
https://doi.org/10.31449/inf.v47i6.3714 Informatica 47 (2023) 97–104 97

Towards an Efficient Approach Using Graph-Based Evolutionary

Algorithm for IoT Botnet Detection

Quoc-Dung Ngo1, Huy-Trung Nguyen2
1Posts and Telecommunications Institute of Technology, Hanoi, 10000, Vietnam
2People’s Security Academy, Hanoi, 10000, Vietnam

E-mails: dungnq@ptit.edu.vn, huytrung.nguyen.hvan@gmail.com

Keywords: IoT botnet, evolutionary algorithm, IoT security, PSI graph

Received: September 1, 2021

In recent years, a large number of Internet of Things devices are used in life, many of which are vulnerable

to attacks from a security perspective. Botnet malware is one of the main threats to IoT devices. Hence

detection of IoT botnet is one of the most important challenge for IoT devices. This paper proposes an IoT

botnet detection approach based on PSI graph data combine with evolutionary algorithm-based

technique. In recent years, a large number of Internet of Things devices are used in life, many of which

are vulnerable to attacks from a security perspective. Botnet malware is one of the main threats to IoT

devices. Hence detection of IoT botnets is one of the most important challenges for IoT devices. In the

paper, a IoT botnet detection approach based on PSI graph analysis by using the evolutionary algorithm-

based technique. It applies bacterial evolution algorithm (BEA) in the training process on PSI graph

multi-architecture IoT Botnet data to detect IoT Botnet. The PSI graphs were extracted from executable

files and transform into vectors to feed into the classical machine learning classifiers. The result of the

classifiers is then combine using soft voting method with BEA. The proposed method has achieved good

experimental results (i.e., Accuracy at 95.30%, F1 at 96.15%). The approach also achieves a relatively

low false-positive rate at 4.59%.

Povzetek: Predlagan je pristop za odkrivanje botnetov IoT z uporabo PSI grafov in evolucijskega

algoritma.

1 Introduction
The fourth industrial revolution explicitly resulted in the

boundless growing scale of the Internet of things globally.

For instance, the number of connected devices was

forecasted by Statista [1] to reach the milestone of 75.4

billion in the next 5 years. This means that IoT application

and devices have been increasing their presence in every

daily activity. Nevertheless, this popularization has

exposed myriads of important information security

matters namely violation of data breach, privacy, etc. In

these problems, malicious code has emerged in popularity.

There are several categories of malwares but ransomware

and botnet are the two types having unique behaviors.

A botnet is a group of internet-connected devices

infected by malware that allow cyber-criminals to control

them. Botnets carry out many malicious behaviors such as

data theft, unauthorized access, credentials leaks,

unauthorized access, data theft and distributed denial-of-

service (DDoS) [2], [3]. Along with the immense growing

of Internet of things application, there have been countless

number of botnet attacks originated from IoT devices. For

instance, the legendary DDoS attack that turn half of the

Corresponding Author

internet down for several hours in 2016 was launched by

Mirai botnet from about 1.2 million infected devices [4].

Besides, successors of Mirai known as Reaper and Hajime

also infect IoT devices then turn them into bots for DDoS

purposes.

To alleviate the destruction of IoT botnet attacks,

security researchers have been frequently examining on

state-of-art malware detection techniques. There is some

noticeable effort on fitting rule-based methods in

analyzing abnormal traffic [5], leveraging machine

learning based classifier on engineered sets of features

such as opcodes [6], processor contexts [7], etc. From the

point of view of a security researcher, malware detection

technique can be divided into two categories: static and

dynamic analysis.

Dynamic analysis [8] requires a separated and

supervised environment to executing then monitoring the

suspicious executables to record its footprints including

system calls, network traffic and register values. The most

challenging aspect of dynamic analysis is the process of

designing and constructing an appropriate virtual machine

that has the capabilities of luring the malware to active all

mailto:dungnq@ptit.edu.vn
mailto:huytrung.nguyen.hvan@gmail.com

98 Informatica 47 (2023) 97–104 Q-D. Ngo et al.

its characteristic. Furthermore, IoT malware can operate

on multiple architecture namely SPARC, ARM, MIPS,

x86, PowerPC. Hence, virtualizing an environment that

satisfies all the action conditions of the IoT botnet is

expensive. In other words, the most critical drawback

when applying dynamic analysis for IoT malware is the

technical difficulties in building a suitable environment

for the fullest activation of each malicious samples.

Contrarily, static analysis [9] leveraged a wide range

of techniques to identify the malicious characteristic

without execution. Evaluated features in static analysis

include printable strings information, grayscale images,

control flow graph, opcodes, etc. The plus points of this

method are not only limited to the ability of depicting the

structure and functionality of multi-arch malware but also

included the reduction of computational resource since it

does not require any supervised environment. In addition,

static analysis ensure the safety of the system as well as

enforcing the ethical constraints [10] because of the lack

of sample execution. Although static analysis has its own

drawbacks in handling obfuscated files, there are many

proposals to solve this problem with a satisfactory result.

In brief, static analysis is a feasible solution in detection

IoT malware [11].

In the related study which nominated PSI graph [9] as

a novel feature in detecting IoT botnet, Nguyen et al. only

focused on the overall structure of the PSI graph.

According to the proposed hypothesis, PSI graph contains

a huge number of executables paths of an executable file,

including both normal and abnormal paths. However,

graph exploration is an expensive operation according to

the number of vertices as well as the interconnection

between them. Therefore, if it is possible to efficiently

extract the necessary route which depict the characteristic

of the original PSI graph, the computational complexity of

the entire botnet detection process would be greatly

reduced.

The paper expands the research results of [9]

combined with an evolutionary algorithm into the

ensemble process aimed towards an effective method in

detecting IoT botnets. In summary, the key contributions

of this work are:

(1) Proposing an approach in IoT botnet detection

model that bases on graph data combine with evolutionary

algorithm.

(2) Experimenting the proposed method with large

IoT Botnet datasets result in higher accuracy than normal

voting method for ensembling weak learner.

In addition to the presented content, the rest of the

paper is structured as follows: Section 2 presents related

works in the research field; then Section 3 describes in

detail the proposed method; then describes the empirical

data set and evaluation criteria; Finally, the analysis and

evaluation of the experimental results and conclusions.

2 Related works
The process of analyzing malware samples can be

categorized into static and dynamic analysis. In general,

static analysis can depict the structure and maliciousness

without the need of executing the malware sample [9]. On

the other hand, dynamic analysis aims to investigate the

behavior of a malware by activating its sample in a

supervised environment [8]. Furthermore, there is a

combination inherited the advantages of both dynamic and

static analysis techniques which was known as hybrid

analysis [12].

There is a featured characteristic of IoT botnets which

known as the diversity of operating architectures such as

x86, MIPS, ARM, PowerPC [13]. In addition, according

to the requirements of dynamic analysis method, it would

be costly to simulate an entire environment of a single

architecture to perform dynamic analysis techniques.

Therefore, when it comes to investigate IoT botnets, static

analysis methods allow researchers to solve multi-

architecture issues and mitigate the limitations of dynamic

analysis.

In recent years, the number and complexity as well as

the notorious level of malwares have been sky-rocketed.

While signature-based classifier [14] were almost useless

in detecting novel types of malwares, security researchers

often leverage Machine Learning algorithms as an

alternate yet effective solution to deal with unseen

malwares [15]. Besides, evolutionary algorithms and their

variants are another considerable technique to deal with

the rapid mutation of unseen malwares [16], [17], [18],

[19].

An overview of general application of evolutionary

algorithms on rule-based system was described by Shafiq

et al. in [17]. This comparative study leveraged static

features from executables then picked five well-known

evolutionary algorithms including XSC, GAssist-ADI,

UCS, SLAVE, GAssist-Intervalar and benchmarking

these against another five non-evolutionary algorithms in

classifying malicious executables. The experiment dataset

consisted of 11,786 Window PE in which 1,447 PE were

benign and 10,339 malicious PE from VH Heavens Virus

Collection which was later divided into eight major

classes. The accuracy of these evolutionary-based models

is promising with the lowest value equaled to 0.95, mostly

the accuracy of them ranged from 0.98 to 0.99. However,

by considering all suggested four performance metrics: (1)

classification accuracy, (2) number of rules, (3)

comprehensibility of the rules, (4) processing overheads,

this paper stated that non-evolutionary rule learning

algorithms clearly outperform evolutionary rule learning

ones for every performance metrics. Besides, the

processing costs and comprehension of evolutionary rule

learning algorithms can be improved by combining some

concepts from non-evolutionary rule learning algorithms.

Another combination from Rafique et al. leveraged

dynamic analysis technique and evolutionary algorithms

to automatically classify malware families and their

polymorphic variants [18]. By using protocol-aware

modeling to handle formal protocol traffic and state-space

modeling to handle unknown protocol traffic, this solution

was able to extract features from network behaviors which

Towards an Efficient Approach Using Graph-Based Evolutionary… Informatica 47 (2023) 97–104 99

were collected from PCAP file after executing and

monitoring malware samples in a supervised environment.

Next, in the evaluation phase, four evolutionary

algorithms (GAssist-ADI, SLAVE, UCS, XCS) were

selected to compare against four old-school non-

evolutionary classifiers (C4.5, C-SVM, kNN, Naïve

Bayes). The experimental dataset contained 6000 binaries

of 20 recent malware families, most of them were obtained

from MALICIA dataset. Obtained results demonstrated

the poor performance of evolutionary classifiers, except

UCS, which dominated all the rests with roughly 99.7% of

accuracy on the entire dataset and 85.28% per malware

family. Another notable downside of examined

evolutionary classifiers was the testing time which mostly

slower than the non-evolutionary candidates. This paper

presented state-space modeling which was a promising

technique in extracting unknown protocol network

behaviors. However, this approach still needs to be

examined further and compared to others network feature

extractors. In addition, the applied evolutionary

algorithms in this research were used without either any

modifications or improvements from their original

proposal.

A noticeable research of Manavi et al. [16] took

advantages of static analysis technique to extract OpCodes

from executables then utilized an evolutionary-based

classifier to detect malicious samples according to a

predefined list of 9 malware families. In this work, after

the disassembling phase, a graph of OpCode was

constructed for the executable file. Then the proposed

evolutionary classifier would create the most similar graph

to the target. Finally, by applying the Euclidean distance

fitness function, the most similar graph of the results

would determine the maliciousness of the sample. The

experimental dataset of this research was quite diversity

since it included 3 sub datasets: 1600 malwares and 1600

benigns from VX Heaven’s dataset, 4000 apks with the

ratio of 50-50 between benign-malware from Drebin

dataset, 2042 samples including 9 different malware

families from Microsoft Kaggle malware classification

challenge.

In the first two dataset, the experimented results of the

proposed method were as good as the related study of

Hashemi et al. [20] and Santos et al. [21] which considered

OpCode as a feature. Besides, in the third dataset of

Microsoft, the evolutionary classifier outperformed the

other but the accuracy was limited to 87.67%.

Nevertheless, this research took advantages of static

feature but did not suggest any in-depth solutions to deal

with obfuscated malwares. In addition, the runtime

analysis of the proposed evolutionary classifier was

omitted. Last but not least, although the dataset was quite

varied, it was still lack of botnet, especially IoT botnet.

An efficient complement between genetic algorithms

and neural nets called Genetic Neural Network - GNN in

botnet detection was proposed in [22], this paper

combined the genetic algorithm's significant global search

capabilities with the precise local search factor of the

backpropagation to provide forward neural nets to

improve the initial weight of the neural nets. The

performance of the proposed GNN with 7 extracted

features from network flow data proved that GNN was a

promising model with better accuracy (95.7%) than either

back propagation neural nets or genetic algorithm.

However, this work did not specify either any

deterministic method for feature selection or any

description of the experimental dataset.

Nevertheless, to the best of our knowledge, there have

not been any proposed researchs that aim to detect IoT

botnet leverage the evolutionary algorithm and the novel

PSI graph [9] as a feature.

3 Methodology
We enhanced the performance of weak classifiers in

dectecting IoT Botnet based on PSI-graphs generated from

ELF files by apply the bacterial evolutionary algortihm in

the ensemble process of these classifers. This section will

explain our approach in detail including psi graphs

extraction process and the performance of evolutionary

voting process in detecting IoT botnet on these graphs.

3.1 Overview

The main components of our method are presented in

figure 1. There are 3 main processes in our method:

extracting PSI graphs from ELF files, training weak

classifiers and applying bacterial evolutionary algorithm

in the ensemble process of weak classifiers.

100 Informatica 47 (2023) 97–104 Q-D. Ngo et al.

Figure 1: The overview of proposed method.

Firstly, we execute the ELF files of malware and

benign samples to generate PSI graph from these files.

After that, we preprocess the graph using graph2vec [23]

algorithm embedding vector of similar structured graphs

in near feature space. After that, we use classical machine

learning classifiers to classify the graph vectors generated

from graph2vec. We then perform different voting

strategies for the ensemble process of weak classifiers

including hard voting and soft voting. The bacterial

evolutionary algorithm is applied in the soft voting phase

to improve voting process accuracy. Finally, we compare

the classification result of each classifier and ensemble

method to estimate decide whether the method is effective

or not.

3.2 PSI graph extraction

Printable String Information (PSI) is a set of string usually

contain important sematic information that can reflect the

attacker’s intent. PSI was used in static analysis method to

identify ELF malware files. In this research, the author

doesn’t give enough attention to the linkages of the PSI

element which give more information about the context

and could greatly improve the result. In our work, we

collected our PSI graph dataset generated by Nguyen et al.

[9] from our previous research and inherited the way to

represent IoT executable file with PSI graph.

Definition 1: PSI graph is a directed graph defined as

𝐺(𝐸, 𝑉), where 𝑉 is a set of vertices called PSI elements

and 𝐸 is a set of edges which represents for function calls.

Figure 2: An example of PSI graph.

3.3 Traing weak classifiers

After obtaining PSI-Graph, we have to convert the graph

data into input for machine learning classfiers. Using

graph2vec algorithm, we turn our PSI-graph data into

vectors where graph with similar structure are embedded

in near feature space. Then, we standardize the feature

vector for better converging process by scale down feature

Towards an Efficient Approach Using Graph-Based Evolutionary… Informatica 47 (2023) 97–104 101

that have large value to make all feature stay in the same

range of value. The standardize process is applied using

the formular:

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥 − 𝜇

𝜎

where 𝜇, 𝜎 is the mean and the standard deviation of

original data, respectively.

We then feed the standardize graph vectors data into

classical machine learning classifiers for classification

process to detect IoT Botnet samples. K-nearest neighbor

(KNN), Support Vector Machine (SVM), Logistic

Regression, Gradient Boosting and Random Forest are the

chosen machine learning algorithm for individual

classifiers. The classifiers are well known for their

effectiveness in classificatin problem and have been used

by many researchers for the intrusion detection problem.

In the training phase, we use use k-fold cross-validation

combining with hyperparameter tuning with a grid of

parameter values. The model with best hyperparameters is

trained and tested on testing set to evaluate the

performance. To combine the prediction from different

classifiers, an ensemble method is required. Here we used

2 different voting method: hard voting and soft voting.

Hard voting is combining all the prediction of the

classifiers and made the final prediction base on the

majority of the vote while soft voting calculate the

prediction probability of each classifer’s prediction and

the final prediction is the largest summed probability from

classifiers. Hard voting method is pretty straight forward.

Ensemble method usually result in higher accuracy for

classification task because it concludes the prediction

from each involved classifier, that’s why individual

classifiers are referred to as “weak classifiers”.

3.4 Bacterial evolutionary algorithm

Bacterial evolutionary algorithm (BEA) is a kind of

evolutionary algorithm base on bacteroa, and its properties

are similar to those of the GA’s (Genetic Algorithm): it is

also a global optimization technique, and provides a near-

optimal, approximate solution for the problem. It is useful

even if the objective function is non-linear, non-

continuous, multimodal or high-dimensional. BEA does

not use the derivatives of the objective function, thus it

does not cause a problem, if they are not known or do not

exist [24].

In our approach, the BEA algorithm is used in the

ensemble phase to improve the soft voting strategy and

was depicted in figure 1. The BEA algorithm has 3 main

steps: generate population; clone, mutate and select; gene

transfer. The details about BEA algorith in our approach

is descibe as follow:

Generate population: we create the initial population

of the algorithm with number of population N_POP = 100.

Each chomosome in the population is one bacteria which

contains N_GENES = 5, these 5 genes represent the

weights of 5 weak classifiers in the soft voting proces.

Genes have the value in the range of Gauss destribution

with mean value = 1 and standard deviation value = 0.2.

The use of Gauss destribution will make the weight

contain value with the range close to 1. This avoid the

situation when maybe one classifier has very large weights

and the others one is too small for comparison.

Clone, mutate and select: In the beginning of 1

generation, each bacteria create 20 clones of itself

N_CLONE = 20. At a given time, one random gene is

selected from all the clones and these clones will mutate

by changing the chosen gene into a random value that

belong the distribution mentioned above. After that, we

calculate the fitness score of each clone from the average

accuracy in 10-fold on training set with the weight of the

clone. If the clone has higher fitness score than the original

then it will be selected to replace all the other clonel. The

mutating process repeat 10 times N_MUTATE = 10 which

guarantee that all the gene will be mutated for N_GENE =

5.

Gene transfer: After the mutating process, all the

bacteria are sorted by fitness score. The population is

seperated in 2 halves. We then select 2 random bacteria,

one for the upper half and one for the lower half. One or

several random gene from upper half bacteria will be

copied to the lower half bacteria. The population is then

reorganized for all the lower half bacteria will have the

chance to join the upper half and the upper half will always

contain quality bacteria. This process repeats 50 times

N_TRANS = 50. This is the end of a generation.

Cloning and gene transfer process is repeated in 10

generation N_GENERATIONS = 10. When we perform

the experiment, we realize the algorithm has fast

convergence rate so we don’t need any further local

optimization algorithm (memetic algorithm).

4 Experimental and evaluation
This section gives the information about our experimental

enviroment and results, the evaluation metrics, dataset

used and discussion.

4.1 Dataset description

We inherit the PSI graph dataset from previous researches

on PSI graph. This dataset consists of 10010 PSI graph

samples with fairly balance botnet and benign samples

including 3845 IoT botnet samples and 6165 benign

samples. IoT botnet samples belong to two typical botnet

families which are Gagyft and Mirai and other less popular

malware such as Tsunami, Aida, as shown in figure 3.

102 Informatica 47 (2023) 97–104 Q-D. Ngo et al.

Figure 3: Distribution of the botnet sample in the dataset.

Samples from the dataset come from multiple CPU

architectures including ARM, MIPS, Intel 80386, x86-64,

PowerPC, Motorola, Spark, and SuperH. The number of

IoT botnet belong to each CPU architecture is describe in

figure 4.

Figure 4: Number of botnet in each CPU architecture in

the dataset.

The following configuration was used when we

conduct the experiment: Ubuntu 16.04LTS 64-bit, Intel

Xeon, 8Gb RAM. The experiment is built in Python

language.

4.2 Evaluation metric and results

The following terms are used to evaluate the effectiveness

of the proposed method.

- True positive (TP): the number of malicious samples

that are properly recognised

- True negative (TN) is the number of benign programs

that are correctly recognised

- False positive (FP) is the number of benign programs

that are incorrectly identified

- False negative (FN) is the number of malicious

programs that are incorrectly

The following metrics are used to evaluate the

precision-efficiency of the proposed method:

- True positive rate (TPR) or Sensitivity, Recall is the

number of predicted malware samples correctly classified

as malicious divided by total malware. This metric shows

the probability of detecting malware samples.

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

- False positive rate (FPR) or Fall-out: the number of

predicted benign samples falsely marked as malicious

divided by total benign samples. This metric shows the

probability of false alarm.

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

- Accuracy (ACC): the ratio of the number of corrected

samples to the number of both malware and benign

samples. However, accuracy is not trustful in imbalanced

dataset.

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

- F1-score is the harmonic mean of Precision and

Recall (TPR). F1-score is a combining metric to estimate

the entire model performance and is defined as follow:

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

We ran the experiment training weak classifer, perform

ensemble process and improve the ensemble process using

bacterial evolutionary algorithm, as shown in table 1.

Table 1. Experimental results of the proposed method with different classifiers.

Classifier
Accuracy

(%)

Precision

(%)

Recall

(%)

F1

(%)

FPR

(%)

Average 10-fold CV

accuracy (on

training set)

Best weak

estimator

(KNN)

94.54 95.17 96.00 95.58 7.80 94.25

Hard voting 95.07 96.96 94.97 95.96 4.77 -

Soft voting

(Equal weights)
95.14 96.76 95.29 96.02 5.11 94.82

Soft voting

(BAE)
95.30 97.08 95.24 96.15 4.59 95.08

Towards an Efficient Approach Using Graph-Based Evolutionary… Informatica 47 (2023) 97–104 103

Figure 5: Bacterial evolution algorithm training accuracy

for soft voting.

The result show that the best individual classifer

achieve 94.54 % accuracy in detecting IoT botnet is KNN.

The reason KNN can achieve the highest classification

rate among others classifiers is when converting graph

data into vector we used graph2vec. In graph2vec, graphs

with similar structure usually have vectors embedded near

each other’s therefore the KNN algorithm can group these

graphs more easily which result in higher classification

rate. The result is also showing the soft voting process

after the BEA algorithm perform better than normal hard

voting and soft voting method with high accuracy of

95.30% accuracy and 4.59% FPR. Figure 5 also show that

applying evolutionary-based BEA in soft voting process

does increase the overall performance of the model.

The author in [16] also represent malware as graph

using opCode graph and evolutionary algorithm for

classification process. The result from our study produce

significantly higher detection rate than the work introduce

in Manavi et al. [16] (95.30% compare to 85.8% ~

87.67%). Haddadpajouh et al. [25] used deep recurrent

neural network to classify ARM-based IoT Botnet.Our

results reach equivalent accuracy with the research in [25]

(94% accuracy), but in their research they used smaller

dataset and only focus on ARM-based IoT Botnet. The

same thing can be said when compare with study by Su et

al. [26] using malware image and CNN (94% accuracy).

The result has shown that applying evolutionary algorithm

in the process of training on PSI graph data make could

improve the process of detecting IoT Botnet.

5 Conclusion and future works
In this research, we apply bacterial evolution

algorithm (BEA) in the training process on PSI graph

multi-architecture IoT Botnet data to detect IoT Botnet.

The PSI graphs were extracted from executable files and

transform into vectors to feed into the classical machine

learning classifiers. The result of the classifiers is then

combine using soft voting method with BEA. The result

show that our method has achieved higher accuracy to the

other research using the graph as input while perfoming

on much larger dataset. In the future, we hope to improve

our graph method and some modification to the algorithm

to achieve higher accuracy for the model.

References
[1] Statista Research Department., “Internet of Things‐

Number of connected devices worldwide 2015‐

2025,” 2019.

https://www.statista.com/statistics/471264/iot-

number-of-connected-devices-worldwide/

[2] “Al-Hadhrami, Y. and Hussain, F.K., 2021. DDoS

attacks in IoT networks: a comprehensive

systematic literature review. World Wide Web,

24(3), pp.971-1001.” [Online]. Available:

https://doi.org/10.1007/s11280-020-00855-2

[3] Sérgio S.C. Silva , Rodrigo M.P. Silva , Raquel

C.G. Pinto , Ronaldo M. Salles, “Botnets: A

survey,” J. Comput. Netw. Elsevier, vol. 57, no. 2,

pp. 378–403, 2013. [Online]. Available:

https://doi.org/10.1016/j.comnet.2012.07.021

[4] Bertino, E. and Islam, N., “Botnets and internet of

things security,” Computer, vol. 50, no. 2, pp. 76–

79, 2017. [Online]. Available:

https://doi.org/10.1109/mc.2017.62

[5] “Ozawa, S., Ban, T., Hashimoto, N., Nakazato, J.

and Shimamura, J., 2020. A study of IoT malware

activities using association rule learning for darknet

sensor data. International Journal of Information

Security, 19(1), pp.83-92.”. [Online]. Available:

https://doi.org/10.1007/s10207-019-00439-w

[6] “Peters, W., Dehghantanha, A., Parizi, R.M. and

Srivastava, G., 2020. A comparison of state-of-the-

art machine learning models for OpCode-based IoT

malware detection. In Handbook of Big Data

Privacy (pp. 109-120). Springer, Cham.”. [Online].

Available: https://doi.org/10.1007/978-3-030-

38557-6_6

[7] “Takase, H., Kobayashi, R., Kato, M. and Ohmura,

R., 2020. A prototype implementation and

evaluation of the malware detection mechanism for

IoT devices using the processor information.

International Journal of Information Security,

19(1), pp.71-81.”. [Online]. Available:

https://doi.org/10.1007/s10207-019-00437-y

[8] Le, H.V. and Ngo, Q.D., “V-Sandbox for Dynamic

Analysis IoT Botnet,” IEEE Access, vol. 8, pp.

145768–145786, 2020. [Online]. Available:

https://doi.org/10.1109/access.2020.3014891

[9] Nguyen, H.T., Ngo, Q.D. and Le, V.H., ., “A novel

graph-based approach for IoT botnet detection,” Int.

J. Inf. Secur., vol. 19, no. 5, pp. 567–577, 2020.

[Online]. Available: https://doi.org/10.1007

/s10207-019-00475-6

[10] Ma, W., Duan, P., Liu, S., Gu, G. and Liu, J.C.,

“Shadow attacks: automatically evading system-

call-behavior based malware detection,” J. Comput.

Virol., vol. 8, no. 1, pp. 1–13, 2012. [Online].

104 Informatica 47 (2023) 97–104 Q-D. Ngo et al.

Available: https://doi.org/10.1007/s11416-011-015

7-5

[11] “Quoc-Dung Ngo, Huy-Trung Nguyen, et al., A

survey of IoT malware and detection methods based

on static features, ICT Express, Volume 6, Issue 4,

pp. 280-286, 2020.” . [Online]. Available:

https://doi.org/10.1016/j.icte.2020.04.005

[12] “Ngo, Q.D., Nguyen, H.T., Tran, H.A. and Nguyen,

D.H., 2021, January. IoT Botnet detection based on

the integration of static and dynamic vector

features. In 2020 IEEE Eighth International

Conference on Communications and Electronics

(ICCE) (pp. 540-545). IEEE.” . [Online]. Available:

https://doi.org/10.1109/icce48956.2021.9352145

[13] “Xiao, L., Wan, X., Lu, X., Zhang, Y. and Wu, D.,

2018. IoT security techniques based on machine

learning: How do IoT devices use AI to enhance

security?. IEEE Signal Processing Magazine, 35(5),

pp.41-49.” . [Online]. Available: https://doi.org/10.

1109/msp.2018.2825478

[14] “Borello, J.M. and Mé, L., 2008. Code obfuscation

techniques for metamorphic viruses. Journal in

Computer Virology, 4(3), pp.211-220.” . [Online].

Available: https://doi.org/10.1007/s11416-008-008

4-2

[15] “Souri, A. and Hosseini, R., 2018. A state-of-the-art

survey of malware detection approaches using data

mining techniques. Human-centric Computing and

Information Sciences, 8(1), pp.1-22.” . [Online].

Available: https://doi.org/10.1186/s13673-018-0125-x

[16] Manavi, F. and Hamzeh, A., “A new approach for

malware detection based on evolutionary

algorithm,” 2019, pp. 1619–1624. [Online].

Available: https://doi.org/10.1145/3319619.3326811

[17] Shafiq, M.Z., Tabish, S.M. and Farooq, M., “On the

appropriateness of evolutionary rule learning

algorithms for malware detection,” 2009, pp. 2609–

2616. [Online]. Available:

https://doi.org/10.1145/1570256.1570370

[18] Rafique, M.Z., Chen, P., Huygens, C. and Joosen,

W., “Evolutionary algorithms for classification of

malware families through different network

behaviors,” 2014, pp. 1167–1174. [Online].

Available: https://doi.org/10.1145/2576768.2598238

[19] “Lysenko, S., Bobrovnikova, K., Shchuka, R. and

Savenko, O., 2020, May. A cyberattacks detection

technique based on evolutionary algorithms. In

2020 IEEE 11th International Conference on

Dependable Systems, Services and Technologies

(DESSERT) (pp. 127-132). IEEE.”. [Online].

Available: https://doi.org/10.1109/dessert50317.2020.

9125016

[20] “Hashemi, H., Azmoodeh, A., Hamzeh, A. and

Hashemi, S., 2017. Graph embedding as a new

approach for unknown malware detection. Journal

of Computer Virology and Hacking Techniques,

13(3), pp.153-166.”. [Online]. Available:

https://doi.org/10.1007/s11416-016-0278-y

[21] Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz,

B., Laorden, C. and Bringas, P.G., “Idea: Opcode-

sequence-based malware detection,” 2010, pp. 35–

43. [Online]. Available: https://doi.org/10.1007/

978-3-642-11747-3_3

[22] Yin, C., Awlla, A.H., Yin, Z. and Wang, J., “Botnet

detection based on genetic neural network,” Int. J.

Secur. Its Appl., vol. 9, no. 11, pp. 97–104, 2015.

[Online]. Available: https://doi.org/10.14257/ijsia.

2015.9.11.10

[23] A. Narayanan, M. Chandramohan, R. Venkatesan,

L. Chen, Y. Liu, and S. Jaiswal, “graph2vec:

Learning distributed representations of graphs,”

ArXiv Prepr. ArXiv170705005, 2017.

[24] F. Hatwágner and A. Horváth, “Maintaining genetic

diversity in bacterial evolutionary algorithm,” Ann.

Univ Sci Bp. Sec Comp, vol. 37, pp. 175–194, 2012.

[25] H. HaddadPajouh, A. Dehghantanha, R. Khayami,

and K.-K. R. Choo, “A deep recurrent neural

network based approach for internet of things

malware threat hunting,” Future Gener. Comput.

Syst., vol. 85, pp. 88–96, 2018. [Online]. Available:

https://doi.org/10.1016/j.future.2018.03.007

[26] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra,

Y. Feng, and K. Sakurai, “Lightweight

classification of IoT malware based on image

recognition,” 2018, vol. 2, pp. 664–669. [Online].

Available: https://doi.org/10.1109/COMPSAC.

2018.10315

