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Impact of Data Balancing During Training for Best Predictions
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To protect the middle class from over-indebtedness, banking institutions need to implement a flexible
analytic-based evaluation method to improve the banking process by detecting customers who are likely to
have difficulty in managing their debt. In this paper, we test and evaluate a large variety of data balancing
methods on selected machine learning algorithms (MLAs) to overcome the effects of imbalanced data and
show their impact on the training step to predict credit risk. Our objective is to deal with data unbalance to
achieve the best predictions. We investigated the performance of these methods by different learners when
classification models are trained using MLAs.

Povzetek: Predstavljena je metoda strojnega učenja z neuravnoteženimi podatki za oceno tveganja
prezadolžitve srednjega razreda.

1 Introduction

To become compliant with changing and stricter regulatory
demands in the world, banks are focused on undertaking
preventive measures for effective credit risk management.
One of its drivers is to strengthen existing learning mod-
els [1, 2] to increase their predictive power and help detect
future defaults in advance.

Due to the inherent complex characteristics of imbal-
anced data sets, learning from such data requires new un-
derstandings, principles, algorithms, and tools to transform
a vast amount of raw data efficiently into information and
knowledge representation. The imbalanced learning prob-
lem is concerned with the performance of learning algo-
rithms in the presence of under-represented data and severe
class distribution skews [3, 4].

Most standard algorithms assume or expect balanced
class distributions. Therefore, when presented with com-
plex imbalanced datasets, these algorithms fail to properly
represent the distributive characteristics of the data and re-
sultantly provide unfavorable accuracies across the classes
of the data. The imbalanced learning problem represents a
recurring problem of high importance [5, 6, 7].

In this paper, we will present the impact of data balanc-
ing strategies at the training step. We test and evaluate a
large variety of data balancing methods on selected MLAs
to overcome the effects of imbalanced data and show their
impact at the training step to predict credit risk. Our objec-
tive is to deal with data unbalance to achieve the best pre-
dictions. We investigated the performance of these meth-
ods by different learners when classification models are
trained using MLAs.

The remainder of this paper is organized as follows: in
section 2, we will highlight related work related to sam-

pling methods for imbalanced learning. Section 3 provides
an overview of the evaluation metrics in machine learning.
In section 4, we will describe the enhanced training ap-
proach using data balancing strategies. In section 5, a per-
formance analysis is brought forward to set the advantages
of the proposed evaluation method. Section 6 discusses the
work. Finally, we will conclude in section 7 our work and
bring out some insights and potential future works.

2 Related work

Typically, the use of sampling methods in imbalanced
learning applications consists of the modification of an im-
balanced data set by some mechanism to provide a bal-
anced distribution. Studies have shown that for several base
classifiers, a balanced data set provides improved over-
all classification performance compared to an imbalanced
dataset. These results justify the use of sampling methods
for imbalanced learning [8].

Random undersampling (RUS) removes data from the
original dataset. In particular, we randomly select a set of
majority class examples and remove these samples from
the dataset. Consequently, undersampling readily gives us
a simple method for adjusting the balance of the original
dataset [6, 8]. Figure 3 shows random undersampling and
oversampling.

The mechanics of RUS follow naturally from its descrip-
tion by adding a set sampled from the minority class: for
a set of randomly selected minority examples, augment the
original set by replicating the selected examples and adding
them to the dataset. In this way, the number of total exam-
ples in the minority class is increased and the class distribu-
tion balance is adjusted accordingly. This provides a mech-
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Figure 1: Random undersampling and oversampling.

anism for varying the degree of class distribution balance
to any desired level.

The objective of the Easy Ensemble method [9, 10, 11,
26] is to overcome the deficiency of information loss in-
troduced in the traditional RUS method. Easy Ensemble
can be considered as an unsupervised learning algorithm
that explores the majority class data by using independent
random sampling with replacement [8].

The Balance Cascade algorithm takes a supervised learn-
ing approach that develops an ensemble of classifiers to
systematically select which majority class examples to un-
dersample. In Balance Cascade, the sequential dependency
between classifiers is mainly exploited for reducing the re-
dundant information in the majority class. This sampling
strategy leads to a restricted sample space for the following
undersampling process to explore as much useful informa-
tion as possible [5].

Another example of informed undersampling uses the K-
Nearest Neighbor (KNN) classifier [12] to achieve under-
sampling. Based on the characteristics of the given data
distribution, four KNN undersampling methods were pro-
posed, namely, NearMiss-1 and NearMiss-3 methods [5].
The NearMiss-1 method selects those majority examples
whose average distance to the three closest minority class
examples is the smallest [8]. The NearMiss-3 selects a
given number of the closest majority examples for each mi-
nority example to guarantee that every minority example is
surrounded by some majority examples [8].

SMOTE (Synthetic Minority Oversampling Technique)
is an oversampling method. It works by creating synthetic
samples from the minor class instead of creating copies.
The algorithm selects two or more similar instances (using
a distance measure) and perturbs an instance one attribute
at a time by a random number within the difference to the
neighboring instances [5].

Borderline-SMOTE1 and Borderline-SMOTE2 only
oversample or strengthen the borderline minority examples
[5]. The detailed procedure of Borderline-SMOTE1 is as
follows: for every instance p in the minority class, we cal-
culate its m nearest neighbors from the whole training set.
If all nearest neighbors of p are majority examples, p is
considered noise and is not operated in the following steps.
If the number of p′ majority nearest neighbors is larger
than the number of minority ones, p is considered easily
misclassified and put into a set DANGER. The examples
in DANGER are the borderline data of the minority class.
Then, new synthetic data are generated along the line be-

tween the minority borderline examples (data in DANGER)
and their nearest neighbors of the same class, thus strength-
ening borderline examples [5].

Data cleaning techniques, such as Tomek links, have
been effectively applied to remove the overlapping that is
introduced by sampling methods [5]. One can use Tomek
links to cleanup unwanted overlapping between classes af-
ter synthetic sampling, where all Tomek links are removed
until all minimally distanced nearest-neighbor pairs are of
the same class. By removing overlapping examples, one
can establish well-defined class clusters in the training set,
which can, in turn, lead to well- defined classification rules
for improved classification performance. The Edited Near-
est Neighbor (ENN) rule removes examples that differ from
two of its three nearest neighbors.

3 Evaluation metrics in machine
learning

In machine learning, there are a variety of metrics to eval-
uate the performance of classifiers. In this subsection, we
will mention the most common evaluation metrics used in
our work [13, 14, 15].

A confusion matrix is a specific table that is usually used
to represent the performance of a classification model on
test data for which the true values are known [16, 17]. As
shown in Table 1, it consists of two columns and two rows
that contain the number of True Positives (TP), False Posi-
tives (FP), True Negatives (TN), and False Negatives (FN).
Table 1 is an example of confusion matrix with two-class
classifier.

The elements in the diagonal represent the number of in-
stances for which the predicted class is equal to the true
class, while off-diagonal elements are those that are mis-
classified by the classifier. The higher the diagonal values
of the confusion matrix, the better, indicating correct pre-
dictions. In the case of over-indebtedness detection, over-
indebted customers are the positive samples while no over-
indebted customers are the negative samples.

Considering the confusion matrix in the table 1, we de-
fine the most basic terms as follows:

– TN: If the actual class is no over-indebted and the pre-
dicted value is also no over-indebted, so we have a
TN. In practice, we want this value to be as high as
possible.

– FP: If the actual class is not over-indebted and the
predicted value is over-indebted, we have then a FP.
In practice, we want this value to be as low as possi-
ble because it impacts customers, their banking expe-
riences, and their lives.

– FN: If the actual class is over-indebted and the pre-
dicted value is not over-indebted, then we have a FN.
Like the FP, we want this value to be as low as possi-
ble because the bank loses money when the customer
who is deeply in debt, is considered as normal.
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Table 1: Confusion matrix.

Predicted class
No over-indebted Over-indebted

Actual class No over-indebted TN FP
Over-indebted FN TP

– TP: If the actual class is over-indebted and the pre-
dicted value is also over-indebted, we have a TP. Like
the TN, we want to predict all customers that will be
in over-indebtedness to allow the bank to establish a
support program for its consumers.

The sensitivity, also called the True Positive Rate (TPR),
measures the proportion of positives that are correctly iden-
tified. The sensitivity is defined by the formula in Eq. (1)
[18].

Sensitivity = TP/(TP + FN) (1)

The specificity, also called the True Negatives Rate
(TNR), measures the proportion of negatives that are cor-
rectly identified. The specificity is defined by the formula
in Eq. (2) [18].

Specificity = TN/(TN + FP ) (2)

The Gini coefficient is defined as twice the area between
the ROC (Receiver Operating Characteristic) curve and the
chance diagonal. It takes values between 0 (no difference
between the score distributions of the two classes) and 1
(complete separation between the two distributions). The
ROC curve (see figure 1) is a graphical plot which illus-
trates the performance of a binary classifier system as its
discrimination threshold is varied.

The curve is created by plotting the TPR on the y-axis
against the False Positive Rate (FPR) on the x-axis at var-
ious threshold settings. The TPR rate is also depicted as
sensitivity in machine learning. The FPR rate can be cal-
culated as follows:

FPR = 1− Specificity (3)

A classification of a new object is obtained by comparing
the score s of the object with a classification threshold t. If
s > t the object is classified as coming from class 1 and if
s > t as coming from class 0.

The AUC (Area Under the Curve) is the area under the
ROC curve. The performance of a classifier model is cal-
culated by calculating the AUC [19, 20].

Related to the figure 1, we have:

AUC = Area A+Area B (4)

The Gini coefficient is given by the following equation:

Gini = 2 ∗AUC − 1 (5)

– At point (0, 0), the classifier considers all instances as
negatives. There are no false positives, but also no TP.

Figure 2: ROC curve.

– At point (1, 1), the classifier considers all instances as
positives. There are no false positives, but also no TN.

– At point (1, 0), the classifier has no TP and no TN.
In this case, the performance of the classifier is worse
than random. Its performance can be totally improved
by selectively reversing the classifiers answer.

– At point (0, 1), the classifier has 100% sensitivity and
100% specificity. This point is called a perfect classi-
fication.

4 Enhancing training using data
balancing strategies

The class imbalance problem corresponds to domains for
which one class is represented by a large number of exam-
ples while the other is represented by only a few.

The used data consists of a collection of consumers to
whom the bank gives credit. Analyzing the consumers in
a binary sense, the natural classes that arise are negative
or positive for a consumer who payed back or did not pay
back their credit, respectively. From experience, one would
expect the number of no over-indebted clients to exceed
greatly the number of over-indebted clients. Indeed, this
dataset contains 281,616 negative (majority class) samples
and 678 positive (minority class) samples. We will have a
classifier tend to provide a severely imbalanced degree of
accuracy, with the majority class having close to 100% ac-
curacy and the minority class having accuracies of 0-10%
(see Figure 2).

Data are extremely imbalanced. We apply several sam-
pling methods on the train set using the imbalanced learn
package. It is a Python package offering a number of



226 Informatica 45 (2021) 223–230 S.A. Alsaif et al.

resampling techniques commonly used in datasets show-
ing strong between-class imbalance. It is compatible with
Scikit-learn and is part of the scikit-learn-contrib project
[21].

Figure 3: Evaluation process.

Suppose a classifier achieves 10% accuracy on the mi-
nority class of the bank data set. Analytically, this would
suggest that 610 minority samples are misclassified as ma-
jority samples. The consequence of this is equivalent to a
610 over-indebted clients classified as no over-indebted. In
the bank, this consequence can be overwhelmingly costly.

Therefore, it is evident that for this domain, we require
a classifier that will provide high accuracy for the minor-
ity class without severely jeopardizing the accuracy of the
majority class.

Furthermore, this also suggests that the conventional
evaluation practice of using singular assessment criteria,
such as the overall accuracy or error rate, does not provide
adequate information in the case of imbalanced learning.
The immense hindering effects that these problems have
on standard learning algorithms are the focus of most of
the existing solutions. When standard learning algorithms
are applied to imbalanced data, the induction rules that de-
scribe the minority concepts are often fewer and weaker
than those of majority concepts, since the minority class is
often both outnumbered and under-represented [8].

5 Computational results and
analysis

Baseline algorithm performs the RUS for balancing data.
The bank selects randomly a set from the negative (no
over-indebted) class equals to the set of the positive (over-
indebted) class and it removes all the other negative sam-
ples from the data. When applying random RUS in the
train set, we might be losing representative samples of the
negative class.

Our objective is to deal with data unbalance to achieve
the best predictions for both classes and avoid favoring one
of the classes over the other. We aim to get as much in-
formation as possible from the large number of majority
available class examples.

The experiments were conducted using a 10-fold strati-
fied cross-validation [22]. The experiments have been con-
ducted to find the best sampling techniques. We inves-
tigated the performance of RUS, SMOTE, Balance Cas-

cade, and Easy Ensemble by different learners when clas-
sification models are trained using XGB (eXtreme Gradi-
ent Boosting) [23], LR (Logistic Regression) [24], and ET
(Extremely Randomized Trees) [25]. We used AUC (Area
Under the Curve), Gini coefficient, and confusion matrix
to evaluate the compared algorithms. We will compare the
performance of the models before and after resampling to
compare the increase of classifier performance due to re-
sampling.

5.1 Undersampling methods

The bar charts of the figure 4 show the variation of Gini
coefficient, sensitivity, and specificity after applying the
NearMiss-1 and NearMiss-3 sampling methods to train
data. The Gini coefficient achieves very high values for
all algorithms except the XGB. The values for sensitivity
are a little improved, but for the specificity the values are
lower than the random under sampling for all algorithms.

Undersampling tends to outperform the model in terms
of sensitivity (see figure 4(b)), but at a very high cost of
specificity (see figure 4(c)). However, while the value of
sensitivity increased, the value of specificity decreased.
Applying class-imbalance learning NearMiss-1 method on
this data set is not necessarily beneficial.

As shown in the figure 4, the values of the three met-
rics are greater than the baseline. But the prediction of the
positive examples is better than the negatives ones. For ex-
ample, XGB algorithm gives 93.5% (see figure 4 (b)) in
sensitivity whereas 88.4% in specificity (see figure 4 (c)).

5.2 Oversampling coupled with
Undersampling

We apply SMOTE methods to the data and then the ran-
dom undersampling. Figure 5 shows the impact of the
SMOTE and random undersampling on the performance of
the models. This technique tends to produce high speci-
ficity without reducing the sensitivity when compared to
other resampling techniques. As shown in Figure 5, the
performance of this technique is similar to the combination
of SMOTE+RUS. It tends to produce a good prediction for
TN as well as the TP. The combination of SMOTEB1 with
NearMiss-1 performs very poorly. The three metrics have
lower values. This sampling technique is not helpful for
our data and our models.

As shown in the figure 5, it can be seen that the sensi-
tivity fell slightly. However, the Gini (see figure 5(a)) and
the specificity (see figure 5 (c)) are improved. It is clear
that SMOTE Tomek Links coupled with NearMiss-3 per-
forms fairly. It tends to have a good value for the three
metrics. Its results look like the results of the technique of
SMOTEB2 coupled to NearMiss-3. SMOTE ENN coupled
with random under sampling performs badly. It produces
high specificity, but with very poor sensitivity (see figure
5(b)).



Impact of Data Balancing During Training for. . . Informatica 45 (2021) 223–230 227

(a)

(b) (c)

Figure 4: (a) Gini, (b) Sensitivity, and (c) Specificity of undersampling methods.

For example, we can see in the figure 5(c) that the XGB
algorithm has 92.20% in specificity against 78.60% in sen-
sitivity, which is a relatively bad value. It sacrifices high
sensitivity for high specificity.

5.3 Ensemble

As shown in the figure 6, it is clear that the Easy Balance
gives better results with XGB and LR algorithms in con-
trast to the other ones. While XGB and LR achieve very
good values for both sensitivity (see figure 6(b)) and speci-
ficity (see figure 6(c)). They perform fairly for both; the
other algorithms produce high specificity and very poor
sensitivity.

From the figure 6, we can observe that the Balance Cas-
cade method gives similar results to the Easy Ensemble but
with a little decrease in terms of sensitivity.

6 Discussion
We compare the results of our experiments and find that the
best resampling technique to use is often dataset and model
dependent, certain resampling techniques tend to perform
better when coupled with certain classifiers. It is obvious
that there is not a best sampling technique for all models.
The results show that the Easy Ensemble performs better
than the others when XGB is used as a classifier.

It attains a better balance between sensitivity and speci-
ficity than almost all other methods. Instead of trading off
one metric against another, it succeeds to give similar good
results for all metrics. The graph in the figure 7 summa-
rizes the effect of feature selection and data balancing with

XGB algorithm on our data.
In Figure 8, we clearly see that:

– After feature selection: 4,564 clients were misclassi-
fied before as over indebted are correctly identified as
normal and 3 clients were misclassified as normal are
correctly identified as over-indebted.

– After data balancing: we misclassified only 1 clients
from the positive class to classify more 856 no over-
indebted clients correctly.

7 Conclusion
In this work, we tested and evaluated a large variety of data
balancing methods on selected MLAs to overcome the ef-
fects of imbalanced data and show their impact on the train-
ing step to predict credit risk management. Our objective is
to deal with data unbalance to achieve the best predictions.

After balancing the data with the easy ensemble method,
we reduced the overfitting of the positive class and we
reached a good balance between sensitivity and specificity.
These contributions have shown that there isn’t any ideal
sampling method for balancing the data, and we have
demonstrated through conducted experiments that it is pos-
sible to improve the overall performance of learning algo-
rithms in the field of over-indebtedness prediction by using
data balancing methods.

The set of conducted experiments aims at validating the
importance of pre-processing the data before applying any
machine learning algorithm. Balancing the data with ad-
vanced methods and changing the machine learning algo-
rithm helped us to build a new effective and accurate pre-
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(a)

(b) (c)

Figure 5: (a) Gini, (b) Sensitivity, and (c) Specificity of oversampling coupled with undersampling.

(a)

(b) (c)

Figure 6: (a) Gini, (b) Sensitivity, and (c) Specificity of ensemble methods.
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(a) (b) (c)

Figure 7: Improvement of sensitivity and specificity.

Figure 8: Confusion matrix.

dictor. credit risk models need to consolidate new COVID-
19 pandemic related data points to guarantee their output
prevails valid and robust. Better and deeper insights can
be accomplished by boring into a broader range of data
sources as well as upgrading data platform technologies.
This relates to our short-term work.

References

[1] A.A. Abaker and F.A. Saeed (2021) A compar-
ative analysis of machine learning algorithms to
build a predictive model for detecting diabetes com-
plications, Informatica (Slovenia), vol. 45, no. 1,
pp. 117–125, https://doi.org/10.31449/
inf.v45i1.3111.

[2] J. Sun (2021) Prediction and estimation of book bor-
rowing in the library: Machine learning, Informat-
ica (Slovenia), vol. 45, no. 1, pp. 163–168, https:
//doi.org/10.31449/inf.v45i1.3431.

[3] L.J. Mena and J.A. Gonzalez (2009) Symbolic one-
class learning from imbalanced datasets: Applica-
tion in medical diagnosis, Int. J. Artif. Intell. Tools,
vol. 18, no. 2, pp. 273–309, https://doi.org/
10.1142/S0218213009000135.

[4] W.J. Liu, X.Y. and Z. Zhou (2009) Exploratory un-
dersampling for class-imbalance learning, Trans. Sys.
Man Cyber. Part B, vol. 39, https://doi.org/
10.1109/TSMCB.2008.2007853.

[5] A. Mahani and A. Baba-Ali (2019) Classification
Problem in Imbalanced Datasets, https://doi.
org/10.5772/intechopen.89603.

[6] L.E.B. Ferreira, J.P. Barddal, F. Enembreck, and
H.M. Gomes (2018) An experimental perspec-
tive on sampling methods for imbalanced learn-
ing from financial databases, Proceedings of the
2018 International Joint Conference on Neural Net-
works, pp. 1–6, https://doi.org/10.1109/
IJCNN.2018.8489290.

[7] G. Goel, L. Maguire, Y. Li and S. McLoone (2013)
Evaluation of sampling methods for learning from im-
balanced data, in Huang DS., Bevilacqua V., Figueroa
J.C., Premaratne P. (eds) Intelligent Computing
Theories, pp. 392–401, https://doi.org/10.
1007/978-3-642-39479-9\_47.

[8] H. He and E. Garcia (2009) Learning from
imbalanced data,IEEE Transactions on Knowl-
edge and Data Engineering, vol. 21, no. 9,
pp. 1263–1284, https://doi.org/10.1109/
TKDE.2008.239.

[9] T.G. Dietterich (2000) Ensemble methods in ma-
chine learning, Proceedings of the First Inter-
national Workshop on Multiple Classifier Sys-
tems, pp. 1–15, https://doi.org/10.1007/
3-540-45014-9_1.

[10] M. Ghosh and P.G. Sanyal (2018) Performance as-
sessment of multiple classifiers based on ensem-
ble feature selection scheme for sentiment analysis,
Applied Computational Intelligence and Soft Com-
puting, pp. 1–12, https://doi.org/10.1155/
2018/8909357.

[11] R.R. Saifan, K. Sharif, M. Abu-Ghazaleh, and
M. Abdel-Majeed (2020) Investigating algorithmic
stock market trading using ensemble machine learn-
ing methods, Informatica (Slovenia), vol. 44, no. 3,
pp. 311–325, https://doi.org/10.31449/
inf.v44i3.2904.

[12] K. Q. Weinberger and L.K. Saul (2009) Distance met-
ric learning for large margin nearest neighbor classifi-
cation, JMLR, pp. 207–244, https://doi.org/
10.5555/1577069.1577078.

[13] M. Hossin and M. Sulaiman (2019) A Review on
Evaluation Metrics for Data Classification Evalu-
ations, International Journal of Data Mining &



230 Informatica 45 (2021) 223–230 S.A. Alsaif et al.

Knowledge Management Process (IJDKP), vol. 5,
no. 2, pp. 1–11, https://doi.org/10.5121/
ijdkp.2015.5201.

[14] M. Fatourechi, R. Ward, S. Mason, J. Huggins,
A. Schlogl, and G. Birch (2009) Comparison of eval-
uation metrics in classification applications with im-
balanced datasets, Proceedings of the Seventh Inter-
national Conference on Machine Learning and Ap-
plications, pp. 777–782, https://doi.org/10.
1109/ICMLA.2008.34.

[15] K.M. Ghori, R.A. Abbasi, M. Awais, M. Imran,
A. Ullah, and L. Szathmary (2020) Performance anal-
ysis of different types of machine learning classi-
fiers for non-technical loss detection, IEEE Access,
vol. 8, pp. 16 033–16 048, https://doi.org/
10.1109/ACCESS.2019.2962510.

[16] K. Ting (2017) Encyclopedia of Machine Learning
and Data Mining, ser. Springer Reference, C. Sam-
mut and G. I. Webb, Eds., https://doi.org/
10.1007/978-1-4899-7687-1.

[17] O. Caelen (2017) A bayesian interpretation of the
confusion matrix, Annals of Mathematics and Arti-
ficial Intelligence, vol. 81, https://doi.org/
10.1007/s10472-017-9564-8.

[18] S. Kumar (2020) Sensitivity, specificity, generaliz-
ability, and reusability aspirations for machine learn-
ing (ML) models in MHealth, Proceedings of Deep
Learning for Wellbeing Applications Leveraging Mo-
bile Devices and Edge Computing, pp. 1, https:
//doi.org/10.1145/3396868.3402495.

[19] P. Flach, J. Hernández-Orallo, and C. Ferri (2011) A
coherent interpretation of auc as a measure of aggre-
gated classification performance, Proceedings of the
28th International Conference on International Con-
ference on Machine Learning, pp. 657–664, https:
//doi.org/10.5555/3104482.3104565.

[20] L.E. Raileanu and K. Stoffel (2004) Theoreti-
cal comparison between the gini index and in-
formation gain criteria, Annals of Mathemat-
ics and Artificial Intelligence, vol. 41, no. 1,
pp. 77–93, https://doi.org/10.1023/B:
AMAI.0000018580.96245.c6.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg et al. (2011) “Scikit-
learn: Machine learning in python, Journal of
Machine Learning Research, vol. 12, no. Oct,
pp. 2825–2830, https://doi.org/10.5555/
1953048.2078195.

[22] S. Raschka, J. Patterson, and C. Nolet (2020) Ma-
chine learning in python: Main developments and

technology trends in data science, machine learn-
ing, and artificial intelligence, Information, vol. 11,
no. 4, pp. 193, https://doi.org/10.3390/
info11040193.

[23] H. Drucker and C. Cortes (1995) Boosting decision
trees. Cambridge, MA, USA: MIT Press, pp. 479–
485, https://doi.org/10.5555/2998828.
2998896.

[24] D.W. Hosmer and S. Lemeshow (2013) Applied lo-
gistic regression. John Wiley and Sons, https://
doi.org/10.1002/9781118548387.

[25] C. Latha and S. Jeeva (2019) Improving the accuracy
of prediction of heart disease risk based on ensem-
ble classification techniques, Informatics in Medicine
Unlocked, vol. 16, pp. 100203, https://doi.
org/10.1016/j.imu.2019.100203.

[26] E.K. Ampomah, Z. Qin and G. Nyame and F.E.
Botchey (2020) Stock market decision support mod-
eling with tree-based AdaBoost ensemble machine
learning models, Informatica (Slovenia), vol. 44,
no. 4, pp. 477–489, https://doi.org/10.
31449/inf.v44i4.3159.


