴𝟐 ….. 𝑽𝑴𝒎 

1 56 23 ….. 24 

2 99 35 ….. 73 

….. ….. ….. ….. ….. 

𝑛 5 45 ….. 35 

Table 2: Illustration of the ETC or TU matrix for each 

task on each VM. 
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𝐸𝑘(𝑈𝑉𝑘) =  ∑ 𝐸𝑗
𝑘(𝑈𝑉𝑗

𝑘)

𝑚

𝑗=1

=  ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

+ 𝑝𝑚𝑖𝑛,𝑗 

 (4) 

The energy of the system for the total makespan time 

period given by 𝑀 can be expressed as, 

𝐸 =  ∑ 𝐸𝑘(𝑈𝑉𝑘)

𝑀

𝑗=1

= ∑ ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

𝑀

𝑘=1

+ 𝑝𝑚𝑖𝑛,𝑗 

 (5) 

It is worthy to mention that VMs residing in the same 

host will share the same values of 𝑝𝑚𝑎𝑥  and 𝑝𝑚𝑖𝑛 . In this 

way, there are different sets of values of 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛  

which correspond to each physical host which 

parameterize each VM’s energy properties. 

4 Proposed approach 
Our goal is to minimize the function 𝐸 given by eqn. (5) 

through a mapping 𝑓: 𝑇 → 𝑉 where, we know as a 

preliminary that (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 ≫  𝑝𝑚𝑖𝑛,𝑗 

whenever the system (or physical host) is in non-idle 

condition. By non-idle condition, we assume 𝑈𝑉𝑗
𝑘 > 0.2 

(20%). Hence, to fulfil our objective to optimize 𝐸, ESPS 

employs two approaches in the algorithm – 

i) Minimizing E as 

min(𝐸) = min (∑ ∑(𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘

𝑚

𝑗=1

𝑀

𝑘=1

+ 𝑝𝑚𝑖𝑛,𝑗) 

  (6) 

This is possible by minimizing the term (𝑝𝑚𝑎𝑥,𝑗 −

𝑝𝑚𝑖𝑛,𝑗) such that the product (𝑝𝑚𝑎𝑥,𝑗 − 𝑝𝑚𝑖𝑛,𝑗) ×

𝑈𝑉𝑗
𝑘 is minimized. Our algorithm chooses the 

physical host that has the least difference of 

maximum and minimum power consumptions and 

prefers to schedule tasks more in such hosts. 

 

ii) Minimizing 𝐸 as, 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑈𝑉𝑗

𝑘(𝐸) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑈𝑉𝑗

𝑘 (∑ ∑(𝑝𝑚𝑎𝑥,𝑗

𝑚

𝑗=1

𝑀

𝑘=1

− 𝑝𝑚𝑖𝑛,𝑗) × 𝑈𝑉𝑗
𝑘 + 𝑝𝑚𝑖𝑛,𝑗) 

  (7) 

Here, the utilization of VM j at time k can be 

minimized by preferring to schedule tasks to such VMs 

where they consume lower CPU utilization. 

4.1 Scheduling technique 

ESPS follows the following scheduling strategy according 

to the proposed approach: 

i) For any incoming task 𝑇𝑖  (1 ≤ 𝑖 ≤ 𝑛) we have the 

utilization matrix TU which conveys the utilization 

consumed by 𝑇𝑖  on all the different virtual machines. We 

proceed by normalizing all entries of 𝑇𝑈𝑖𝑗  for 𝑇𝑖 over all 

virtual machines 𝑉𝑀𝑗  (1 ≤ 𝑗 ≤ 𝑚), 

 

𝑛𝑇𝑈𝑖𝑗 =  
𝑇𝑈𝑖𝑗

max(𝑇𝑈𝑖)
 

 (8) 

 

Here, max (𝑈𝑇𝑖) refers to the maximum value of the 

entire row of the TU matrix for 𝑇𝑖. Similarly, for each 

physical host we assume that the values of their 𝑝𝑚𝑎𝑥  

and 𝑝𝑚𝑖𝑛  are different. For example, let there be 2 

different hosts 𝐻1 and 𝐻2 containing 3 VMs each such 

that 𝐻1 ← {𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3} and 𝐻2 ← {𝑉𝑀4, 𝑉𝑀5, 𝑉𝑀6}. 

Then, we assume 𝑝𝑚𝑎𝑥
1 ← 𝑝, 𝑝𝑚𝑖𝑛

1 ← 𝑞, 𝑝𝑚𝑎𝑥
2 ← 𝑟 

and 𝑝𝑚𝑖𝑛
2 ← 𝑠 where 𝑝1 and 𝑝2 are the power consumed 

by hosts 𝐻1 and 𝐻2 respectively.  

ii) We create a new matrix 𝐴 which stores the 

differences of each individual VM’s values of 𝑝𝑚𝑎𝑥  

and 𝑝𝑚𝑖𝑛  as, 

 

𝐴 = 

{(𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1 ), (𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1 ), (𝑝𝑚𝑎𝑥
1 − 𝑝𝑚𝑖𝑛

1 ), (𝑝𝑚𝑎𝑥
2

− 𝑝𝑚𝑖𝑛
2 ), (𝑝𝑚𝑎𝑥

2 − 𝑝𝑚𝑖𝑛
2 ), (𝑝𝑚𝑎𝑥

2

− 𝑝𝑚𝑖𝑛
2 )} 

 (9) 

 

Or, 

 

𝐴 = {(𝑝 − 𝑞), (𝑝 − 𝑞), (𝑝 − 𝑞), (𝑟 − 𝑠), (𝑟 − 𝑠), (𝑟 − 𝑠)} 

 (10) 

 

The values of peak and active mode power 

consumption for each VM is taken by the underlying 

assumption that every VM in the same host has the same 

set of values of 𝑝𝑚𝑎𝑥  and 𝑝𝑚𝑖𝑛 . For each entry 𝐴𝑗 in 

matrix 𝐴 we normalize as follows, 

𝑛𝐴𝑗 =  
𝐴𝑗

max (𝐴)
 

 (11) 

 

iii) To make a scheduling decision, we sum the values 

in the matrices 𝑛𝑈𝑇 and 𝑛𝐴 and find the minimum 

element, the index of which is the selected VM for 

mapping, 

 

V = index(min(𝑛𝑇𝑈 + 𝑛𝐴)) 

 (12) 
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Where index(min (𝑛𝑈𝑇 + 𝑛𝐴) returns the index of 

the minimum summed pair to which the task 𝑇𝑖 is to be 

scheduled. In this manner, the objective given 

by 𝑎𝑟𝑔𝑚𝑖𝑛𝐸(𝑓: 𝑇 → 𝑉) is satisfied. Algorithm 1 contains 

the algorithm of ESPS and all the symbols used in it are 

described in Table 3. 

Remark 1 The total normalized values given 

by (𝑛𝑇𝑈 + 𝑛𝐴) ∈ [0, 2]. 

The worst time complexity of the proposed algorithm 

of ESPS is 𝑂(𝑚 + 𝑛𝑚). Having 𝑛 tasks and 𝑚 VMs or 

resources, we see the lines 3-4 require 𝑂(𝑚) in Algorithm 

I. Then, the loop defined in line 6 requires 𝑂(𝑛) which 

calls Procedure I, whose lines 1-2 in turn call Procedure 

II. The lines 2-3 in Procedure II require 𝑂(𝑚) while in 

Procedure I the lines 4-5, 9-17 require the 

same 𝑂(𝑚).Hence, the overall time complexity of ESPS 

is 𝑂(𝑚 + 𝑛𝑚). 

4.2 An illustration 

We shall describe a dry-run based on 6 tasks as shown by 

Table 4. The 3 VMs shown in Table 4 are distributed 

separately in 3 different hosts and the power rating of these 

hosts is given by Table 5. 

We can see from Table 5 that different hosts have 

different values of 𝑝𝑚𝑎𝑥  and 𝑝𝑚𝑖𝑛 , an aspect that the 

proposed algorithm ESPS exploits in order to minimize 

the difference of these two variables as seen in the 

function 𝐸. For instance, we see from Table 4 that 𝑇0 has 

a very low resource utilization at 𝑉𝑀1 but 𝑉𝑀1 resides in 

Host 1 which has a higher power difference as seen by 

Table 5. Our algorithm tries to optimize this trade-off 

between utilization and power differences of hosts to 

capture the best scheduling decision.  

Initially, 𝑇0 arrives at 1 time unit. Its utilizations on all 

resources are 25%, 48% and 57% whose host power rating 

differences are (50-20), (20-10) and (70-30) respectively. 

The heuristic normalizes these two sequences and finds 

the minimum sum value, which is 1.09 (i.e. 
48

57
+

10

40
) 

Symbol Meaning 

𝑇𝑖  𝑖𝑡ℎ task 

𝑉𝑀𝑗  𝑗𝑡ℎ virtual machine 

𝑘 𝑘𝑡ℎ time unit 

𝑈𝑉𝑗
𝑘 Utilization of 𝑗𝑡ℎ VM at time instant k 

𝑚 Total number of VMs 

GQ Global queue meant for tasks that are 

waiting 

𝑃𝑚𝑎𝑥(𝑉𝑀𝑗) Maximum power at peak load capacity 

of 𝑗𝑡ℎ VM 

𝑃𝑚𝑖𝑛(𝑉𝑀𝑗) Minimum power at active mode of 𝑗𝑡ℎ 

VM 

𝑄𝑘 Queue of all tasks arriving at time 

instant 𝑘 

𝑇𝑈𝑖𝑗 Utilization of 𝑖𝑡ℎ task on 𝑗𝑡ℎ VM 

Table 3: Symbols used in Algorithm 1. 

Input: 𝑇(1~𝑛), 𝑉𝑀(1~𝑚),

 𝑇𝑈(1~𝑛)(1~𝑚) 

Output: 

Minimized 𝐸 

1. set 𝐺𝑄 ← {} 

2. set 𝑃𝑑𝑖𝑓𝑓 ← {} 

3. for j = 1, 2, …, m do 

4.     add (𝑃𝑚𝑎𝑥(𝑉𝑀𝑗) − 𝑃𝑚𝑖𝑛(𝑉𝑀𝑗)) to 𝑃𝑑𝑖𝑓𝑓  

5. end for 

6. for each 𝑇𝑖 ∈ 𝑄𝑘 , 𝐺𝑄 do 

7.     set 𝑣 ← Call GET-OPTIMAL-VM(𝑇𝑖) 

8.     if  𝑣 ==  -1 then 

9.         add 𝑇𝑖 to 𝐺𝑄 

10.     end if 

11.     else do 

12.         assign 𝑇𝑖 → 𝑣 

13.     end else 

14. end for 

Algorithm I: Energy Saving Power Spectrum-Aware 

Task Scheduling (ESPS). 

Input: 𝑇𝑖 , 𝑃𝑑𝑖𝑓𝑓  Output: Optimal 𝑉𝑀𝑗 for 

scheduling 

1. set 𝑃𝑛𝑜𝑟𝑚 ← Call GET-NORMALIZED-

VECTOR(𝑃𝑑𝑖𝑓𝑓) 

2. set (𝑇𝑈𝑖)𝑛𝑜𝑟𝑚 ← Call GET-NORMALIZED-

VECTOR(𝑇𝑈𝑖) 

3. set 𝜎 ← {} 

4. for j = 1, 2, ..., m do 

5.     add (𝑃𝑛𝑜𝑟𝑚[𝑗] + (𝑇𝑈𝑖)𝑛𝑜𝑟𝑚[𝑗]) to 𝜎 

6. end for 

7. set 𝜎𝑚𝑖𝑛 ← 𝑖𝑛𝑑𝑒𝑥(min(𝜎)) + 1 

8. set flag ← 0 

9. while True do 

10.     if 𝜎𝑚𝑖𝑛 == 𝑖𝑛𝑑𝑒𝑥(max(𝜎)) + 1 then 

11.         set flag ← 1 

12.         break 

13.     end if 

14.     if 𝑈𝑉𝜎𝑚𝑖𝑛
𝑘 + 𝑇𝑈𝑖,𝜎𝑚𝑖𝑛

≤ 100 then 

15.         break 

16.     end if 

17.     set 𝜎𝑚𝑖𝑛 ← next 𝑖𝑛𝑑𝑒𝑥(min(𝜎)) + 1 

18. end while 

19. if flag == 1 then 

20.     return -1 

21. end if 

22. return 𝑉𝑀𝜎𝑚𝑖𝑛
 

Procedure I: GET-OPTIMAL-VM(𝑇𝑖) 

Input: 𝐴 Output: 𝐴𝑛𝑜𝑟𝑚 

1. set 𝐴𝑛𝑜𝑟𝑚 ← {} 

2. for j = 1, 2, …, m do 

3.     add (𝐴[𝑗]/max (𝐴)) to 𝐴𝑛𝑜𝑟𝑚 

4.  return 𝐴𝑛𝑜𝑟𝑚 

Procedure II: GET-NORMALIZED-VECTOR(A) 
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on 𝑉𝑀2. Similarly, when 𝑇1 arrives in the system, the 

minimum sum of normalized values is 1.25 (i.e. 
48

48
+

10

40
) 

again, on 𝑉𝑀2. We can already see how the heuristic 

prefers to schedule tasks with relatively lower utilization 

level to 𝑉𝑀2 as it resides in the host having the least power 

difference. The rest of the scheduling of ESPS is shown 

by Fig. 3 (a), where each VM’s utilization level per time 

is shown along with the tasks assigned to that VM in the 

particular time instant. The tasks end when they appear 

towards the left of the time units hence reducing the 

assigned VM’s utilization level at that time instant. The 

tilde (~) mark indicates range of values, and GQ indicates 

the tasks that are placed in global queue at that particular 

time instant (row). Similarly, the same set of tasks are 

simulated using Random, MaxUtil, ECTC and FCFS 

shown by Fig. 3 (b), Fig. 4 (b), (c) and (a) respectively. 

We present the energy consumption on the list of 6 task 

taken for each algorithm in Table 6.  

It is clear from Table 6 that our proposed heuristic 

ESPS performs better on the given list of tasks. More 

specifically, it saves 34.78%, 45.86%, 49.97%, and 

64.95% more energy as compared to algorithms FCFS, 

MaxUtil, ECTC and Random respectively. Clearly, we 

can see the efficacy of ESPS when there are different hosts 

with varying power rating differences. 

5 Performance evaluation 
This section encapsulates all the results done through 

simulations of ESPS and other algorithms (ECTC, FCFS, 

MaxUtil, and Random) on several benchmark and 

synthetic datasets to show the efficacy of ESPS in terms 

of energy consumption. 

5.1 Description of datasets and simulations 

We have used two benchmark datasets, considering 

different configurations of datasets generated by Ali et al. 

(2000) [24] and Braun et al. (2001) [23]. The advantage 

of using these two benchmark datasets is that they offer a 

wide variety of tasks in terms of task heterogeneity and 

also offer estimated time to compute values by varying 

machine heterogeneity. These values are obtained from 

real world applications and are a good choice to use for 

testing the performance of a task scheduling heuristic in a 

heterogeneous cloud system. The datasets are 

characterized by their names given by the general 

form: 𝑢_𝑎_𝑏𝑏𝑐𝑐, 𝐴. 𝑢_𝑎_𝑏𝑏𝑐𝑐, 𝐵. 𝑢_𝑎_𝑏𝑏𝑐𝑐 where 𝑢 

stands for uniform distribution, 𝑎 takes the values 𝑐, 𝑖 
and 𝑠 which refer to consistent, inconsistent and semi-

consistent ETC matrices respectively, 𝑏𝑏 indicates task 

heterogeneity which takes values ℎ𝑖 and 𝑙𝑜 which refer to 

high or low task heterogeneity respectively, and finally 𝑐𝑐 

indicates machine heterogeneity which also takes 

values ℎ𝑖 and 𝑙𝑜 referring to high or low machine 

heterogeneity respectively. 𝐴 and 𝐵 refer to dataset of Ali  

al. (1024×32; 1024 tasks and 32 machines) and dataset of 

Braun et al. (1024×32; 1024 tasks and 32 machines). The 

benchmark datasets of the form 𝑢_𝑎_𝑏𝑏𝑐𝑐 is also one of 

Braun et al.’s generated datasets but has 512 tasks to be 

scheduled to 16 machines (512×16). In total, the number 

of benchmark datasets that we perform simulations on is 

36, each having different ETC instances. To pre-process 

the data, we divide the values by a) 100 for datasets of the 

form 𝑢_𝑎_𝑏𝑏𝑐𝑐 and 𝐵. 𝑢_𝑎_𝑏𝑏𝑐𝑐, and b) 1000 for datasets 

of form 𝐴. 𝑢_𝑎_𝑏𝑏𝑐𝑐. Finally we round the values to the 

nearest integer value for simplicity. Each dataset is 

coupled with its own total utilization matrix TU which is 

generated for 𝑛 × 𝑚 numbers (where 𝑛 refers to number 

of tasks and 𝑚 refers to number of machines) using a 

random function which fall in the range [1, 100], both 

limits inclusive. For each benchmark dataset we use a) 4 

hosts housing 4 VMs each for the 512×16 Braun et al. 

dataset, and b) 4 hosts housing 8 VMs each for the 

1024×32 Braun et al. and Ali et al. datasets. The power 

rating specifications of these hosts is given by Table 13. 

In the case of synthetic datasets, we take 5 instances 

comprising 100, 500, 1000, 5000 and 10000 tasks mapped 

on to 10, 20, 30, 40 and 50 resources, respectively. The 

ETC and TU matrices generated for each dataset are done 

randomly by restricting the values (inclusive) in the range 

[1, 40]. Table 7 describes the details of the cloud model 

used for the synthetic dataset simulations. Table 8 

Host 𝒑𝒎𝒊𝒏 𝒑𝒎𝒂𝒙 

Host 1 (VM 1) 20 50 

Host 2 (VM 2) 10 20 

Host 3 (VM 3) 30 70 

Table 5: Power spectra of different physical hosts used in 

the illustration based on active mode and peak load power. 

  ETC TU 

Tasks AT VM 1 VM 2 VM 3 VM 1 VM 2 VM 3 

0 1 10 4 14 25 48 57 

1 3 10 6 12 44 48 17 

2 5 11 9 12 76 40 19 

3 6 8 10 7 36 57 71 

4 8 8 13 10 43 56 99 

5 9 6 7 6 38 92 45 

Table 4: Task table containing 6 tasks with their respective arrival time and ETC and TU matrices. 

Algorithm FCFS MaxUtil ECTC Random ESPS 

Energy 59560 71740 77640 110840 38840 

Table 6: Energy consumption (watts time) of all algorithms based on the task list given by Table 4. 

 



70 Informatica 45 (2021) 63–75 M. K. Gourisaria et al.  

specifies the power ratings of the different hosts used for 

the synthetic dataset. All the experiments were performed 

using Python 3.5 on an Intel ® Core ™ i5-6200U CPU @ 

2.30 GHz and 8 GB RAM on Windows 10 Pro 64-bit, x64 

based processor. 

5.2 Simulation results 

We compare our proposed algorithm ESPS with other 

existing algorithms namely FCFS, MaxUtil, ECTC and 

random. The simulations were done on 36 instances of 

benchmark datasets and 5 instances of synthetic self- 

created datasets. We notice that ESPS performs better in 

terms of energy consumption in all instances of the 

datasets, benchmark or synthetic. The main reason for this 

is that ESPS combines two objectives, namely least 

utilization and least power difference to optimize the 

energy function 𝐸 given by eqn. (5). For the benchmark 

datasets, we denote the percentage increase in power 

consumption of heuristics FCFS, MaxUtil, ECTC and 

 

Figure 3: (a) Scheduling of the list of 6 tasks on ESPS, and (b) scheduling on random algorithm. 

 

Figure 4: (a) Scheduling of the 6 tasks on by FCFS, (b) scheduling using MaxUtil, and (c) scheduling on ECTC. 

Synthetic Dataset # Tasks # VMs # Hosts #VMs in each host 

1 100 10 2 5 

2 500 20 4 5 

3 1000 30 5 6 

4 5000 40 5 8 

5 10000 50 5 10 

Table 7: Cloud model specifications used for synthetic dataset simulations. 



ESPS: Energy Saving Power Spectrum-Aware... Informatica 45 (2021) 63–75 71 

random in Table 14. These calculations were made by 

taking the average energy consumed of all the heuristics 

over the three benchmark datasets individually and 

comparing the percentage increase in energy consumption 

with our proposed heuristic.  

The data for these percentages can be found in Table 9, 

Table 10 and Table 11. The same comparison has not been 

done for the synthetic datasets as it is evident from the 

values that ESPS outperforms other heuristics in terms of 

energy consumed. We have discussed further on synthetic 

dataset performance in Section 6. The results of 

simulations of all the algorithms for 512×16 (Braun et 

al.), 1024×32 (Braun et al.), and 1024×32 (Ali et al.) are 

shown in table form by Table 9, Table 10, Table 11, and 

Table 14 and graphically by Fig. 5, Fig. 6, and Fig. 7 

respectively. The results of the synthetic dataset 

simulations are given by Table 12 and Fig. 8. Based on our 

simulations, we notice that FCFS, MaxUtil, Random and 

ECTC respectively consume approximately about 

38.65%, 33.59%, 53.02%, and 46.96% more energy over 

all benchmark datasets when compared to our proposed  

approach. This behavior is seen throughout the variety of 

datasets that we use, i.e. also in case of synthetic dataset 

and dry run. 

Dataset Host 1 Host 2 Host 3 Host 4 Host 5 

 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 

100×10 20 50 30 40 - - - - - - 

500×20 20 50 30 60 40 50 30 40 - - 

1000×30 20 50 30 60 40 50 30 40 20 40 

5000×40 20 50 30 60 40 50 30 40 20 40 

10000×50 20 50 30 60 40 50 30 40 20 40 

Table 8: Host power rating (watts) taken for synthetic dataset simulations. 

Instances FCFS MaxUtil Random ECTC ESPS 

u_c_hihi 8.88E+08 8.82E+08 9.00E+08 9.67E+08 7.62E+08 

u_c_hilo 1.74E+07 1.91E+07 3.99E+07 2.05E+07 7.84E+06 

u_c_lohi 3.97E+07 4.79E+07 6.69E+07 6.65E+07 2.53E+07 

u_c_lolo 1.37E+06 1.04E+06 2.75E+06 1.37E+06 8.27E+05 

u_i_hihi 1.25E+09 1.17E+09 1.11E+09 1.26E+09 1.02E+09 

u_i_hilo 2.96E+07 2.58E+07 4.49E+07 3.68E+07 8.95E+06 

u_i_lohi 6.63E+07 6.06E+07 7.16E+07 7.68E+07 2.81E+07 

u_i_lolo 2.26E+06 2.68E+06 2.63E+06 2.23E+06 8.41E+05 

u_s_hihi 1.06E+09 1.03E+09 1.08E+09 1.06E+09 8.35E+08 

u_s_hilo 2.19E+07 2.36E+07 4.23E+07 3.01E+07 8.64E+06 

u_s_lohi 4.96E+07 4.48E+07 7.05E+07 6.70E+07 2.51E+07 

u_s_lolo 1.55E+06 1.93E+06 2.75E+06 1.60E+06 8.39E+05 

Table 9: Simulation results of all algorithms on the 512×16 

Braun et al. dataset. 

Instances FCFS MaxUtil Random ECTC ESPS 

u_c_hihi 1.31E+09 1.41E+09 1.40E+09 1.47E+09 1.03E+09 

u_c_hilo 2.06E+07 1.68E+07 8.76E+07 1.52E+07 1.06E+07 

u_c_lohi 3.30E+07 4.81E+07 1.87E+08 5.76E+07 2.66E+07 

u_c_lolo 3.66E+06 3.27E+06 6.20E+06 3.66E+06 2.54E+06 

u_i_hihi 1.93E+09 1.72E+09 1.80E+09 1.90E+09 1.34E+09 

u_i_hilo 5.55E+07 4.78E+07 1.01E+08 7.21E+07 1.15E+07 

u_i_lohi 1.25E+08 1.07E+08 2.12E+08 1.91E+08 3.23E+07 

u_i_lolo 5.52E+06 5.50E+06 6.07E+06 5.48E+06 2.55E+06 

u_s_hihi 1.84E+09 1.86E+09 1.72E+09 1.77E+09 1.28E+09 

u_s_hilo 3.80E+07 3.93E+07 9.27E+07 5.03E+07 1.16E+07 

u_s_lohi 1.01E+08 9.96E+07 2.05E+08 1.56E+08 3.28E+07 

u_s_lolo 4.62E+06 3.90E+06 5.80E+06 4.61E+06 2.55E+06 

Table 10: Simulation results of all algorithms on the 1024×32 

Braun et al. dataset. 

Instances FCFS MaxUtil Random ECTC ESPS 

u_c_hihi 4.55E+08 4.52E+08 5.04E+08 4.80E+08 3.55E+08 

u_c_hilo 3.33E+07 4.79E+07 1.86E+08 5.03E+07 2.66E+07 

u_c_lohi 5.65E+06 5.06E+06 4.95E+06 4.65E+06 2.36E+06 

u_c_lolo 3.65E+06 3.26E+06 3.65E+06 3.65E+06 2.36E+06 

u_i_hihi 6.29E+08 5.98E+08 6.70E+08 6.79E+08 4.64E+08 

u_i_hilo 1.32E+08 1.12E+08 2.10E+08 1.77E+08 3.44E+07 

u_i_lohi 4.25E+06 4.96E+06 5.05E+06 4.75E+06 2.36E+06 

u_i_lolo 3.85E+06 3.46E+06 3.85E+06 3.75E+06 2.56E+06 

u_s_hihi 6.32E+08 5.69E+08 6.73E+08 6.23E+08 4.52E+08 

u_s_hilo 1.00E+08 9.43E+07 2.06E+08 1.51E+08 3.41E+07 

u_s_lohi 4.95E+06 4.06E+06 5.65E+06 4.55E+06 2.36E+06 

u_s_lolo 3.65E+06 3.26E+06 3.65E+06 3.65E+06 2.36E+06 

Table 11: Simulation results of all algorithms on the 1024×32 

Ali et al. dataset. 

Algorithm 100×10 500×20 1000×30 5000×40 10000×50 

FCFS 9.44E+05 6.80E+06 1.48E+07 7.58E+07 1.62E+08 

MaxUtil 7.18E+05 6.63E+06 1.36E+07 7.60E+07 1.61E+08 

Random 9.35E+05 5.56E+06 1.12E+07 6.29E+07 1.34E+08 

ECTC 1.01E+06 7.88E+06 1.66E+07 9.02E+07 1.89E+08 

ESPS 2.37E+05 1.62E+06 4.03E+06 2.32E+07 5.47E+07 

Table 12: Simulation results of all algorithms on the synthetic 

datasets. 

Host 𝑷𝒎𝒊𝒏 𝑷𝒎𝒂𝒙 

Host 1 20 50 

Host 2 10 20 

Host 3 30 70 

Host 4 10 40 

Table 13: Host power rating specifications in watts used 

for the simulation of all algorithms on benchmark datasets. 

Benchmark 
FCFS 

(%) 

MaxUtil 

(%) 

Random 

(%) 

ECTC 

(%) 

Braun et al. 

[23] 512×16 
25.99 21.50 25.99 32.15 

Braun et al. 

[23] 

1032×32 

44.76 41.90 53.96 50.47 

Ali et al [24] 

1032×32 
45.21 37.39 79.13 58.26 

Avg. 

increase 
38.65 33.59 53.02 46.96 

Table 14: Increase in power usage of other heuristics in 

comparison to proposed heuristic ESPS. 
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6 Discussion  
The main novelty of our proposed work is that it takes into 

account the power difference of different physical host in 

peak and active mode. Real life datacenters consist of 

different physical host which may have different power 

rating (as seen in Fig. 1).  It is also clearly understood from 

Table 1 that in real life scenario, the physical host may 

have different power rating in peak and idle mode. Other 

implementations focuses mainly on energy where as our 

proposed work focuses on two important objectives 

namely least power difference and least utilization. First it 

minimizes energy by choosing an optimal physical host 

which has least difference of maximum and minimum 

power consumption in peak and active mode, respectively. 

Secondly, it minimizes energy through minimization of 

utilization by preferring to schedule tasks to such VMs 

where they consume lower CPU utilization. It is 

economical in nature when compared with other existing 

algorithm.   Even in case of synthetic dataset, our proposed 

algorithm saves around 72.41%, 67.69%, 67.38% and 

60.84% more energy when compared with ECTC, FCFS, 

MaxUtil and Random, respectively. We have also 

compared our approach with other related work in Table 

15.  Most of the related work uses either synthetic data set 

or benchmark dataset, however, we have used one 

synthetic dataset and two benchmark datasets. 

Additionally, we have dry run our algorithm on some 

sample values. Our proposed work outperform in all cases 

of the datasets.  

7 Conclusion and future directions 
We propose a new heuristic namely Energy Saving Power 

Spectrum-Aware Task Scheduling (ESPS) that keeps 

track of the least power difference in the operating power 

characteristics of different hosts in a cloud datacenter. 

ESPS has a time complexity of 𝑂(𝑚 + 𝑛𝑚) if we have 𝑛 

tasks to be mapped to 𝑚 virtual machines. Along with this, 

it schedules task with a relatively lower utilization level 

onto those VMs that are hosted by machines having a 

lower power rating difference in a manner to balance 

between the utilization level and the power difference. 

Note that energy consumption of the FCFS, MaxUtil, 

Random, and ECTC algorithm are about 38.65%, 33.59%, 

53.02% and 46.96% more than our proposed algorithm 

respectively. ESPS normalizes the values of the arrived 

task’s utilizations on different VMs in the system and the 

power differences of the peak load capacity and active 

mode powers. Post normalization it picks the least sum of 

the two to make a scheduling decision. It is worthy to 

mention that the power differences taken in the simulation 

of benchmark and synthetic dataset were chosen by us and 

they may vary in the case of real life applications. This 

implies that our algorithm has the potential to outperform 

any other heuristic for task scheduling solely based on the 

power differences of the different hosts present at a data 

center.  

As we just mentioned that the performance of our 

algorithm relies heavily on the power differences of 

different hosts, future work may extend the idea of 

exploiting this aspect and apply this technique to some 

 

Figure 5: Energy consumption of each algorithm on 

the 512×16 Braun et al. dataset. 

 

 

Figure 6: Energy consumption of all algorithms on the 

1024×32 Braun et al. dataset. 

 

 
Figure 7: Energy consumption of all algorithms on the 

1024×32 Ali et al. dataset. 

 
Figure 8: Energy consumption of all algorithms on the 

synthetic datasets. 
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Ref. Technique Advantage / Result Disadvantage/ Future work 

[35] 

Consider the different power rating for different host, 

power model and performance model are combined in 

the proposed work. 

Saves energy in the range of 21% to 

22% without violating the resource 

requirements of the cloud task. 

The power model is not adaptive 

to a wide range of infrastructure. 

Server components are not taken 

into account. 

[11] 

Fixed threshold of 70% utilization of VM is proposed 

and the task above threshold level is migrated to other 

VM. 

Significant saving in power 

consumption. 17% better than 

ECTC and MaxUtil. 

Increase in overall cost due to 

migration of task between 

clusters. 

[9] 

Proposed two different heuristic ECTC and MaxUtil. 

First approach considers the actual energy 

consumption of ongoing task and in the second 

approach, average utilization is considered. 

Both active and idle energy 

utilization is considered. Both the 

proposed algorithm outperform 

Random scheduling regardless of 

adoption of migration by 18% and 

13%. 

Energy consumption increases 

with utilization. The decision to 

schedule a new task is based upon 

the current state of task bindings. 

[12] 

Introduced a new approach called PowerNap where 

the system transitions between active and idle state. 

Also introduced Redundant Array for Inexpensive 

Load Sharing (RAILS). 

Reduced average server power 

consumption by 74%. 

It suffers from poor performance 

of maintenance tasks such as 

buffer flushing, memory zeroing, 

etc. 

[13] 

Assigned task to those VMs where the increase in 

energy consumption is the least. This approach 

considers both active and idle virtual machines. 

Performs better than ECTC in terms 

of energy consumption by 14.06%. 

The algorithm does not consider 

the execution of the individual 

tasks when they are not 

overlapping. 

[15] 

In this approach priority of job scheduling is 

considered. Weight and SLA level is also taken into 

account along with the DVFS approach to control the 

voltage supply. 

Found to be efficient in reducing 

the energy consumption up to 5%-

25% without sacrificing the system 

performance. Proves 23% better 

than ECS in terms of energy. 

No limitations or drawback of the 

proposed work is listed in the 

paper.  

[19] 

The proposed work makes use of cooperative 

reinforcement learning in WSN-based network. They  

use a reward-based system where the model tries to 

maximize the reward achieved by trading the 

performance of the application along with the required 

energy consumption 

Proves better than non-cooperative 

reinforcement learning approach. 

Server energy limitations pose a 

particular challenge. Not 

compared with other variant of 

reinforcement learning methods. 

Non-consideration of a real world 

motion model for the targets and 

data association as a task. 

[20] 

Energy of both network devices and server is reduced 

by proposing a hierarchical scheduling algorithm but, 

in their algorithm the nodes with lower temperature 

are selected by the application for scheduling.  

Minimizes the energy consumption 

of both server and network devices. 

Amount of data transfer also 

reduced. 

Limited energy aware factor is 

considered. 

[14] 

The approach tries to minimize both makespan and 

energy consumption. Makes use of both ETC matrix 

and Task Utilization matrix. 

Saves considerable amount of 

energy and makespan as compared 

to ECTC, ETC and MaxUtil etc. 

Energy and execution cost are not 

considered in this paper. 

[26] 

Proposed an algorithm which moves the workload to 

the lowest energy consumption server and CO2 

emission server. 

Save up to 10% to 31% in terms of 

energy and 10% to 87% in terms of 

carbon emission. 

VM migration involves heavy cost 

in terms of energy migration. 

  

[25] 
Proposed EDA-NMS which takes care of task 

deadlines without inducing VM migration overhead 

Good in terms of energy saving 

when compared with other 

algorithm. No compromise in 

deadlines is done. 

The proposed work did not 

experiment on real-word trace 

data. 

[27] 

The algorithm is based on DENS approach which 

balances the energy consumption in data centers by 

scheduling job based on their thermal profile and 

communication potential. 

Able to optimize the tradeoff 

between job scheduling the 

distribution of traffic pattern. 

Did not test the DENS approach 

in realistic setup using testbuds. 

[Our] 

Our proposed work is mainly based on the power 

difference of different physical host. It schedules task 

to those VMs which have the lower power rating 

difference. ESPS considers the least sum of 

normalized values of the incoming task utilization on 

different VM and the power difference of peak load 

capacity and active mode of different hosts. 

Our proposed work outperforms in 

dry run, two benchmark datasets 

and one synthetic dataset and saves 

hefty amount of energy in the range 

of 35% to 72% as compared with 

other heuristics. The main novelty 

of our algorithm is that it is also 

considers the power difference of 

different physical host. 

Our proposed work only focuses 

on power, energy and utilization. 

Other parameters like SLA and 

makespan has not been considered 

which may be considered as 

future work. 

Table 15:  Literature review analysis. 
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meta-heuristic task allocation strategies [32] that not only 

focus on energy but also other parameters such as 

makespan, conform to SLA constraints, etc. 
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