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Mutation testing attempts to assess the quality of a test set by its ability to distinguish the program under test
from its mutants. One of the main difficulties faced in practice is due to the large number of mutants that
can be generated for a program under test. Earlier research to solve this problem has suggested variants of
mutation testing, and finding an effective set of mutation operators referred to as selective mutation. This
paper presents an alternative approach for reducing the cost of testing by identifying hierarchies among
first-order mutants. The key idea is to evaluate the strength of a mutant with respect to other mutants
and ignore “weaker” mutants during testing. Unlike previous approaches, our method is formal and it is
guaranteed that the effectiveness of a test suite will be identical with that can be achieved using all mutants.
The theory described here is also applicable to the quantitative assessment of testing effort and can be used
to guide successive testing steps in fault-based testing. We present an empirical evaluation to find reduction
in the test effort using mutant classification and show that it supports selective mutation.

Povzetek: Metodo testiranja z mutanti so izboljšali s hierarhijo mutacij, ki izloča slabše mutante.

1 Introduction

Fault-based [23] testing approach relies on generating
test set that can guarantee to detect all hypothesized faults
in a Program Under Test (PUT). A fault is a manifesta-
tion of an error, for example, misunderstanding about the
semantics of an operator. A failure is the inability of the
system or a system component to perform a function as dic-
tated by the specification [15, 37]. In other words, a fault is
locally incorrect (computational or control) operation that,
when propagated, results in a failure [29, 35].

Mutation testing [4, 6] is a fault-based approach to test
programs written in an imperative programming language.
In mutation testing, a set of programs is generated by mak-
ing a single (well-defined) syntactic change in a given PUT.
This set of programs, referred to as first-order mutants, are
used for evaluating a test set. A test set is a collection of test
cases where each test case is a set of inputs with expected
output values for a PUT.

A mutant is said to be killed by a test set if it can dis-
tinguish the mutant to be different from a PUT. Given
a test set, its effectiveness, defined as mutation score, is
measured by computing the percentage of first-order mu-
tants that it killed with respect to the total number of non-
equivalent mutants. Since the semantics of a PUT is not

A preliminary version of the theoretical foundation of this paper ap-
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considered while generating mutants, some of them could
be semantically equivalent to the PUT. Such mutants have
to be identified manually or by other methods [26] and their
number is reduced from the total number of mutants before
computing the mutation score. In rest of the paper we refer
to non-equivalent first-order mutants as simply mutants.

The two test hypotheses [11, 13] that form the basis for
mutation testing are competent programmer; and coupling
effect [6]. The former assumes that programmers are com-
petent, however, they make small mistakes while writing
programs. These small mistakes can be modelled as syntac-
tic changes such as replacing > by ≤ etc. and are referred
to as mutation operators. In practice, it is expected that
the set of mutation operators either represent the commonly
occurring faults or they enable generation of test cases that
can expose complex faults. Thus the benefits of mutation
analysis depends on the mutation operators that are used to
generate the mutants from a PUT.

During mutation testing only those mutants are con-
sidered that can be obtained by making single syntactic
change. Those mutants that can be obtained by making
multiple changes, called as higher-order mutants, in a PUT
are ignored. The basis for this is the coupling effect hypoth-
esis which states that if a test set can guarantee killing first-
order mutants then it is also likely to guarantee the same for
higher-order mutants. Coupling hypothesis has been inves-
tigated both theoretically [19, 36] and empirically [25] and
is found to hold for several fault classes. However, there is
a recent research on higher order mutants by Jia and Har-
man [17], which suggests that some strongly subsuming
higher order mutants are in fact harder to kill than some
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first order mutants.
If a PUT gives correct results for all the test cases in a

test set with 100% mutation score then it is concluded that
the PUT is correct with respect to the faults represented by
the mutation operators. Thus such a test set is good at dis-
tinguishing a program from its mutants and, if the program
is faulty, the test set is also likely to be good at distinguish-
ing the program from a correct program [13].

Thus, mutation testing provides a means of evaluating
a test criteria and test sets. However, with the increase
in size of implementation, it is computationally expensive
or infeasible to consider all possible mutants that can be
hypothesized as the number of possible mutants is usu-
ally very large which makes the testing process expensive
[14, 28, 27, 39].

The number of possible mutants is proportional to the
product of the number of variables with the count of num-
ber of times they are referred either in a definition or in
use[27, 38]. A consequence of the generation of a large
number of possible mutant programs is that they need to be
executed in each step of the testing phase till an adequate
test set is obtained. To overcome this problem, a number of
approaches have been suggested, such as finding an effec-
tive set of mutation operators, referred to as selective mu-
tation [27], and variants of mutation testing [14, 40]. The
original idea, as described above, is referred to as strong
mutation testing.

This paper presents an alternative approach for reducing
the cost of mutation testing by the identification of hierar-
chies among mutants. Let Pk and Pj be two mutants of a
given PUT. It is possible to reduce test effort by consider-
ing only Pk if it can be deduced that a test set which can
kill Pk is also be guaranteed to kill Pj .

The approach described here is also applicable to the
quantitative assessment of testing effort and can be used
to guide successive testing steps in fault-based testing. In
particular, the objectives of this paper are:

a. To give theoretical foundation for identifying the rela-
tionship among mutants and show that mutation oper-
ator cannot be ordered without reference to a PUT;

b. To empirically evaluate the reduction in test effort that
can be achieved by identifying the relationship among
mutants;

c. To find if selective mutation study [27] is supported
by our study.

The rest of the paper is organized as follows. The next
section presents formal definitions in the context of mutant
hierarchies. Section 3 describes the properties and condi-
tions to identify the relationship among mutants. Section 4
gives an overview of the related work. An empirical study
conducted to evaluate our approach and compare it with
selective mutation is described in Section 5. Finally, con-
clusions are presented in Section 7.

2 Mutant Hierarchies
The theoretical and empirical study presented in this paper
is done for the programs written in a subset of C program-
ming language which include constructs such as loop, ar-
ray and function calls. However, this does not impose any
restriction on the use of those language constructs in pro-
grams that are not included in the subset.

For the purpose of theoretical analysis below, we assume
that the statements, and predicates in conditional state-
ments (such as if and while), of a program are uniquely
labelled. Boolean conditions are used solely for deciding
the branch to be followed in the next step of the execu-
tion and therefore are assumed not to modify the state of a
program during execution. The assumption is justified as
program transformation techniques can be used to achieve
this and make programs more testable [12].

A label when given to a Boolean condition is said to be a
p-location, otherwise it is said to be a c-location. Note that
a condition in an if or while statement is given a unique
label (i.e., different from the labels that are given to state-
ments that appear inside the then-else or body of a while
statement, respectively). Let lk and lj be two locations in P
that are mutated to obtain mutants Pk and Pj respectively.
These mutants will be known as intra-location mutants of
P if lk = lj , otherwise they will be referred to as inter-
location mutants.

We denote the output obtained on execution of a program
M with an input x by M(x). The notation M = M ′ will
be used to signify that a program M is semantically equiv-
alent to another program M ′. The state of a program under
execution at an instant is set of pairs of variable and their
corresponding values. A test case is a pair of input and the
expected output. For simplicity, we will use input and test
case interchangeably.

Definition Let P be a PUT and Pk be a first-order mutant
that differs from P at a location. A test case, t, is said to
kill a mutant Pk if one of the following conditions hold:

a. P (t) ̸= Pk(t), where both P (t) and Pk(t) are non-
erroneous states.

b. either P (t) or Pk(t), but not both, results in an erro-
neous state.

c. both P (t) or Pk(t) results in different erroneous
states.

We say a test set kills Pk if it includes a test case that kills
Pk. Thus, a test case that kills a mutant identifies that a
PUT and its mutant represent two distinct functions. For
comparison, we observe the final internal state of programs.

During an execution of a program, it may fail, for exam-
ple due to division by zero or insufficient memory, we call
such a state an erroneous state. It may happen that one of
the program fails while the other does not, in which case
they are obviously distinguishable as stated in the defini-
tion 2(b) above. We classify non-termination of a program
among the erroneous state. The definition 2(c) includes the
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case where both programs result in distinguishable erro-
neous states such as a floating point exception and a mem-
ory fault.

Our analysis remains applicable even if we change the
definition with respect to other variants: weak [14] and firm
[40] mutation testing which allow to distinguish a PUT and
its mutant by observing their internal states that are not fi-
nal. A partial order between mutant programs can be de-
fined using the following relation.

Definition [Relation between Mutants] Let Pk and Pj be
the two mutants of P and t be a test case. Then Pk is said
to be stronger than Pj denoted by P, t ⊢ Pk ≥m Pj if

∃ t | t kills Pk ⇒ t kills Pj

The notation P, t ⊢ Pk �m Pj will be used to indicate
that Pk is not stronger than Pj . For a pair of mutants, Pk

and Pj , of P if both P, t ⊢ Pk �m Pj and P, t ⊢ Pj �m

Pk hold for all test cases t in a test set then both Pk and Pj

must be considered during mutation testing.
Definition [Mutant Class] A set of mutants, S, of a PUT

is said form a mutant class if there exists a test case that
kills all the mutants in S.

Note that the relation among the mutants and the defini-
tion of mutant class are within the context of one test case.
In other words, the mutant classes are induced by a test set.
Therefore, for a given set of mutants, the mutant classes
may be different with respect to different test sets. An al-
ternative way to define the mutant relation, ≥m, could be
on the basis of comparing the constraints of all possible test
inputs that kills a mutant rather than just by one single test
case. This would make mutant classes unique for a given
program and independent of test cases. However such a
strong requirement will be hard and expensive to analyse
in comparison to our weaker definition.

Fact 1. [26, 29, 35] A test case, t, can kill Pk provided
the following necessary and sufficient conditions hold on
executing P and Pk with input t:

a. the execution must reach location l (reachability);

b. the evaluation of expressions at location l in P and Pk

must result in different values at least once (infection);

c. the final states on termination of execution of P and
Pk must be different (propagation).

Condition (b) (i.e., infection) has been referred to as ne-
cessity in [26], and the original state failure condition in
[29] consisting of an origination condition and computa-
tional transfer conditions.

Given a mutant Pk which is obtained by applying a mu-
tation operator at a location l in a PUT with input domain
D, let subdomain Dr

k ⊆ D be the set of inputs which
reaches location l; similarly, Di

k ⊆ D be the set of inputs
that can cause the original and mutated expression at the lo-
cation l to result in different values and Dp

k ⊆ D be the set
that causes P and Pk to result in different final outcomes.

int fun(int x, int i) {
L1: while (i <= 2) { fun1 fun2
L2: if (x <= 4) if (x < 4) if (x > 4)
L3: x = x + 1;
L4: else
L5: x = x + 2;
L6: i = i + 1;
L7: }
L8: return x;

}

Figure 1: An example to illustrate the insufficiency of in-
fection conditions.

Fact 2. [26] Given P , a test case, t, will kill Pk iff t ∈ Dp
k

which implies t ∈ Dr
k ∩Di

k and Dp
k ⊆ Dr

k ∩Di
k.

Note that there may be test cases in Di
k that does not

satisfy the reachability condition. The computation of a
test case that can kill a mutant is undecidable as the sets
Dr

k, Di
k and Dp

k cannot be computed, in general. How-
ever, in practice it is often possible to find such test cases
using approximation techniques. On one hand, to compute
(whenever feasible) the setDi

k requires only analysis of the
expression at location l. On the other hand, computation of
Dr

k is more expensive and complex as it requires analysis
of the paths that can reach location l.

Proposition 1. ∀t(P, t ⊢ Pk ≥m Pj)⇔ Dp
k ⊆ D

p
j , where

Pk and Pj are mutants of P and t represents a test case.

Proof. The proof follows from the definitions.

3 Identifying Mutant Hierarchies
A brute-force method to identify ≥m relation is by check-
ing if Dp

k ⊆ Dp
j . It is also possible to restrict the test cases

to be selected from the set Dp
k ∩D

p
j , provided that this set

is not empty, in which case killing Pk will also guarantee
the same for Pj .

The objective of our analysis is to identify a subset of
mutants with the same effectiveness as the whole set with-
out generating all mutants. Therefore, if possible, the ≥m

relation between mutants should be established during their
generation itself, thereby only producing the strongest mu-
tants. This approach is an improvement over the method
where mutants are first generated explicitly and then an at-
tempt to establish a partial order among them is made.

3.1 Intra-location Mutants
Let P be an implemented program and Pk and Pj be two
mutants of P that are obtained by applying mutation oper-
ator at location l in P . Let Ck and Cj be the predicates that
correspond to the sets Di

k and Di
j , respectively.

Now consider the example program shown in Figure 1.
The mutants fun1 and fun2 are shown in boxes and are ob-
tained by applying mutation operator at location L2, where
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Input Output
x i fun fun1 fun2
3 1 5 6 6
4 1 7 8 7

Table 1: A counter example for Theorem 1 based on the
program shown in Figure 1.

int Comp(int x) { Comp1 Comp2

L1: x = x + 1; x = x - 1; x = x + 2;
L2: if (x == 5 || x == 7)
L3: x = 9;
L4: else
L5: x = 6;
L6: return x;

}

Figure 2: An example for Theorem 1.

<=, < and > are relational operators. The conditions (ob-
tained by taking exclusive-or of two expressions, for in-
stance, Cfun1 ≡ x <= 4 ⊕ x < 4, where ⊕ is exclusive-
or operator) Cfun1 and Cfun2 , in this case are x = 4 and
true, respectively. Although Cfun1 implies Cfun2 , it is
not sufficient to claim a hierarchy between fun1 and fun2,
in general. This is illustrated by the following theorem.

Theorem 1. Let P be a PUT and Pk and Pj be its two mu-
tants obtained by mutating a statement at location l then,
Di

k ⊆ Di
j does not guarantee ∀t(P, t ⊢ Pk ≥m Pj).

Proof. The statement holds for both a p-location and a c-
location. We give counter-examples as a proof. Table 1
gives the output of two test cases for the program and its
two mutants that are shown in the Figure 1. The first row
shows that the mutants are not equivalent to the original
program, whereas the second row shows that the conjecture
is true for p-locations as fun1 is killed and fun2 remains
live. Note that, as mentioned above, Cfun1

⇒ Cfun2
i.e.

Di
fun1

⊆ Di
fun2

.
Figure 2 shows a concrete example that illustrates the

above theorem for a c-location. Consider the two mutants,
Comp1 and Comp2, obtained by applying mutation oper-
ator at location L1 in Comp (see Figure 2). The Di sets
for both mutants is the whole input domain D since the
mutated statements would result in different values for any
integer input. In other words, the conditions C1 and C2 are
true. However, input x = 8 will kill Comp1; whereas in-
put x = 3 will kill Comp2 (see Table 2). Thus, mutants

Input Output
(x) Comp Comp1 Comp2

8 6 9 6
3 6 6 9

Comp1 Comp2

Di D D
Dp {4, 8} {3, 4, 5, 6}

Table 2: Input, output and subdomains for the programs
shown in Figure 2.

Comp1 and Comp2 are not related under ≥m with respect
to all possible test cases.

The following formal observation gives insight into The-
orem 1.

Dp
k ⊆ Dr

k ∩Di
k (Fact 2)

Dp
j ⊆ Dr

j ∩Di
j (Fact 2)

Dr
k = Dr

j (Same location mutants)
Di

k ⊆ Di
j (given)

The most favourable conclusion that can be drawn from
the above statements is that both Dp

k and Dp
j are subsets

of Dr
k ∩ Di

k. But this does not guarantee Dp
k ⊆ Dp

j (as
required by Proposition 1).

Theorem 2. Let P , Pk, Pj and l be the entities as stated in
Theorem 1. If Di

k ∩Di
j = ∅ then Pk and Pj are not related

under ≥m P or P is equivalent to Pk or Pj .

Proof. The first three conditions are identical with the
above formal observation.

Di
k ∩Di

j = ∅ (given)
⇒ Dp

k ∩D
p
j = ∅ (set theory)

⇒ Dp
k = ∅ ∨Dp

j = ∅∨
(Dp

k * Dp
j ∧D

p
j * Dp

k) (set theory)
⇔ P = Pk ∨ P = Pj∨

∀t (P, t ⊢ Pk �m Pj ∧
P, t ⊢ Pj �m Pk) (Fact 2 & Prop. 1)

This is particularly helpful in isolating those mutants that
definitely need to be considered during testing. However, a
hierarchy can be established between mutants under certain
conditions. These conditions are discussed below.

Theorem 3. Let P be a given PUT and l be a p-location
that corresponds to a condition, c. Further, let c be mutated
to c′ and c′′ giving mutants Pk and Pj , respectively. If
(c′ ⇔ c′′) then one of the mutant Pk or Pj need not be
considered during testing.

Proof. As per Fact 1 (c), P and Pr (r ∈ {k, j}) must fol-
low different paths after reaching location l (sometime dur-
ing an execution) in order to be killed.

The condition (c′ ⇔ c′′) ensures that condition c′ and
c′′ always evaluate to the same Boolean value. Thus, for
a given test case, the path followed by Pk and Pj will al-
ways be the same, ensuring that the infection and propa-
gation conditions for both Pk and Pj will be identical i.e.
∀t(P, t ⊢ P1 ≥m P2 ∧ P, t ⊢ P2 ≥m P1).

The above condition in Theorem 3 is a very strong re-
quirement. However, the property was found to be helpful
in reducing the test effort during empirical study described
in Section 5.

Remark 1. Why do we need c′ ⇔ c′′ condition to hold in
general? To answer this question, let us consider the two
mutants Pk and Pj , obtained by mutating a condition for a
while loop of P . For a given test case, let i, ik and ij be
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the number of times the while loop is executed in P , Pk and
Pj , respectively. Thus, the necessary conditions for killing
Pk and Pj are i ̸= ik and i ̸= ij respectively. To establish
∀t(P, t ⊢ Pk ≥m Pj), one of the following properties must
hold:

a. ik = ij , or

b. the resulting states must be the same after executing
the body of while loop ik and ij times.

The condition in Theorem 3 is equivalent to (a) above.
However, the condition (b) is equally acceptable, but re-
quires analysis of the program segment to guarantee that it
holds for any test case that kills Pk; this may be difficult
to establish. It is also possible to weaken the requirement
in Theorem 3 under certain conditions as described by the
following theorem.

Theorem 4. Let P be a PUT, t be a test case and l be a
p-location that corresponds to a condition, c, in P . Fur-
ther, let c be mutated by two operators to c′ and c′′ giving
mutants Pk and Pj , respectively. If (c ⊕ c′) ⇒ (c ⊕ c′′),
where⊕ is exclusive-or operator, and the label l is reached
during the execution exactly once then P, t ⊢ Pk ≥m Pj .

Proof. The programs P and Pk must follow different paths
after reaching location l, sometime during an execution, in
order to be distinguished. The condition (c⊕c′)⇒ (c⊕c′′)
ensures that Pk and Pj will follow the same path, if P and
Pk take different paths.

The necessity for the criterion of checking the internal
state can be explained as follows. Assume that the Boolean
condition is evaluated twice and c′ differs from c in the
second execution. However, it is possible that only c′′ may
differ from c in the first execution but not in the second
execution, in which case it is not guaranteed that killing Pk

will also ensure the same for Pj .

Thus, Theorem 3, Remark 1 and Theorem 4 give three
different possibilities to identify the hierarchies among mu-
tants and also present the reasoning for the conditional re-
quirements associated with them.

Note that in Theorem 4, c and c′′ may differ, but c and
c′ may evaluate to the same values, in which case Pj may
be killed but Pk will not. Thus Pj could be killed by more
test cases than Pk. This can also be observed by noting
that c ⊕ c′ defines the subdomain Di

k and considering the
implication as a subset relation.

3.2 Inter-location Mutants
The above analysis is restricted to mutations in p-locations.
For mutants that can be generated by mutating c-locations,
we need to symbolically propagate the effect to nearest
variable use in a predicate and then use theorems men-
tioned above to identify the relationship among mutants.
We illustrate this by an example:

Consider the fragment of a PUT, R, shown in Figure 3.
Let R1, R2 and R3 be three mutants of R as shown in the

R1

La: b = -y; b = y;
... R2 R3

L: if (x + y == a + b) x - y == a + b x + y == a - b
St

else
Se

end

Figure 3: Fragment of a program R.

figure. If the definition of variable b at location La is guar-
anteed to reach locationL then we can compareR1,R2 and
R3 under ≥m. Let orig, r1, r2 and r3 be predicates as
defined below:

orig: x + y == a + b
r1: x + y == a + y
r2: x - y == a + b
r3: x + y == a - b

By observing that the predicate

b == −y ⇒ ((orig ⊕ r2)⇒ (orig ⊕ r3))

is valid, we conclude thatR2 ≥m R3. To check the relation
of R1 with R2, we propagate the assignment at La to L
which give us the following predicates:

orig’: x + y == a - y
r2’: x - y == a - y

Since the predicate (orig′ ⊕ r2′) ⇒ (orig′ ⊕ r1) is also
valid, R2 ≥m R1. Thus, if the mutant R2 can be killed,
the other two mutants need not be considered during the
testing. Note that, here we have also used known properties
of the PUT in establishing the hierarchies. To consider the
mutantR1, the impact of mutation is propagated to location
L. This can also be seen as making the control conditions
more explicit and has been studied in the context of test
data generation in [12].

Let Pj and Pk be two mutants of a program P that are
obtained by mutating location lj and lk respectively. Con-
sider the set R = Dr

j ∩ Dr
k. If R = ∅, there is no rela-

tionship between Pj and Pk and both of them must be con-
sidered during mutation testing. The checking of condition
R = ∅ does not necessarily require explicit computation of
the reachability sets. An example where such a condition
holds is when lj and lk appear in then and else branches of
an if statement that is reached exactly once in an execution
with a test case.

Consider the other case when R ̸= ∅; i.e., there may be
an execution that passes through both lj and lk. In this case
in order to find if the two mutants are related, it is necessary
to evaluate the impact of mutation at lj at location lk (or
vice versa). If this symbolic evaluation can be done then
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the hierarchies among the mutants can be identified with
the aid of theorems mentioned above.

Such an analysis, in which the internal state is observed
and the effect of a fault is propagated, is studied in the liter-
ature in terms of propagation conditions. For example, the
local propagation of origination conditions is referred to as
transfer conditions in [29].

The deductions required can be done automatically using
existing tools such as the CVC3 [5], which can check the
validity of quantifier-free first-order formulas over several
interpreted theories including real linear arithmetic, arrays,
uninterpreted functions, constants and abstract data types.

In the next section we give an overview of the related
work.

4 Related Work

A number of research studies have been conducted to test
the feasibility of mutation testing in an industrial context.
For a recent survey on mutation testing see [18]. These
studies concluded that mutation testing is difficult as the
number of mutants generated and the time taken to kill each
mutant when executed against the original program is myr-
iad [28]. These research studies have proposed several vari-
ations of mutation testing. The two variants suggested by
them are weak mutation [14] and firm mutation [40].

In weak mutation, the outputs of the original and mu-
tated programs are compared immediately after the execu-
tion of the mutated statement. Firm mutation is a kind of
“in-between” approach where the output of the original and
mutated program can be compared at any location after the
mutated statement and the end of the program. A short
survey is presented in [28]. The variants of firm mutation
testing can save some time during the execution and com-
parison phase of a PUT with its mutants, since the whole
program need not be executed when comparing the outputs
of the original program with the mutants.

An approach of computing the detection conditions for
hypothesized faults has been extensively studied, for ex-
ample, in constraint-based testing [7] and computation of
failure conditions in [23, 29]. This require the sets Dp

k

and Dp
j to be computed by using symbolic execution tech-

niques, which give a constraint on inputs that must be sat-
isfied by a distinguishing test case. Let Ck and Cj be two
constraints that correspond to the subdomains Dp

k and Dp
j

respectively. Then, Ck ⇒ Cj will also guarantee that
∀t(P, t ⊢ Pk ≥m Pj).

Another alternative to reduce the test effort is selective
mutation [27] which attempts to identify a subset of muta-
tion operators without significantly affecting the effective-
ness. The analysis of Boolean expressions has been exten-
sively studied in the literature; see for example [33, 37].
In [21, 34], a hierarchy between different types of faults
that can arise in Boolean specifications is analyzed. These
results are applicable in the context of Theorem 4.

It was found that the mutation operators, ABS, AOR,

LCR, ROR and UOI, were sufficient for generating mu-
tants. It was also observed that among those generated by
these operators 57% mutants were equivalent mutants.

A similar approach, but complementary to that presented
in this paper, has been suggested in [9, 30], involving the
determination of an optimal ordering for the relational op-
erators. The key idea can be stated as follows. Let P be a
given program and Pk and Pj be two of its mutants that are
obtained by replacing a relational operator, say RO, in P
by other relational operators, ROk and ROj respectively,
where ROk is higher in the optimal ordering relation than
ROj [30]. Then, for a given input, if Pk remains live then
Pj will also remain live. Thus, when attempting to kill mu-
tants, Pk should be tried before Pj . However, Woodward
in [39] has shown a fallacy in the above argument by pro-
viding a counter example and suggested the following in
the conclusion:

One final point is that the fallacious argument
. . . is, in a sense, the opposite of that which a
mutation tester really wants. The argument that
“since this test data kills this mutant, it must be
good and will kill these other mutants”, would
offer even greater potential benefits.

This paper contributes towards the above argument.
In the next section, we describe the empirical study per-

formed to evaluate the cost savings obtained by identifying
the relationship among mutants.

5 Experimental Evaluation
The programs considered in this study are written in C pro-
gramming language. As mentioned earlier, a mutation op-
erator can be defined to be a rule for generating mutants
by making a single syntactic change in PUT for example,
changing operator ‘+’ to ‘−’.

5.1 Experimental Setup
We have used 23 mutation operators that are adapted from
operators defined in [20] for FORTRAN programming lan-
guage. The summary of these operators is given in Table
3. Since mutation testing is applied at a unit or component
level, in our study we have mutated all the functions in a
PUT except the main function.

As mentioned before, in common with a number of pro-
gram analysis problems such as reachability of a location,
identifying every possible ≥m relation is undecidable in
general. Nevertheless, in the restricted setup of mutation
testing, where a program differs from its mutants in a well-
defined way, it is possible to find the relationship between
some, if not all, mutant programs. The consequence of
any technique being inherently incomplete is that it may
not always be able to deduce the ≥m relation between two
given mutants. However, this is not harmful except that the
number of mutants to be considered during testing will not
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Operator Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER do/while statement end replacement
LCR logical connector replacement
ROR relational operator replacement
RSR return statement replacement
SAN statement analysis (replacement by TRAP)
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 3: Mutation operators [20]

be minimal. The symbolic evaluation is not done for the
complete unit under test but for a segment consisting of the
mutated line upto nearest p-location as mentioned in the
section 2.

However, generating the set of strongest mutants may
lead to problems due to the presence of equivalent mutants
already in the set. Note that the property P, t ⊢ Pk ≥m Pj

holds trivially for all j if P is equivalent to Pk (i.e., when
Dp

k = ∅). The statistics, as reported in [26], indicate that
the number of equivalent mutants is typically in the range
of 7 to 12% of the total number of mutants and the auto-
matic detection rate using symbolic execution varies from
12 to 84% of the total number of equivalent mutants. An-
other recent study [31] further explores the identification
of equivalent mutants. Therefore in our empirical study we
rely on the fact that a randomly selected mutant from the
set of all mutants is likely to be non-equivalent.

Thus, although explicit generation of all mutants may
not be required, the information regarding them must still
be maintained. This information about P, t ⊢ Pk ≥m Pj

will be required whenever it is deduced or suspected that
P = Pk, for example when a significant amount of effort
is spent in killing Pk without success (such as, large size
of the test set and large number of times reachability and
infection conditions are met). The instantiation order for
mutants is guided by the hierarchies among them.

We considered terminating sequential programs. Since
application of a mutation operator can generate a program
which may not terminate on execution, we kept a threshold
of 5 seconds to decide if the execution is in an infinite loop.
This approach is similar to that implemented in MuJava
tool[22]. The comparison is made on the output as in the
case of strong mutation testing.

The analysis for empirical study was done manually with
the aid of CVC [5] tool. To analyze a given program, we
used symbolic execution techniques which have been used
in a wide variety of problems, such as, test data genera-
tion [7] and detecting equivalent mutants [26]. In symbolic
execution, a program is executed with the symbolic values
representing arbitrary values, instead of actual input val-
ues. Such an execution results in a tree in which every
node consists of symbolic values of the variables and the
path constraint that must be true to reach that node.

The steps to carry out the experiments are given in Table
4. Let P be a PUT andM be the set of mutants of P . We
start with the execution of an instrumented mutant using a
test case that kills the selected mutant. The instrumentation
is done to enable the observation of internal state which are
used to identify other mutants inM that can also be killed
using the same test case. Such mutants form a class. We
restart the process with the remaining mutants and continue
until no mutants are left to be classified or they are identi-
fied as equivalent.

We illustrate the approach using an example shown in
Figure 4. Consider the three possible mutants marked as
min1 to min3. Assume that we explicitly generate min1
and would like to know if a test set that kills min1 will also
kill any of the other two mutants. Since min1 and min2

are obtained by mutating a c-location, we will propagate
the effect to the p-location at L3. The necessary (but not
sufficient) condition at location L3 to kill these mutants are
given below.

Cmin1 : a != b ∨ (a > b ⊕ b > b)

Cmin2 : (a != -abs(a)) ∨ (a > b ⊕
-abs(a) > b)
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1. Create a list of all mutants for the given PUT in increas-
ing order of line number of the PUT. Let N be the num-
ber of possible mutants.

2. Set i = 0

3. Let Pi be the ith mutant.

4. If Pi is already classified to be equivalent or in a mutant
class then goto step 9.

5. Identify the condition that are needed to establish the
hierarchies for other intra-location and inter-location
mutants with Pi.

6. Check the conditions with theorem prover if they are
valid. If yes, mark the corresponding mutants and Pi

to belong to a single class.

7. Generate Pi with statements to observe satisfiability of
conditions identified in the step 5.

8. Identify a test case to kill Pi. Mark the mutants to be-
long to a single class for which conditions identified in
step 5 are satisfied while executing Pi with the test case
that kills Pi.

9. Set i = i + 1

10. If i ̸= N goto step 3.

Table 4: Steps for Experimental Study.

int min(int x, int y) {
L1: float m;

min1 min2
L2: m = a; m = b; m = -abs(a);

min3
L3: if (m > b) if (m != b)
L4: m = b;
L5:
L6: return m;

}

Figure 4: An example to illustrate the experimental ap-
proach.

Cmin3 : (a > b ⊕ a != b)

If the test case {x = −6, y = 2} is used to kill mu-
tant min1 then it is guaranteed that the same test case
will also kill min2 and min3. However, if the test case
{x = 0, y = 1} is used to kill mutant min1 then only
min3 will be killed. This can be observed by checking the
satisfiability of conditions given above for these test cases.
Therefore, if we use latter test case, min1 and min2 will be
the same class, whereas with former all three mutants will
belong to the same class.

In step 6, the identification of hierarchies require check-
ing validity of first-order quantifier-free logical formulas.

Let C be such a formula that we want to validate to deter-
mine if it holds at a location l in a program P . There are
three possibilities for the property to hold: (a)C is valid;(b)
C is satisfiable for some test cases; (c) C is false. For case
(c), we did not the put the required checks in the generated
mutant.

The following programs were considered for the empiri-
cal study.

compare_str The program is taken from [1] and is in-
tended to compares two strings. The specification re-
quires to return true if the given input strings are iden-
tical, otherwise false. However, the implementation
returns correct output for unequal length strings and
strings of equal length with the identical last charac-
ters. Thus, the strings “cat” and “mat” are reported to
be identical. The subtle issue, as mentioned in [1], is
that the probability of random selection of input which
will reveal the bug is very low. Probability that n
strings will expose the fault is 1 − (25/26)n [1]. In
our study, a strong mutant forced to select such an in-
put. The implemented program is a first-order mutant
of the intended program.

find This is an implementation of Hoare’s find algorithm.
This program and its buggy version are studied earlier
in [3, 10]. We have used the correct version of find al-
gorithm. One of the strong mutant forced selection of
input that detected it to be different from the incorrect
version. As noted in [3], for the buggy version, it is
extremely difficult to identify test case using random
selection. The buggy version has two faults and there-
fore is a second order mutant. Unlike previous studies,
we decided to consider the correct version and check
if the test set with 100% mutation score can also kill
the second order buggy mutant.

gcd This program computes the greatest common divisor
of given two positive integers.

iroot The program is taken from [16] and computes inte-
ger square root of a given positive integer. This was
given as an exercise to the students of first course in
structured programming. We observed that it was dif-
ficult to get a correct implementation.

min Computes minimum of two numbers and is also stud-
ied in [26, 27].

prime Tests if a given positive integer is prime. The im-
plementation has a subtle bug which causes it to give
incorrect result for only one input. The implemented
(faulty) program is directly representable as a first or-
der mutant of the intended program. It was required
to generate the test case that detects the fault.

selection This is a faulty implementation of selection sort
algorithm. The program is taken from the book [2]
which contains program with a single, hard-to-detect
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but realistic bug. In this case also, a test case detected
the fault.

triangle This is the famous program, first mentioned in
Myers [24], for testing whether the three given inte-
gers form a triangle and its classification.

tcas TCAS (Traffic Alert and Collision Avoidance Sys-
tem) is an aircraft conflict detection and resolution
system. The SIR Siemens suite [8, 32] includes an
ANSI C version of the resolution advisory component
of TCAS system along with 41 faulty versions. The
“Siemens” programs were assembled by Tom Ostrand
and colleagues at Siemens Corporate Research. Our
experiments include the 41 faulty versions and some
other mutants.

5.2 Results Discussion
For the above programs, we studied number of equivalent
mutants, number of mutant classes, operators with respect
to those mutants in each mutant class that cannot be killed
by the test cases used for other mutant classes. The statis-
tics for these programs is given in Table 5 and 6. The sav-
ings are calculated using the formula given below.

number of mutant classes
number of mutants− equivalent mutants

× 100

As can be observed in Table 6 the overall savings is above
90% in all the cases.

The maximum number of equivalent mutants and mutant
classes were found for the triangle program. The reason
for the higher number of equivalent mutants is due to the
redundant test a ≤ 0 ∨ b ≤ 0 ∨ c ≤ 0 in the presence of
another check that sum of two sides is more than the third
side. Also, the application of abs operator after initial test-
ing of values to be positive since all values are guaranteed
to be positive afterwards. Finally, the application of SVR
operator on test for equilateral triangle a = b ∧ b = c also
generates equivalent mutants.

For each of the above example, once the identification
of mutant classes was complete, we identified those mu-
tants in each class that cannot be killed by the test cases of
all other classes. The table reports the mutation operators
associated with such mutants.

In selective mutation study [27], it was found that the
mutation operators, ABS, AOR, LCR, ROR and UOI, were
sufficient for generating mutants. In our study, we also find
that the strong mutant were generated by these operators.
However, we also observed that some strong mutants were
generated by SVR operator. In one case we found that DER
operator too generated a strong mutant.

6 Threat to Validity
The threat to validity of our empirical results could be due
the set of programs used in the study. Although the pro-

grams are selected from the variety of sources, they can-
not be claimed to be representatives of set of all programs.
Our strategy requires pre-analysis to identify the relation-
ship among mutants.

In comparison, the selective mutation [27] does not re-
quire any pre-analysis to generate mutants for a program al-
though it may generate more mutants. The mutants are gen-
erated using a subset of set of operators defined in the previ-
ous study [20]. In contrast, our approach does not classify
operators but attempts to identify relationship among mu-
tants to avoid ignoring any mutant. Thus it is guaranteed
to ensure the quality of a test set. Although this enables in-
clusion of new operators without affecting the effectiveness
but increases the overall cost of testing.

We expect the cost of our technique to be more than se-
lective mutation but less compared to full mutation testing.
From the effectiveness point of view, if selective mutation
chooses appropriate set of mutants than it may be as ef-
fective as full mutation testing. Also, since the program
analysis in our study was done manually there is a possibil-
ity that the results may differ with a completely automated
analysis. Nevertheless, the results of empirical study pro-
vide some confidence in the approach.

7 Conclusions

Mutation testing is a powerful testing approach that can not
only ensure the checking of hypothesized faults but also the
generation of test data satisfying common structural cov-
erage criteria. The main difficulty faced in mutation test-
ing is due to the large number of mutant programs that can
be generated for a given implemented program. We have
given a strategy that suggests the ordering of the mutants
such that if a mutant is stronger than another, then killing
the stronger will automatically kill the weaker. This ap-
proach can significantly reduce the cost of mutation test-
ing. Although our approach ensures the same effectiveness
as full mutation testing, it is expensive than selective mu-
tation testing. To obtain the exact cost comparison we will
require extensive research on automation of our approach,
which we plan to pursue in future.

Identification of such hierarchies is also useful in the
quantitative assessment of the quality of fault detection ef-
fectiveness, since, with the knowledge about mutant hier-
archies, it is possible to reason if the mutation-adequacy
score includes strong mutants. This is particularly helpful
in directing the test effort with every step of the testing pro-
cess.

The issue in identifying all possible orderings is mainly
due to the undecidability of the problem and it also depends
on the complexity of the program. However as our empir-
ical study shows, a significant cost saving can be achieved
even if one can identify some of the possible orderings
among the mutants.

We have presented various conditions to identify the re-
lationship between mutants that can be analyzed locally
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Program Lines of Mutants Equivalent
code mutants

compare_str 26 111 9
find 65 464 36
gcd 23 136 13
iroot 26 134 5
min 21 53 3
prime 26 99 10
selection 55 263 38
triangle 37 524 59
tcas 174 85 2

Table 5: Statistics for programs considered in empirical study

Program Mutant Operators for Savings
classes strong mutants %

compare_str 7 ABS, ROR, RSR, SVR, UOI 93
find 5 ABS, ROR, UOI, SVR 99
gcd 4 ABS, AOR, ROR, UOI, SVR 97
iroot 4 AOR, CSR, UOI, DER 96
min 4 ABS, SVR, UOI 92
prime 4 CSR, ROR, UOI 95
selection 4 ABS, AOR, ROR, UOI 96
triangle 24 ABS, ROR, SVR 93
tcas 17 CRP, LCR, ROR, SVR 79

Table 6: Results for programs considered in empirical study

and thus can be evaluated in an effective way. Our work
gives theoretical proof and the empirical evaluation with
the examples taken from previous studies shows the fea-
sibility of idea and significant cost savings that can be
achieved. We found that the operators associated with
strong mutants were the same as those identified in selec-
tive mutation. However in addition SVR and DER opera-
tors also generated strong mutants in some cases.

As the kind of analysis required to establish hierarchies
is already part of various program analysis such as constant
propagation, and transformation tools, and also tools like
CVC3 [5] are already available, the given approach should
be practical.
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