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In this day and age, software is an indispensable part of our per diem endeavours, thereby keeping a 

check on exploitable vulnerabilities has become a vital function of a software firm. The motivation of 

this paper is to have better understanding of vulnerabilities, creating a tool for the industry practitioners 

to identify a critical vulnerability that could be detrimental for the firm’s assets. In this article, 1999 

vulnerabilities related to Google Chrome was analysed to understand the behaviour of vulnerabilities. 

The identification of trends and patterns using topic modelling technique led to extraction of topics. The 

extricated topics were then implemented in 10 classifiers to foresee the criticality of the vulnerability. 

The resulting performances were also assessed with the classifiers without implementing topic modelling 

techniques. A 10-fold validation was conducted on the suggested prediction model. 

 

Povzetek: Metoda za ugotavljanje občutljivosti programske opreme je narejena s pomočjo tem. 

 

 
1   Introduction 
 

Enslavement towards software has been ferociously 

intensifying by leaps and bounds in the present era, 

consequently, a call for unswerving software system has 

become the need of the hour. The snowballing 

complexities in order to meet the demands of user and to 

survive in the industry, often escalates the vulnerabilities 

in the software. Any software employed in a 

project/application is subjected to some inadvertent 

shortcomings, in other words vulnerabilities that might 

turn out to be a liability. Such exposure encourages an/a 

attacker/hacker to disturb the software project/application, 

hampering the security of the system. A secure system is, 

thus a highly demanded pursuit for a developer as well as 

a consumer guaranteeing a smooth working even under 

any outbreak. Nevertheless, in order to avoid any attack, 

these vulnerabilities have to be deeply analysed by a 

software development team in order to fortify a system. 

Vulnerabilities in a software project/application liberates 

an attacker to squander vital data as well as interfere with 

the security.  Countless episodes of losses due to 

vulnerability attack has been reported causing not only 

monetary loss but as well as eminence of a company. For 

instance, due to virus, namely, Code Red Worm, a loss of 

$2.6 billion was incurred as reported in the study by 

(Telang & Wattal, 2007). The National Vulnerability 

 
1 Source: 

https://nvd.nist.gov/vuln/search/results?form_type=Basic

&results_type=overview&search_type=all 

Database (NVD) aims at amassing statistics on software 

vulnerabilities and has a record of 152780 vulnerabilities 

till date1. The incidents due to vulnerabilities have been 

reported to Computer Emergency Response Team 

(CERT) and around 53117 security incidents were 

handled by Indian CERT team in the year 2017, 

nonetheless, the number hiked to 208456 in 2018 whereas 

it was 394499 in 20192. Looking at the alarming rate of 

proliferating records on vulnerabilities, it draws attention 

of researchers to examine the scenario for the betterment 

of the industry.  

The risk attached to these software vulnerabilities, given 

the fact that gigantic amount of classified data is getting 

accrued on the daily basis, if corrective measures not taken 

can lead to serious collisions whereas, on the other hand, 

mammoth-volume, textual data on vulnerability 

accumulating each year needs to be tamed for better 

analysis and research in the field of software 

vulnerabilities (Malhotra, 2021). Moreover, this gives a 

direction to a software maintenance team concentrate on 

highly vulnerable part in the software project/application 

curtailing false positive as well (Stuckman et al., 2016). 

This brings the focus to develop an efficient algorithm that 

condenses the corpus as well as converges the limited 

resources towards a highly vulnerable part. In this paper, 

topic modelling, state of the art technique is deployed to 

reduce the textual descriptions into meaningful clusters 

2 https://www.cert-in.org.in 
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called topics. Three different Topic modelling algorithms 

were considered for this study, namely Latent Semantic 

Indexing (LSI), Latent Dirichlet Allocation (LDiA) and 

lastly, Non-Negative Matrix Factorization (NMF), to 

asses each of their performance when combined with the 

prediction model.  

The colossal quantity of vulnerability data can be 

reduced by labelling them as critical and non-critical. The 

prediction of the criticality of vulnerabilities aids software 

maintenance team to drive the limited resources towards 

the critical vulnerabilities. However, the vulnerability 

prediction model as two aspects to it explicitly, the 

features of the vulnerability data and the classifier. For this 

study, Logistic Regression (LR), Linear Discriminant 

Analysis (LDA), K-Nearest Neighbours (KNN), Decision 

Tree (DT), Artificial Neural Network (ANN), Naïve 

Bayes’ (NB), Linear Support Vector Machine (LSVM), 

Support Vector Machine (SVM), Random Forest (RF), 

and lastly, Gaussian Naïve Bayes’ (GNB). 

This study is noteworthy for the fact that it helps in 

mathematically modelling vulnerability text data, thereby 

furnishing with meaningful results obtained empirically. 

The core objective of this study is to build a highly 

accurate vulnerability prediction model to categorize 

vulnerability data into meaningful topics that trains state-

of-the art classifiers to renders enriched prediction model. 

In order to achieve this goal, vulnerability data of Google 

Chrome, mined from the National Vulnerability Database 

(NVD), was pre-processed to configure topics using three 

Topic modelling techniques. The deduced topics 

contributed as training set for the learning algorithms to 

envisage the criticality of the vulnerability identified in 

Google Chrome. The models are validated using k-fold 

validation technique and compared with prediction model 

without considering procuring topics as a feature 

reduction scheme. The objectives of the research study is 

fulfilled by resolving the following research questions 

(RQ) that were investigated in this study,  

RQ1. What is the performance of topic modelling when 

combined with classifiers?  

RQ2. What is the performance of the classifier without 

incorporating any of the topic modelling technique? 

RQ3. Which of the Machine Learning (ML) classifiers 

shows improvement in the performance? 

In our knowledge, there has not been any work based on 

integration and comparative study of topic modelling 

techniques and machine learning classifiers. The dataset 

used to perform this study has also not been implemented 

in any previous literature. The key contribution 

manifested in this research article are, (1) to develop 

vulnerability prediction model using different topic 

modelling techniques and Machine learning classifiers, (2) 

to examine the performance of the developed models (3) 

to reconnoitre the effect of not incorporating topic 

modelling (4) adding new aspects to the literature for the 

experts to benefit from.  

The paper is spread over five sections: Past 

literature articles are discussed elaborately in section 2, in 

order to overcome the research gap, a methodology is 

propositioned in section 3, the proposed model is 

illustrated and validated in section 4, Threats to internal as 

well as external Validity is examined in section 5 and to 

sum up the study section 5 concludes the study. 

 

2   Related work 
 

There are plenty of literature on vulnerability prediction in 

software project/application using machine learning 

techniques as well as feature reduction tools, establishing 

suitable results. (Walden et al., 2014) compared the effect 

of software metrics with that of bag of words on the 

vulnerability prediction model. A lot of work has been 

done in other areas of vulnerability like developing 

conventional models, optimisation model, release plans, 

cost models. (Kansal et al., 2016) developed a 

mathematical model for vulnerability detection and a cost 

model for patching after the detection. (Zerkane, 2018) 

examined the effect of vulnerabilities in software defined 

networking using CVSS score. (Kansal et al., 2018) made 

an effort of optimising the cost of after release 

maintenance issue by combining vulnerability fixing and 

fault fixing into single patch.  

Many mathematical optimization techniques 

have been used to optimally prioritise vulnerabilities. 

(Sharma et al., 2019) uses MCDM techniques, namely 

VIKOR and TOPSIS to prioritise vulnerabilities. A novel 

optimization tool, VULCAN was developed by (Farris et 

al., 2018) to manage vulnerabilities with respect to 

exposure and remediation. A comparative study between 

best worst method and AHP was studied by (Anjum, 

Agarwal, et al., 2020), following which, (Anjum, Kapur, 

et al., 2020) integrated MCDM and ML technique to 

develop bi-objection optimization problem prioritising the 

most critical vulnerability. (Narang et al., 2018) 

incorporated the effect of software vulnerabilities inter 

dependency attribute in prioritising them in accordance to 

their critical levels with the help of DEMATEL.  

Some Researchers are examining different 

feature reduction schemes to enhance the performances of 

the vulnerability prediction model. (Stuckman et al., 2016) 

examined the influence of dimension reduction techniques 

like PCA, Feature Synthesis, and their respective variant, 

on foreseeing vulnerabilities located in open source 

applications in PHP. (Ji et al., 2018) describes briefly 

different technologies implemented along with discussing 

pioneer work in the areas of automatic vulnerability 

detection, exploitation and patching. (Theisen & 

Williams, 2020) have used different software metrics 

along with features obtained through text mining and 

analysed the performance of Random Forest, Decision 

Trees, Logistic Regression and Naive Bayes. 

(Kalouptsoglou et al., 2020) develops model using deep 

learning and software metrics with promising results 

taking into consideration multiple projects for generalised 

results. A vulnerability prediction model was developed 

by (Filus et al., 2020) using RNN and CNN. An inter-
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comparative study was performed by (Wu et al., 2017) to 

asses deep learning techniques like LSTM, CNN as well  

as reviewing the conventional machine learning 

techniques. (Shahriar & Haddad, 2016) implemented LSI 

to obtain smaller source code causing object injection 

vulnerability in a system. (Kudjo et al., 2020) framed a 

model using bellwether analysis to select subset for 

vulnerability prediction. (Rehurek & Sojka, 2010) 

discusses the importance of applying topic modelling 

techniques. A framework called SySeVR was developed 

by (Li et al., 2021) using deep learning techniques to 

identify semantics and syntax characteristics to spot the 

vulnerabilities in C/C++ source codes. A correlation was 

established between software metrics and the prevailing 

vulnerabilities by (Alves et al., 2016) determining answers 

to multiple research questions. A complete structure was 

suggested by (Kumar & Sharma, 2017) to manage 

vulnerabilities in an optimal manner.  

 

3   Proposed methodology 
 

In this section, the framework of the study is explained 

step by step as depicted by figure 1. In figure 1, orange 

depicts phase 1 that is extraction of vulnerability datasets, 

green represents phase 2 that is the extracted dataset is pre-

processed and prepared for further analysis, blue 

represents phase 3 that is feature mining and training of 

classifiers using tokenised data as well as the generated 

topics as features and lastly black represents phase 4 

where, the performance of the prediction model is 

evaluated. 

 
Exploring huge text data manually is taxing and arduous 

job which have greater chances to be erroneous and have 

discrepancies whereas shrinking data into relevant topics 

with the help of topic modelling can be considered as 

solution. Topic modelling is considered to be the most 

efficient unsupervised  data-mining algorithm,  

discovering relationships between text data (Vanamala et 

al., 2020). This condenses the dimension of data by 

amputating superfluous features that do not weigh in 

further analysis. For our analysis, we have considered 

three topic modelling algorithms, LSI, LDiA and NMF. 

The rudimentary concept behind topic modelling is to 

convert large corpus into vectors with the help of term 

frequency or inverse term frequency thereby, dividing and 

optimized by a probability model or matrix factorization 

into topics which is an array of words or tokens. 

LSI is a robust topic mining technique, having a knack for 

noise resistance and transforming large dimensional 

vector spaces to smaller dimensional vector spaces with 

the help of singular value decomposition. (Papadimitriou 

et al., 2000) endeavours to study the mathematics behind 

the LSI performance and its’s ability to divulge in 

statistical properties of corpus. LSI and LDiA both have 

probabilistic approach where as NMF is a matrix 

factorization paradigm that decomposes high dimensional 

array to a non-negative and low dimensional one. Non-

Negative being the only criteria, NMF uses term 

frequency-inverse document frequency (TF-IDF) whereas 

LDiA and LSI uses frequency of bag of words or term 

frequency (TF) for feature extraction since the paradigm 

reads only positive integer frequencies and not a real 

number.  

The topics hence generated directs toward 

ameliorated results when read as an input by machine 

learning classifiers. For the experiment we have selected 

10 classifiers that are most commonly used to assess any 

suggested model, namely Logistic Regression (LR), 

Linear Discriminant Analysis (LDA), K-Nearest 

Neighbours (KNN), Decision Tree (DT), Artificial Neural 

Network (ANN), Naïve Bayes’ (NB), Linear Support 

Extraction of Google 
Chrome's Vulnerabilty 
data from NVD for all 

versions

Preprocessing that 
includes removal of 
sttopwords, special 

characters, 
lowercasing, 
tokenization.

All tokens act as 
feature

Training classifiers 
using all features as 

input
LR, LDA, KNN, DT, 
ANN, NB, LSVM, 

SVM, RF, GNB

Assesment of output 
using all featuress

Creation of 10 using 3 
Topic modelling 

techniques,
LDiA, LSI, NMF

Training classifers 
using topics as input
LR, LDA, KNN, DT, 
ANN, NB, LSVM, 

SVM, RF, GNB

Assesment of output 
using reduced topics

Did topics yield 
improved accuracy of 
the prediction model?

Yes, use topics to 
predict the criticality 
of Google Chrome's 

vulnerabilities

No, use all tokens as 
features to predict the 

criticality of Google 
Chrome's 

vulnerabilities

Phase 1 Phase 2 Phase 3 Phase 4 

Figure 1: A general framework of the proposed study. 
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Vector Machine (LSVM), Support Vector Machine 

(SVM), Random Forest (RF), and lastly, Gaussian Naïve 

Bayes’ (GNB).  

By far, there are many evaluation markers to assess 

machine learning tools and traditionally ones are True 

Positives, True Negatives, False Negatives and False 

Positives that form the confusion matrix. In this study, the 

performance of the 10 classifiers were assessed with the 

help of Accuracy, F-measure, Recall and Precision. These 

measure were well explained by (Bulut et al., 2019) in 

their corresponding study and mostly used in past 

literature (Dam et al., 2016; Theisen & Williams, 2020). 

 

4   Numerical analysis 
 

4.1 Data collection 
 
For the numerical, a dataset of 1999 vulnerabilities 

captured in Google’s product “chrome” was collected 

manually from National Vulnerability Database (NVD). 

Google Chrome web application was chosen because its 

abundantly utilized web browser in the market 

(http://www.netmarketshare.com) for e-banking, social 

media, information sharing, consequently making it 

highly exploitable application to access sensitive data of a 

user. Additionally, many researchers have used google 

chrome to conduct their respective experiment, for 

instance, (Kudjo et al., 2020; Nguyen et al., 2016; 

Roumani et al., 2015).  

The data consists of Vulnerabilities Ids, Summary of the 

vulnerabilities and CVSS Severity for all the versions 

(more than 20 available). The CVSS is computed in two 

ways, CVSS 3.0 and CVSS 2.0. For our analysis, the latter 

score has been considered, since the score value and the 

severity level were available for all listed vulnerabilities. 

The CVSS score quantities the criticality of a vulnerability 

numerically between 1 to 10. The criticality level of the 

stated vulnerabilities was tagged into three categories, 

namely, High, Medium and Low. For easy computation 

and binary classification, the medium severity level was 

united with Low severity level as non-critical 

vulnerabilities, whereas High severity level was termed as 

critical vulnerability. Table 1 describes the dataset.  

 

Table 1:  Description of vulnerability dataset. 

Project Google Chrome 

No. of Vulnerabilities 1999 

Range of years 2021-2011 

Versions <20 

No. of critical Vulnerabilities 510 

No. of Non-critical 

Vulnerabilities 

1489 

 

4.2   Data pre-processing 
 
Subsequently, the vulnerability description is mined to 

extract useful information with the help of pre-processing 

methods, thereby optimising the results. Special 

characters, punctuation, blank spaces occupy memory 

spaces as well as hamper the result of the experiment, 

hence removing such irrelevant information acts as a 

corrective measure (Vijayarani et al., 2015). Next, with the 

help of Python packages, Natural Language Toolkit 

(NLTK) and pandas, the words more than 3 letter in the 

vulnerability description column were retrieved in 

lowercase, replacing other special characters by a blank 

space, the stop words were eliminated and each document 

was tokenized into list of words for further experiment. 

The other packages put to use were ‘numpy’ and 

‘matplotlib’ for data management and visualization 

whereas ‘sklearn’ library abetted in importing TFIDF and 

Count vectorizer for feature extraction, LDiA, LSI and 

NMF for topic modelling and lastly, machine learning 

classifiers to determine the criticality of the 

vulnerabilities.  

 

4.3   Topic modelling 
 

The list of words or token obtained after pre-processing 

vulnerability data is considered as features of the 

respective study. The description of each vulnerability is 

converted to their respective feature vector that stores 

frequency of each token in a particular vulnerability 

document. Following which, Count Vectorizer and TF-

IDF screens these features further by assigning a weight 

of importance. This not only resolves the tedious job to 

handle large corpus but also cuts down the expense 

involved and the computation time.  

To improve the performance of the prediction models, all 

the vulnerability documents are iterated to capitulate 

unique tokens as dictionary or bag-of-words. The subset 

of 100 words was considered as input for LDiA, LSI and 

NMF topic models along with number of topics as 10. The 

number of words and topics was chosen as it is observed 

to work well in the past literature (Dam et al., 2016; 

Mounika et al., 2019; Vanamala et al., 2020). Each topic 

created using topic modelling  

 

techniques is a linear combination of unique words and 

their respective weightage. For example, Topic  

0 obtained from LSI topic modelling technique is 

represented as: 

 

[('remote' * 0.4358473796441817) + ('crafted' * 

0.3319362678157508) + ('attacker' * 0.3159864058882791) + 

('allowed' * 0.31502006087883194) + ('prior' * 

0.31419760562296395) + ('html' * 0.26029878325415207) + 

('page' * 0.25179755400065057) + ('potentially' * 

0.14941933391958886) + ('attackers' * 0.14537824144767378) 

+ ('allows' * 0.12949807741439195)] 

 

https://netmarketshare.com/?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
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From the above equation, it can be noted that the tokens: 

“remote, crafted, attacker, allowed, prior, html, page, 

potentially, attackers, allows” conjointly form Topic 0 

as conferred by LSI topic modelling result. The numerical  

 

part attached to each token in Topic 0 signifies the 

weightage of the word in the respective topic. The topics 

created by LSI, LDiA and NMF and each token’s relative 

importance in their respective topics is depicted in figure 

2, 3 and 4.  
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(i) 

 
(j) 

 Fig 2: Relative importance of tokens in respective topics when LSI was performed. 
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(g) 

 
(h) 

 
(i) 

 
(j) 

 Fig 3: Relative importance of tokens in respective topics when LDA was performed. 
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(e) (f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 Figure 4: Relative importance of tokens in respective topics when NMF was performed. 

 
 
From fig 2 (a)-(j), the tokens: “remote, attackers, policy, 

allows, bounds, extension, free, process, windows, 

vendors” in the respective topics have the highest 

weightage ranging between 0.285 and 0.526 when LSI 

was performed. The most influencing tokens in respective 

topics as depicted in fig 3(a)-(j) obtained from LDA were 

“attacker, audio, file, bounds, attackers, corruption, 

overflow, remote, extension, windows”. Lastly, from 

NMF analysis, tokens “heap, vulnerability, policy, 

bounds, multiple, omnibox, process, windows, 

extension, used” weighed the most in their corresponding 

topic clusters.  

 

4.4   Evaluations 
 

RQ1. What is the performance of topic modelling when 

combined with classifiers?  

The results of topics extracted and used as input for the 10 

classifiers is given by table 2. From the table, it can be 

observed that when LR, KNN, DT, ANN, NB, RF and 

GNB combined with LSI gives an accuracy level of 

0.8175, 0.82, 0.8025, 0.8175, 0.7975, 0.8175 and 0.7975 

respectively. NMF combined with LDA, LSVM and SVM 

gives an accuracy level of 0.8275, 0.82, and 0.785. Lastly, 

it can be observed that LDiA has the poorest performance 

when combined the 10 classifiers with the accuracy level 

ranging between 0.7175 and 0.7525. A pictorial 

representation of accuracy levels of all classifiers with 

respect to topic modelling technique is given by figure 5.  

From figure 6 and table 2, F1- measure can be analysed 

for different classifiers subject to a given topic modelling 

technique. Classifiers with LDiA has overall same level of 

F1-measure except for the classifier KNN that shows 

highest level of F1-measure at 0.7269. On the other hand, 

LSI’s performance with the classifiers has an average F1-

measure around 0.8 with highest at 0.8206 for ANN 

classifier and lowest for SVM at 0.7415. Last of all, NMF 

with the classifiers depicts a mixed performance of F1-

measure ranging between the lowermost at 0.6462 for NB 

and reaching the peak at 0.8225 for LDA. 

Lastly, the tabular results of performance measures, Recall 

and Precision are given by table 2 and line diagram given 

by figure 7 and figure 8. Classifier GNB with topic 

modelling technique, NMF results in lowest recall value 

at 0.6925 whereas lowermost recall value for classifier 

SVM with LSI was 0.7225, and lastly for classifier DT 

with LDiA, it was 0.7175. However, NB with the topic 

modelling technique NMF has the lowest Precision value 

at 0.5662, classifier DT with topic modelling technique 

LSI has the lowest precision value at 0.8005, but multiple 

classifiers had poor Precision value with LDiA at 0.5663. 

A low recall and high precision value imply how 

accurately the model is returning positive predicted value. 

For all the low recall values recorded, it was observed that 

they had more or less high precision values implying that 

the suggested model labels a critical vulnerability 

correctly, however the number of false negatives is high 

due to high precision which indicates that the model is 

sometimes missing out critical vulnerabilities. In general, 

one cannot help put notice, the opposite behaviour of F1-

measure and precision, whereas accuracy is in parallel 

with recall implying the goodness fit of the proposed 
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model. But from the results it was also noted that many 

classifiers had a high recall and high precision values 

signifying the fact that the model was accurately labelling 

a critical vulnerability.

 

   Table 2: Output of classifiers’ performance measures. 

 

NMF LSI LDiA 

Classifiers

' Name Precision Recall F1-Score Acc. Precision Recall F1-Score Acc. Precision Recall 
F1-

Score 
Acc. 

 0.7451  0.77  0.7419 0.772 0.8194 0.817 0.8184 0.8175 0.5663 0.752 0.646 0.7525 LR 

 0.8204  0.82  0.8225 0.827 0.8173 0.812 0.8146 0.8125 0.5663 0.752 0.646 0.7525 LDA 

 0.7982  0.79  0.7978 0.797 0.8213 0.82 0.8206 0.82 0.7193 0.745 0.726 0.745 KNN 

 0.7729  0.78  0.7759 0.78  0.8005 0.802 0.8015 0.8025 0.6593 0.717 0.674 0.7175 DT 

 0.8005  0.80  0.8015 0.802 0.8251 0.817 0.8206 0.8175 0.5663 0.752 0.646 0.7525 ANN 

 0.5662  0.75  0.6462 0.752 0.8257 0.797 0.8061 0.7975 0.5663 0.752 0.646 0.7525 NB 

 0.8128  0.82  0.8152 0.82  0.8194 0.817 0.8184 0.8175 0.5663 0.752 0.646 0.7525 LSVM 

 0.7636  0.78  0.7535 
0.785

  
0.8326 0.722 0.7415 0.7225 0.5663 0.752 0.646 0.7525 SVM 

 0.7584  0.78  0.7380 0.78  0.8125 0.817 0.8145 0.8175 0.5663 0.752 0.646 0.7525 RF 

 0.8271 0.692  0.7133  0.69 0.8257 0.797 0.8061 0.7975 0.6682 0.747 0.660 0.7475 GNB 

 
RQ2. What is the performance of the classifier without 

incorporating any of the topic modelling technique? 

The line graph illustrated by figure 5, 6, 7, 8 represents the 

accuracy, F1-measure, Recall and Precision levels for 

classifier when using topic modelling techniques and 

without topic. Modelling techniques. Even though 

accuracy level is oscillating between 0.71 and 0.89 

whereas F-measure fluctuating between 0.7203 and 

0.8904, it can be observed that the classifiers mostly show 

high precision and high recall values except for the 

classifier LDA. A high recall indicates that the model is 

predicting a vulnerability as non-critical but a critical 

vulnerability is not labelled as non-critical. However, high 

precision value with high recall is considered as perfect 

combination since the model results in high number of true 

positives implying that the critical vulnerabilities are 

predicted correctly. 

 

 
Figure 5: Comparative study of TP vs without TP using 

accuracy. 

 

 
Figure 6: Comparative study of TP vs without TP using 

F1 score. 

 

 
Figure 7: Comparative study of TP vs without TP using 

recall. 

 

 

 
Figure 8: Comparative study of TP vs without TP using 

precision. 
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RQ3. Which of the Machine Learning (ML) classifiers 

shows improvement in the performance? 

Looking at the figures 5,6,7,8 and table 2, the Machine 

learning classifier GNB performs the best when combined 

with topic modelling technique LSI and machine learning 

classifier LDA performs best  

when combined with topic modelling technique NMF. 

While other classifiers for the given dataset show no sign 

of improvement when the features are reduced and 

combined into topics. The reason behind no improvement 

is simply due to over estimation while using topic 

modelling techniques. 

 

4.6   Model validation 
 
In order to study the impact of features extracted 

mechanically by topic modelling techniques on 10 

classifiers while developing vulnerability prediction 

model, a 10 cross-fold validation experiment was 

conducted.  The vulnerability dataset was divided into 10 

folds: 9 parts as training set while 1 part to test the model. 

Hence for each unique topic modelling technique and each 

classifier, 10 different performances results were 

obtained. Figure 9, 10, 11 depicts the averaged-out 

performance measure for each classifier under three 

different topic modelling technique. Accuracy was used as 

performance measure for this validation experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: 10-fold validation for LSI model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: 10-fold validation for NMF model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: 10-fold validation for LDiA model. 

 
From figure 9, it can be noted that vulnerability prediction 

model using LSI and ANN outperforms with accuracy 

being 0.8555 whereas LSI fused with classifier NB 

performs the least with accuracy level at 0.7429, while 

other classifiers with LSI performed between the range. 

Analysing figure 10, one cannot help but notice the poor 

performance of the classifier, GNB with accuracy at 

0.7898, on the other hand LDA has the highest accuracy 

at 0.8499. Lastly, from figure 11, the accuracy level 

ranging between 0.7098 (GNB) and 0.7456 (KNN) for 

LDiA is observed. The classifiers, namely ANN, NB, 

LSVM, SVM and RF have almost same accuracy level as 

0.7429. Overall, after 10-fold validation, LSI is most 

impactful feature reduction tool when conjointly 

performed with the machine learning tool, ANN.   

 

5   Threats to validity 
 

A Pragmatic study can be intimidated by number of 

limitations internally as well as externally, making it 

important to be worth of discussion. While a threat to 

internal validity describes the elements that might have an 

impact on the study’s output on the other hand a threat to 

external validity aims at the generalizing the output. In this 

study, the vulnerability description was mined to extract 

features and CVSS score to determine the criticality of the  

respective vulnerability for the prediction model however, 

other factors like CVSS metrics, were not taken into 

considerations, which might have an impact on the 

performance of the prediction model. Another threat to 

internal validity of the study is the vulnerability records 

was not documented during the period of this study. A 

statistical test was not conducted to verify the statistical 

significance of the results which gives a direction for 

future work. 

Subsequently, the threats to external validity in this study 

was the dataset was limited to one project which cannot 

infer generalized results for other datasets, adding 

biasness to the output. The reason behind this is that a 

vulnerability of high criticality level is not inevitably of 

same criticality in a different project dataset. In this study  
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we have worked on a web application’s vulnerability 

dataset, but the results may differ for other applications in 

written in different languages or Android application. The 

performance measures to assess the learning algorithms 

for the prediction model were Accuracy, F-measure, recall 

and precision, nonetheless there other measures as well for 

instance, Area under Receiver operating characteristics 

curve, Welch t-test, cliff’s delta effect size etc. For the 

empirical results, 10 machine learning algorithms were 

deployed, but there are many more algorithms to be 

validated for universal result. 

 

6   Conclusion 
 

This study focuses on the impact of topic modelling 

techniques on the performances of the classifiers labelling 

vulnerabilities as critical or non-critical. The topic 

extracted from the vulnerability description condenses the 

textual data, thereby captures the significance portion and 

eradicating the irrelevant text. In order to perform the 

analysis, we have extracted a vulnerability dataset for the 

most used web application, Google Chrome. The topics 

were generated with the help of three topic modelling 

techniques namely, LSI, NMF, LDiA. These spawned 

topics were used as input in 10 most commonly used 

classifiers. The results of the suggested methodology were 

compared with that of the classifiers without integrating 

topic modelling inputs.  

All in all, one can conclude from the performed 

experiment that most of the classifiers perform best when 

not combined with topic modelling techniques except for 

GNB and LDA. Classifier GNB with LSI has an accuracy 

of 0.7975 whereas when LDA performs with NMF has an 

accuracy of 0.8275. However, individually considering 

the classifiers performance with topic modelling 

technique one can state that the performances are at par 

excellence. 

Future work can be directed toward three courses. Firstly, 

the proposed methodology can be validated on software 

application database such as PHP application, web 

applications, mobile applications and applications from 

various fields like finance, education, banking, energy 

utility etc. The second direction is incorporating 

techniques to balance the datasets. An imbalanced dataset 

does not result in high accuracy and performance of the 

prediction model. Hence incorporating sampling 

techniques can enhance the results. The third approach is 

that for this study, the vulnerability description is used to 

extract features, but there are multiple factors that improve 

and deliver a generalised result.  
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