
https://doi.org/10.31449/inf.v45i1.3464 Informatica 45 (2021) 171–172 171

Extraction and Evaluation of Software Components from Object-Oriented
Artifacts

Amit Rathee and Jitender Kumar Chhabra
Computer Engg. Dept., National Institute of Technology, Kurukshetra-136119, Haryana, India
E-mail: amit1983_rathee@rediffmail.com, jitenderchhabra@gmail.com

Thesis summary

Keywords: CBSD, reusability, component extraction, software artifacts, component, JavaBeans, frequent usage patterns

Received: March 7, 2021

A doctoral thesis is summarized in this paper that focuses on strengthening the Component-Based Software
Development (CBSD) approach by proposing an efficient approach for extracting and evaluating reusable
software components from an Object Oriented (OO) software by utilizing its various artifacts. The carried
out research work mainly consists of two main steps: (1) extracting a possible set of components by utiliz-
ing optimal software artifacts and clustering techniques; (2) identifying reusable components by evaluating
the quality of different components using the proposed reusability metric suite. The carried out research
work significantly helps in identifying and extracting the reusable components for the CBSD environment
and the proposed metric suite helps in evaluating the quality of all components.

Povzetek: Predstavljen je povzetek doktorata na temo obdelovanja programskih komponent pri objektnem
programiranju.

1 Introduction
With a fast-paced changing world, software functionalities
demand continuous modification. Software reuse princi-
ples significantly help in faster development within allotted
budget and CBSD is commonly used for it. The key com-
posing unit (aka reusable unit) in the CBSD environment
is called a component and it hides the complexity of its
implementation behind its provides and requires interface.
Such components possess larger granularity as compared
to classes/ objects in object-oriented languages. Hence
reusable components should be identified from existing OO
legacy software systems and stored in a component library
in order to use them for future development. This motivates
the researchers to identify the affecting factors and develop
some efficient techniques for extracting high quality com-
ponents and quantifying their overall quality.

2 Methodology
The thesis deals with extracting and evaluating reusable
components by utilizing soft computing techniques, effi-
cient selection of software artifacts, and bio-inspired algo-
rithms. It consists of five main steps as depicted in Figure-
1.

1. The first step aims at analyzing dependency rela-
tions among different software elements (classes and/
or interfaces) based on optimal dependency informa-
tion extracted by utilizing different software artifacts

Software Source

Artifacts

1 2

Component Pool

Dependency Graph

3

Logical Components

4

Physical Components

Transformation

5

Component Library

Provides

Interface

Requires

Interface

Figure 1: Proposed Research Methodology.

[1, 7, 8]. Based on the study, it was determined that
combined use of structural, conceptual, and change-
history based (called evolutionary) relations helps in
estimating optimal dependency relations with 60% or
more weight factor value assigned to evolutionary re-
lations [2, 9]. Further, the authors determined that fre-
quent usage patterns help in measuring more accurate
structural dependency relations [3].

2. In the second step, different software elements and
their dependencies are modeled as a graph and are
clustered by grouping one or more strongly-connected
elements into a single cluster such that each cluster is
minimally connected with rest of the clusters. Differ-
ent clustering algorithms are studied and best cluster-
ing algorithm is further used [5].

3. In the third step, different obtained clusters are ana-

172 Informatica 45 (2021) 171–172 A. Rathee et al.

lyzed to identify interfaces (provides and requires) of
the component [4], called as the logical component.

4. The logical components are transformed into the cor-
responding reusable physical component by following
recommendations of a Java Beans component model
[6].

5. The authors further propose a set of reusability metric
suite for measuring the reusability of a component and
use it in the fifth step to identify high quality compo-
nents for the CBSD environment based on cohesion,
coupling, customizability, self-completeness, and in-
terface complexity parameters.

3 Results
Dependency relations of software elements as well as clus-
tering algorithms are analysed using precision, recall, F-
measure and modularization metric (TurboMQ). Reusable
software components are empirically identified and evalu-
ated using some well-known IR metrics and TurboMQ met-
ric. The results for the proposed metric suite are collected
and evaluated over three different categories of software,
specifically designed to have different levels of reusabil-
ity. Moreover, human expertise is also considered for cross
verifying the obtained reusability scores.

4 Conclusion
The thesis proposes an efficient novel approach for ex-
tracting reusable software components from existing legacy
softwares. The thesis proposes a new efficient frequent us-
age pattern structural dependency measure approach and
uses it in combination with other conceptual and evolu-
tionary dependency relations for optimal measurement of
the dependency especially useful from component point-
of-view. It also proposes a novel metric suite for measur-
ing the reusability of a software component designed as per
the specifications of Java Beans. The carried out research
work is able to effectively quantify various dependencies
and overall quality of software components and can be used
by IT companies to develop reusable component reposito-
ries.

References
[1] Imad Eddine Araar and Hassina Seridi. Software fea-

tures extraction from object-oriented source code us-
ing an overlapping clustering approach. Informatica,
40(2), 2016.

[2] Amit Rathee and Jitender Kumar Chhabra. Clustering
for software remodularization by using structural, con-
ceptual and evolutionary features. Journal of Univer-
sal Computer Science, 24(12):1731–1757, 2018a. doi:
10.1007/978-981-10-5780-9_9.

[3] Amit Rathee and Jitender Kumar Chhabra. Improv-
ing cohesion of a software system by performing usage
pattern based clustering. Procedia Computer Science,
125:740–746, 2018b. doi: https://doi.org/10.1016/j.
procs.2017.12.095.

[4] Amit Rathee and Jitender Kumar Chhabra. Reusabil-
ity in multimedia softwares using structural and lexi-
cal dependencies. Multimedia Tools and Applications,
78(14):20065–20086, 2019a. doi: https://doi.org/10.
1007/s11042-019-7382-1.

[5] Amit Rathee and Jitender Kumar Chhabra. A multi-
objective search based approach to identify reusable
software components. Journal of Computer Lan-
guages, 52:26–43, 2019b. doi: https://doi.org/10.1016/
j.cola.2019.01.006.

[6] Amit Rathee and Jitender Kumar Chhabra. Mining
reusable software components from object-oriented
source code using discrete pso and modeling them
as java beans. Information Systems Frontiers, 22
(6):1519–1537, 2020. doi: https://doi.org/10.1007/
s10796-019-09948-4.

[7] Cherait, Hanene, and Nora Bounour. "History-based
approach for detecting modularity defects in aspect ori-
ented software." Informatica 39.2 (2015).

[8] Amit Rathee, and Jitender Kumar Chhabra. "Software
remodularization by estimating structural and concep-
tual relations among classes and using hierarchical
clustering." International Conference on Advanced In-
formatics for Computing Research. Springer, Singa-
pore, 2017. doi: 10.1007/978-981-10-5780-9_9

[9] Amit Rathee and Jitender Kumar Chhabra. "Sensitiv-
ity Analysis of Evolutionary Algorithm for Software
Reusability." MENDEL. Vol. 25. No. 1. 2019. doi:
https://doi.org/10.13164/mendel.2019.1.031

