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Clustering is one of the challenging machine learning techniques due to its unsupervised learning nature. 

While many clustering algorithms constrain objects to single clusters, K-means overlapping partitioning 

clustering methods assign objects to multiple clusters by relaxing the constraints and allowing objects to 

belong to more than one cluster to better fit hidden structures in the data. However, when datasets contain 

outliers, they can significantly influence the mean distance of the data objects to their respective clusters, 

which is a drawback. Therefore, most researchers address this problem by simply removing the outliers. 

This can be problematic especially in applications such as fraud detection or cybersecurity attacks risk 

analysis. In this study, an alternative solution to this problem is proposed that captures outliers and stores 

them on-the-fly within a new cluster, instead of discarding. The new algorithm is named Outlier-based 

Multi-Cluster Overlapping K-Means Extension (OMCOKE). Empirical results on real-life multi-label 

datasets were derived to compare OMCOKE’s performance with other common overlapping clustering 

techniques. The results show that OMCOKE produced a better precision rate compared to the considered 

clustering algorithms. This method can benefit various stakeholders as these outliers could have real-life 

applications in cybersecurity, fraud detection, and the anti-phishing of websites. 

Povzetek: V tej študiji je predlagana alternativna rešitev (OMCOKE), ki zajame izstope in jih sproti shrani 

v novo gručo, namesto da bi jih odstranila. 

 

1 Introduction 
Clustering is an unsupervised learning process that 

involves grouping a set of data objects into subsets, each 

of which has its own label based on a predefined similarity 

metric [2] [5]. Prior to learning, each resulting subset will 

contain data objects usually exhibiting similar traits but 

dissimilar from data objects in the other subsets [25]. In 

clustering, some structural characteristics are not known a 

priori unless some sort of domain knowledge is presented 

in advance (i.e. there are no labels attached to the data 

patterns as in the case of supervised classification), thus 

deeming clustering a difficult problem due to this 

unsupervised nature [23] [32]. Various clustering 

techniques such as probabilistic, distance-based, and grid-

based have been explored in machine learning with the 

distance-based proving to be popular [1] [24].  

Undoubtedly, the K-means [30], and its generic 

extensions and adaptations, is one of the most widely used 

distance-based partition-clustering algorithms [23] [26] 

[28]. There are many reasons attributed to this, such as it 

is easy to implement, its versatility allows any part to be 

easily modified, and its guaranteed nature to converge at a 

quadratic rate [16]. Thus, the K-means algorithm has been 

primarily utilized to deal with non-overlapping clustering 

problems that limit each data object to a single cluster. 

However, one of the main challenges of K-means and its 

successors is sensitivity to exceptional data (outliers). K-

means often derives clusters by optimizing the mean Sum 

of Squared Error (SSE) (Equation 1) by calculating the 

Euclidean distance between the data objects and the 

clusters ‘computed centroids.  

𝑆𝑆𝐸 = ∑ ∑ ||𝑥𝑖 − 𝑐𝑘||
2

𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1

  

                                           (1) 

Where Ck is the kth cluster, xi is a point in Ck, and ck is 

the mean of the kth cluster. 

In cases when the input dataset contains few outliers, 

this may significantly influence the mean distance (the 

outlier will skew the mean and variance) of the data 

objects to their respective clusters, and thus K-means 

tends to discard outliers [6] [15] [34]. Existing algorithms 

that extend the K-means and allow objects to overlap 

include Kernel Overlapping K-means (KOKM) [9][11], 

Overlapping K-means (OKM) [17-18], Parametrized R-

OKM [9] and Multi-Cluster Overlapping K-Means 

Extension (MCOKE) [3][4]. Detecting these outliers is 

advantageous for decision makers as these outliers could 

be used for fraudulent activities such as in the case of 

cybersecurity or a fraud insurance claim. Therefore, it will 
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be more useful to store these outliers (as opposed to 

discarding them) in a separate cluster for potential usage 

as they represent exceptional patterns. 

This research addresses the above issue by detecting 

outliers during the clustering process and then storing 

them, making it different from the other overlapping 

clustering algorithms. Since the user identifies the number 

of k clusters a priori when running clustering algorithms, 

our algorithm is able to adjust to this and accommodate 

the outliers by adding a new cluster during the learning 

process called an Outlier cluster (k+1). The proposed 

algorithm is called Outlier-based Multi-Cluster 

Overlapping K-Means Extension (OMCOKE); uses the 

outlier cluster for later analysis by decision makers.  

The current study approach adds immense value to the 

learning process as we save these data objects to 

investigate and understand their characteristics. These 

data objects could potentially be a result of an imbalanced 

data set with high cardinality (i.e. natural overlaps) and 

perhaps the k number of clusters, which is defined a priori, 

can be revised to accommodate the data and allow the 

algorithm to better fit the clusters. 

Outliers could also indicate suspicious data objects 

with malicious intent. Therefore, an outlier cluster that can 

be investigated has profound real-life implications such as 

in e-banking, website phishing, cyber security, or medical 

screening. For example, in cyber security, historical data 

can reveal statistical acceptable trends through the data 

patterns and how they are clustered together. Any outlier 

objects outside the regular clustered trends will 

automatically raise red flags. Such red flags can be used in 

data analytics to alert the user of a potential security threat 

or an intrusion attempt. 

Experimental results using real datasets indicate that 

OMCOKE is able to detect outliers and to produce clusters 

with higher precision and accuracy when compared to 

existing algorithms such as OKM, KOKM, and R-OKM 

among others. 

The rest of the paper is structured as follows: Section 

2 reviews the literature concerning overlapping clustering. 

Section 3 discusses OMCOKE and datasets used in the 

empirical experiments. Section 4 provides the results and 

analysis with a comparison of different ML clustering 

techniques. Lastly, we provide conclusions and further 

research in Section 5.  

2 Literature review 
Outliers are data objects or points that do not conform 

to the normal behaviour or model of the dataset, hence are 

deemed inconsistent or grossly different [12]. This data 

can be erroneous, but could also be classified as suspicious 

data in fraudulent activity; that could be useful for fraud 

detection, intrusion detection marketing, website phishing 

sites, etc.  

Outlier detection is considered a task in itself; 

research in the data mining domain has focused on an 

efficient and optimal way to detect distance-based 

outliers. Outlier detection surveys such as by Chandola, et 

al. [15], Bay and Schwabacher [7], and Kadam and Pund 

[27] discussed several approaches used to tackle 

anomalies and noise data. In [8] and [31] the authors 

provide methods that would efficiently mine outliers in 

large datasets. Other recent studies have devised methods 

in clustering analysis that will prune or screen out outliers 

from the dataset such as Liu, et al. [29], Barai and Dey[6], 

Gan and Nk [21] , Danganan et al. [19] and Chagas et 

al.[14] . For example, Yu, et al. [35] proposed an outlier 

detection method to identify and eliminate outliers in the 

dataset forming an outlier-eliminated dataset (OED). The 

authors then applied the K-means algorithm on the OED, 

thereby improving the accuracy of the clustering.  

Similarly, the Barai & Dey [6] approach is to divide 

their algorithm into two steps. The first step calculates the 

threshold value used in detecting outliers by taking the 

average of the maximum and minimum values of pairwise 

distance of all data. Each data point is then reiterated and 

compared to the threshold. Those that have a distance 

value greater than the threshold are deemed as outliers and 

are subsequently tossed out of the dataset. The second step 

then runs the K-means algorithm without outliers, thus 

improving the clustering process. 

Liu et al., [29] also propose a two-phased approach 

for their clustering with the outlier removal (COR) 

algorithm. In the first phase, their method runs the K-

means algorithm to generate basic partitions and discover 

outliers. The outliers here are identified as objects with 

large distances to their nearest centroid. The second phase 

removes the identified outlier objects and the remainder 

are partitioned into k clusters. 

Similarly, Danganan et al [19] proposed a 

modification of MCOKE [3] by incorporating a median 

absolute deviation (MAD) that measures any potential 

outliers in the dataset. The authors proposed a three-

phased approach in which the objects are ranked in 

ascending order and the distance of each object is 

calculated against MAD which is multiplied to a certain 

constant number determined by the user to obtain a 

decision value. If the distance of an object is greater than 

the decision value, that object is deemed an outlier and is 

pruned from the dataset.  

While many studies focus on pruning and discarding 

the outliers to improve the classification process, rarely do 

we find algorithms that detect outliers simultaneously 

while performing clustering [19]. The K-means with 

outlier removal (KMOR) algorithm is similar to the 

standard K-means algorithm but introduces an outlier 

cluster (k+1) that takes into account objects that don’t fit 

in the k defined clusters. The algorithm identifies outliers 

as objects that are above a calculated threshold which is 

defined by the average distance multiplied by a certain 

parameter greater or equal to 0. The average distance is 

calculated during the clustering phase. The KMOR 

algorithm requires three parameters such as the k number 

of clusters, the maximum number of outliers n0 (to control 

the number of objects being assigned as outliers), and 

finally, a third parameter to classify outliers and those that 
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are not. Two additional parameters are used to help 

terminate the algorithm.  

All the studies mentioned above utilize the K-means 

partition algorithm that eventually constrains objects to 

single clusters. Overlapping partitioning clustering 

methods tends to relax or remove the constraints allowing 

overlaps between clusters; this better fits any hidden 

structures in the data and assign data objects to one or 

more clusters building a non-disjoint partition of the data 

[4] [5].  

The present study focuses on overlapping partitioning 

methods which have several applications in real-life such 

as dynamic system identification, document 

categorization (a document belonging to different 

clusters), data compression, bioinformatics, image 

recognition, model construction, etc. [1] [21]. 

Extensions of the K-means that allow overlaps 

include Kernel Overlapping K-means (KOKM) [9,11], 

Overlapping K-means (OKM) [17,18], Parametrized R-

OKM [10] and Multi-Cluster Overlapping K-Means 

Extension (MCOKE) [3][4].  

The OKM algorithm is an extension of K-means that 

allows overlaps by using a heuristic that discovers a 

combinatorial set of possible assignments of the data 

points. For each observation, the heuristic sorts the 

clusters from the closest to the farthest; it then assigns the 

objects to those centroids in the defined order while 

minimizing the distance between the centroid and the 

observed object. 

The KOKM algorithm is a variant of OKM that 

utilizes the use of kernel methods for overlapping 

clustering. The authors use two variants in their method; 

one is a kernelization of the Euclidean metric, similar to 

the one used in OKM, that calculates the distances 

between the objects and the clusters in a high dimensional 

mapping space; the second variant performs all the 

clustering steps where data is implicitly mapped.  

The Parameterized R-OKM algorithm is another 

variant of OKM that lets users regulate the overlaps via a 

parameter. As the size of the parameter increases, the 

algorithm builds clusters with reduced overlaps, and vice-

versa when the size of the parameter approaches zero. The 

PR-OKM algorithm is reduced to OKM when this 

parameter is set to exactly zero. 

Unlike other algorithms that prune the outliers and 

discard them, the proposed algorithm saves them on a 

newly created outlier cluster during the iteration process.  

The present study considers the same idea as the KMOR 

algorithm and introduces an outlier cluster k+1 that stores 

the anomalies or outlier objects separately from the 

normal instances. As noted above, the KMOR algorithm 

requires users to define the maximum number of outliers, 

including a parameter to classify the outliers and those that 

are not. This is impractical in real-life scenarios in 

unsupervised datasets where no prior knowledge of the 

data is given. Also, their method requires additional 

parameters to help terminate the algorithm. This is not an 

easy feat to be determined by novice users. However, in 

this study we do not require users to enter parameters to 

terminate the algorithm or to identify the maximum 

number of outliers in the dataset; this makes it more 

practical in machine learning. None of the overlapping K-

means algorithms above have the capability to detect 

outliers and store them for additional scrutiny. Thus, we 

provide additional value to the literature by introducing 

this new overlapping clustering method. 

This study considers the key classification evaluation 

measures of Precision and F-measure. We evaluate and 

compare the results to highlight the significance of 

excluding the outliers in the dataset when clustering and 

how that improves the precision of the algorithm.  

The following section discusses the proposed 

clustering algorithm and the dataset used for evaluation. 

3 The proposed OMCOKE 

algorithm and experimental 

dataset 
 

The proposed method is an enhancement of the 

MCOKE algorithm [3] that allows objects to overlap and 

belong to more than one cluster based on their distance 

comparison to the maxdis variable. Maxdist calculates the 

largest distance of any object assigned to any centroid 

during the partitioning phase for it to belong to a particular 

cluster. That distance is used as an outer radius of 

similarity threshold and as the benchmark to allow objects 

to belong to other clusters that were not initially assigned 

to them, allowing them to overlap. However, K-means, 

being a greedy algorithm, guarantees all objects to be 

assigned to a cluster including any outliers, hence the 

maxdist radius benchmark could easily be influenced by 

outliers. 

The present study introduces another variable that 

calculates the average distance (averdist) between the 

object and the centroid for all clusters. Averdist acts as a 

new threshold for the inner radius between the object and 

the centroid. 

 𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑡 =
1

𝑛𝑖
∑ ||𝑥𝑖 − 𝐶𝑘||2

𝑥𝑖∈𝐶𝑘
   𝑖 = 1, 2, … 𝐾        (2) 

Where Ck is the kth cluster, xi is a point in Ck. 

It is assumed that most objects being clustered will 

fall close to the inner radius threshold (i.e. close to their 

cluster centroid) that is based on the average distance of 

all objects belonging to the cluster centroids. Anomalies 

or outliers therefore tend to be further away from their 

closest cluster centroid. Objects that have a distance 

greater than the inner radius but less or equal to the outer 

radius (maxdist) are subject to further scrutiny and are 

flagged to ensure they are not outliers on the border of the 

clusters. Therefore, the maxdistThreshold defines the 

radius distance to be considered from the outer boundary, 

for example, 0.98 will mean the area covered inside the 
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outer boundary for objects is not to be considered an 

anomaly. This logic is based on the assumptions that: 

a) Anomalies tend to be in sparse clusters, whereas 

normal instances usually belong to dense clusters 

b) Anomalies tend to be far from the closest cluster 

centroid, whereas normal instances tend to be near their 

closest cluster centroid.  

In cases where some knowledge of the data is known 

beforehand, this value can also be adjusted by the user 

prior to running the algorithm.  

This modification logic is summarized in the 

pseudocode provided below. 

Outlier Detection Pseudocode  

 

1. For each xi 𝜖 Ck  

2. Do 

3. If (dist (xi, centroid Ck) ≤ averdist) 

4. Cluster ← xi 

5. Else  

6.      If (dist (xi, centroid Ck) ≥ maxdist * maxdistThreshold) 

7.  Outlier_Cluster  ← xi 

8.      Else 

9. Cluster ← xi 

10.    End if 

11. End if 

 

 

In Step 6 of the code above, the area covered by the 

maxdistThreshold is multiplied by the maxdist, calculated 

as a percentage of the overall maximum distance for any 

object belonging. This acts as the cut-off point and any 

object that has a distance value greater than the upper 

percentile of this value is deemed an outlier. Upon 

identification of at least one outlier, the k number of 

clusters entered by the user prior to running the method is 

incremented by 1 on the fly; the outlier object is assigned 

to this newly created cluster. All other identified outliers, 

a subset S from the initial population, are assigned to 

belong to this newly created cluster. Once an outlier is 

detected, the algorithm adds k+1 clusters as the new 

output vector with the outlier cluster indexes listed as part 

of the output. This allows for further investigation of those 

data points as opposed to discarding them as is usual. 

When no outliers are detected, the algorithm will simply 

cluster with overlaps without incrementing the number of 

k clusters. 

3.1 Experimental dataset  

Different datasets from the Mulan: A Java Library for 

Multi-Label Learning repository [34] are used to evaluate 

the proposed algorithm’s performance. The data 

repository hosts more than 25 different datasets in the 

domains of text, audio, video, music, images, and biology 

to mention only a few. Items of multi-label datasets can be 

members of multi-groups which are true for real world 

problems and, as a result, ideal for the study of 

overlapping clustering.  In our empirical experiment, three 

different domain datasets that have been used, along with 

their specifications and descriptive statistics, are displayed 

in Table 3 and Table 4 respectively. 

 

Data Set Instances # of 

Labels 

Attribute Cardinality 

Emotions 593 6 72 1.869 

Yeast 2417 14 103 4.237 

Scene 2407 6 294 1.074 

Table 3: Statistics of used Benchmarks 

 
Data Set Min Max Mean StdDev 

Emotions 0.01 0.195 0.069 0.031 

Yeast 0.371 0.52 0.001 0.097 

Scene 0.0 1.0 0.659 0.214 

Table 4: Descriptive Statistics of used Benchmarks 

3.2 Description of the Overlapping 

Datasets 

This study conducted experiments on real-life 

overlapping datasets to measure the effectiveness of the 

methods used to identify such overlapping groups. The 

three datasets have a wide diversity in their dataset making 

them a suitable combination for use as benchmarks. For 

example, their sizes vary from 593 (Emotions) to 2417 

(Yeast), their dimension (attributes) from 72 (Emotions) 

to 294 (Scene), cardinality (i.e. overlap rates) from 1.074 

(Scene) to 4.237 (Yeast). Their application domain also 

varies considerably i.e. music, biology, and images.  

The following is a brief description of the three 

datasets (Emotion, Yeast, and Scene). 

3.2.1 Emotion dataset 

Analyzing music signals is used in the detection of 

emotion in music. In this case, music can be classified into 

several categories at the same time since they are not 

usually disjointed i.e. it can make you feel both “sad” and 

“angry”. The dataset contains sound clips that can be 

described by 72 attributes which were annotated by three 

male music experts into six emotional clusters. Only the 

songs that had all three experts unanimously agree on their 

label were kept, resulting in a total of 593 songs being 

selected for the dataset. 

3.2.2 Yeast dataset 

The Yeast dataset is classified into 14 gene groups or 

classes. A gene can belong to several different classes at 

the same time thus making this a multilabel dataset. For 

example, the gene YAL014W may belong in the following 

four groups: {Cell Growth, Cell Division}, {Cellular 

Organization}, {Cellular Communication, Signal 
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Transduction} and {Transposable elements, Viral and 

Plasmid Proteins}.  

3.2.3 Scene dataset 

The dataset contains 2407 natural scene images. The 

images were classed into six categories. In this case, the 

images can be classified into different categories at the 

same time since they are not usually disjointed i.e. they 

become multilabelled and can belong to more than one 

category such as field + mountain or fall foliage + 

mountain. 

4 Experimental results 

4.1 Experimental settings 

To exhibit the performance of our algorithm, with 

respect to different measures when contrasted with a wide 

range of ML, the current study selected clustering 

algorithms using the following criteria:  

a) Algorithms that utilize the partitioning method that 

extends the K-means algorithm  

b) The algorithms use the Euclidian distance to 

calculate the similarities between the sets of 

observations 

c) All algorithms work on numeric attributes only 

d) All are known algorithms that have been evaluated 

by previous researchers in ML.  

All experiments have been run on an Intel Core i7 

computer with a 3.4 GHz processor and 8.0 GB RAM 

running on a 64-bit, Windows 10 Operating System.  

We used the pair-based Precision-Recall measure that 

is calculated over pairs of observations. The precision-

recall is computed as follows: 

 

Where TP is a true positive decision, FP is a false 

positive decision (two dissimilar objects assigned to the 

same cluster), and FN is a false negative (two similar 

objects assigned to different clusters). 

FPTP

TP
ecision

+
=Pr

     

(3) 

FNTP

TP
call

+
=Re                     (4) 

callecision

callecision
measureF

RePr

Re*Pr*2

+
=−

               

(5) 

 

Where TP is a true positive decision, FP is a false positive 

decision (two dissimilar objects assigned to the same 

cluster), and FN is a false negative (two similar objects 

assigned to different clusters). 

4.2 Empirical results and analysis 

For fair comparisons, datasets with different sizes and 

from different domains have been chosen and are 

compared to well-known algorithms that have been 

evaluated by previous researchers. Through experimental 

study, we evaluated and compared the performance of 

OMCOKE with three existing methods namely: Kernel 

Overlapping K-means (KOKM), Overlapping K-means 

(OKM), and Parametrized R-OKM as shown in Table 5 

below.  

For each experiment, we set the parameters for 

KOKM, OKM, and P-ROKM as follows: 

• Maximum iterations = 10 

• Number of clusters = 3 

• Number of labels = Emotions (6), Yeast (14), and   

     Scene (6). 

• Minimal improvement = 0.01 

• Alpha = 1 and 0.1 for P-ROKM algorithms. 

In addition to the number of iterations and clusters set 

as above, the following parameters were also set in 

OMCOKE: 

• maxdistThreshold = 0.99 

• useMeasures = True  

Overlapping methods will have an overlap that is 

greater than 1 since the objects belong to more than one 

cluster. The size of the overlaps affects the value of 

Precision i.e., there will be low value of Precision because 

the observations are assigned to more than one cluster. 

 

 

 

 

 

 

 

 

Method     Emotion 

 P.            F. 

         Yeast 

   P.                 F. 

      Scene 

  P.              F. 

KOKMII 

OKM 

P-ROKM (α=1) 

P-ROKM (α=0.1) 

OMCOKE 

0.471 

0.467 

0.474  

0.468 

0.565 

0.641 

0.586 

0.524 

0.578 

0.419 

0.785 

0.234 

0.919 

0.802 

0.972 

0.878 

0.376 

0.565 

0.654 

0.496 

0.193 

0.234 

0.379 

0.288 

0.706 

0.324  

0.376 

0.506 

0.439 

0.453 

Table 5: Comparison of Performace 
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Fig. 3: Precision Accuracy of the Benchmark Datasets 

 

        The pair-based Precision-Recall method used in the 

empirical results is calculated over pairs of observations. 

This allows for the evaluations of clusters independently 

and compares their partitions with different numbers of 

clusters in the dataset. It measures whether the predicted 

pair is correctly assigned in the same cluster as indicated 

in the true class datasets. However, the Recall measure 

uses a binary function to compute the relationship between 

pairs of observations, and not considering that those pairs 

of observations could also feature in multiple clusters in 

the overlap. This results in a biased Recall measure, 

especially when the cardinality in the dataset is large. 

Thus, we chose not to use the Recall in our experiment as 

a measure of OMCOKE.  

      It is evident from the above empirical results that the 

OMCOKE algorithm has a high precision rate and 

outperforms all the other overlapping algorithms in the 

study as shown in Figure 3 above. This can be attributed 

to the algorithm’s ability to separate outliers from the rest 

of the data objects when assigning them to clusters. For 

the Emotion, Yeast, and Scene datasets, OMCOKE 

precision was 0.565, 0.972, and 0.706 followed by P-

ROKM (α=1) at 0.474, 0.919, and 0.379 respectively.  

High values of F-Measures are generally induced by the 

high values of Recalls as opposed to non-overlapping 

algorithms whose high values of F-measures are generally 

as a result of the Precision. When compared to the other 

algorithms, OMCOKE performs relatively well in the F-

Measure as shown in Figure 4 below, scoring second 

behind P-ROKM (with α=1) in the Scene dataset; the P-

ROKM method with the alpha value of 1 yielded an 

overlap of exactly 1 and dataset had a cardinality of 1.07. 

The F-Measure values are higher for clustering methods 

whose overlap rates are closer to the actual cardinality of 

the dataset. The cardinality shown in Table 3 is the natural 

overlaps in the dataset i.e., the average number of 

categories each observation can belong to. The analysis 

shows that the F-Measures and Precision are significantly 

affected by the overlap rate in the actual dataset. 

Algorithms that have partitions with smaller overlaps 

fared well in their F-Measure meaning that they 

 

Fig. 4: F-Measure of the Benchmark Datasets 

produced non-disjointed partitions that fit the data better 

compared to others. OMCOKE performed reasonably well 

in the Scene and Emotion datasets since the cardinalities 

of the datasets are low (1.074 and 1.869 respectively) 

nearing 1 but did poorly in the Yeast dataset that had an 

overlap of over 4.  Our algorithm detected several outliers 

in the dataset. These are listed in Table 6 below.  

 

Dataset Number of 

Outliers 

Identified 

Outlier Instances 

Emotion 1 27 

Scene 2  304; 1502 

Yeast 1 1819 

Table 6: Outliers Detected in the Three Datasets 

As indicated, an input dataset containing a few outliers 

significantly influences the mean distance (the outlier will 

skew the mean and variance) of the data objects to their 

respective clusters. This explains why OMCOKE 

outperformed the other methods in all datasets in terms of 

Precision rate. This also shows that by separating the 

outliers from the rest of the data, the OMCOKE was able 

to build its model relatively closer and more acceptable to 

the actual overlaps in each of the datasets; this is as 

compared to the other methods for the precision to be 

higher than the rest.  

5 Conclusions and future work 
In this paper, some different K-means variants of 

overlapping clustering methods were discussed.  

The proposed algorithm, with the capability of 

detecting outliers and treating them as a separate cluster, 

was evaluated and compared with three existing 

overlapping clustering methods namely: Kernel 

Overlapping K-means (KOKM), Overlapping K-means 

(OKM), and Parametrized R-OKM. We used real-life 

multi-label datasets for our experiments. The empirical 

results showed that the F-Measures and Precision were 

significantly affected by the overlap rate in the actual 

dataset. OMCOKE did well in the Scene dataset since the 

cardinality of the dataset is very low and did poorly in the 

0
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Yeast dataset that had a significant high overlap rate of 

over 4.  However, when it came to Precision, OMCOKE 

outperformed the other overlapping algorithms in all 

datasets indicating that our method had a better detection 

rate of clusters and for assigning observations with a better 

precision after it segregated the outliers in the dataset.  

The proposed algorithm detects and stores outliers 

during the clustering process making it different from the 

other overlapping clustering algorithms, thus adding value 

in this domain. As opposed to discarding anomalies and 

outliers, our method can provide tremendous benefit to 

cyber security experts, medical practitioners, IT 

administrators, data mining researchers, and other 

stakeholders as these outliers could have real-life 

applications such as fraudulent activities as in the case of 

cybersecurity, fraud insurance claims in the banking 

domain, or to help raise flags in the medical field 

especially in the screening process.  

In future, we plan to extend the method to increment 

k cluster to more than 1 to cater for other dispersed objects 

that may not necessarily be deemed anomalies but could 

form dispersed clusters that have common characteristics 

that are somehow dissimilar from the rest of the data 

objects. These newly created clusters can then be fused 

and merged based on their similarity weights to minimize 

the number of clusters produced in large datasets. 
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