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In object detection there is high degree of skewedness for objects' visual separability. It is difficult to 

distinguish object categories which demand dedicated classification. The deep convolutional neural 

networks (CNNs) are trained as N-way classifiers. As such considerable work is required towards 

leveraging hierarchical category structures. We present here Modified Fast region-based CNN (Mod Fast 

R-CNN) and Hierarchical Modified Fast region-based CNN (HMod Fast R-CNN) with deep CNNs being 

embedded considering categorical hierarchy. The easy classes are separated through coarse classifiers. 

The difficult classes are classified by fine classifiers. HMod Fast R-CNN is trained by initial components 

training which follows fine-tuning globally using multiple group discriminant analysis. The regularization 

is done using coarse category consistency. For large-scale recognition tasks, scalability is done 

considering conditional execution of fine category classifiers and layer parameters compression. Using 

MS-COCO (benchmark) CIFAR100 and VisualQA datasets we obtain good results. We build several 

different HMod Fast R-CNN versions where standard CNNs top-1 error is reduced significantly. HMod 

Fast R-CNN’s performance superiority with other object detectors on PASCAL VOC 2007 and VOC 2012 

datasets are also highlighted. 

Povzetek: Predstavljena je metoda hierarhičnih hitrih R-CNN za detekcijo objektov. 

 

1 Introduction 
In computer vision there are several fundamental visual 

recognition problems such as image classification [1], 

object detection and instance segmentation [2], [3] and 

semantic segmentation [4] as shown in Figure 1. Image 

classification recognizes objects in semantic categories 

from given image as shown in Figure 1 (a). Object 

detection recognizes object categories and predicts each 

object’s location considering bounding box as shown in 

Figure 1 (b). Semantic segmentation predicts pixel wise 

classifiers in order to assign specific category label to each 

pixel. It thus provides rich image understanding as shown 

in Figure 1 (c). However, semantic segmentation does not 

distinguish between multiple objects of same category. At 

intersection of object detection and semantic segmentation 

viz instance segmentation where different objects are 

identified and assigned to a separate categorical pixel-

level mask as shown in Figure 1 (d).  

Since the birth of convolutional neural networks 

(CNN) image classification [5] and object detection [2], 

[6] problems have received a high degree of accuracy [5], 

[7]. Almost all available object detection techniques [2], 

[6], [8], [9] work in multi-stage slow and inelegant 

pipelines. The complexity arrives from detection which 

requires accurate object localization leading towards (a) 

processing of numerous candidate object locations and (b) 

achieving precise localization for candidate object 

locations which provide only rough localization. The 

solution for these problems has often struggled to achieve 

good speed, accuracy and simplicity. 

The region-based convolutional neural network (R-

CNN) [2] has achieved brilliant accuracy in object 

detection. However, it has certain drawbacks [2], [6], [8], 

[9] such that (a) training is performed through pipeline 

with multiple stages; (b) appreciable space and time 

complexity is involved and (c) object detection process 

happens slowly. R-CNN works slowly as each object’s 

CNN forward pass happens without any computation 

sharing. By sharing computation, spatial pyramid pooling 

networks (SPPN) [8] speeds up R-CNN. The input 

convolutional image’s feature map is computed by SPPN. 

Then each object is classified through feature vector taken 

from shared feature map. Considering an object, 

extraction of features happens through max-pooling 

feature-map’s portion within object with fixed output size. 

As in spatial pyramid pooling (SPP), concatenation and 

pooling are performed for multiple sizes output. SPPN 

enhances R-CNN considerably at test time. Due to fast 

object feature extraction, training time is less. 

This work is motivated from success achieved in 

designing CNN hierarchically considering integration of 

category hierarchy and linear classifiers. CNN models are 

continuously upgraded through enhancement of their 

components such as pooling layers [10], activation units 

[11], [12] and nonlinear layers [13]. These developments 

have improved CNN’s training and learning processes. 

This work improves Fast R-CNN’s performance 

considerably. The hierarchical model is built layer-wise 

considering Fast R-CNN as basic building block. There 

exist a wide variety of structures with categorical 
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hierarchy [14]. The classification with linear classifiers 

having high number of classes is performed through 

classifiers’ taxonomy. Here classifiers are verified 

considering test image which scales in sub-linear manner 

against number of classes [15], [16]. The hierarchy 

learning is either pre-specified [17], [18], [19] or achieved 

in top-down and bottom-up manner [20], [21], [22], [23], 

[24], [25], [26]. Hierarchical classifiers in [27] and [28] 

have reached considerable speedup bearing some 

accuracy loss. The initial work on category hierarchy for 

CNN is available in [29]. [30] achieves good accuracy 

with training images subset with re-labeled internal nodes 

in class tree hierarchy. [31] uses CNN hierarchy with 

scalability and has good classification performance. 

Considering above motivation in this work, Modified 

Fast R-CNN (Mod Fast R-CNN) and Hierarchical 

Modified Fast R-CNN (HMod Fast R-CNN) [32] methods 

are proposed. HMod Fast R-CNN performs object 

detection by hierarchical learning in order to classify 

objects and refine them. This work looks towards 

development of HMod Fast R-CNN which integrates deep 

CNNs alongwith category hierarchy. The algorithm 

streamlines training process towards R-CNN based object 

detectors [2], [8]. The image classification task is 

decomposed into two steps. The weighted coarse 

component Mod Fast R-CNN classifier separates easy 

classes. The complex classes are directed towards 

weighted fine components which takes care of classes 

with confusion. HMod Fast R-CNN is build considering 

Fast R-CNN building block through module design 

principle. The building blocks are considered to be as one 

of the top ranked single Fast R-CNN. The coarse-to-fine 

classification is adopted here. Then fine category 

classifiers predictions are integrated as possibilistic means 

which takes care of inherent data uncertainty. The 

proposed architecture is evaluated through MS-COCO 

[33], CIFAR100 [34] and VisualQA [35] datasets. A 

comparative analysis of HMod Fast R-CNN with respect 

to other detectors such as deformable part model (DPM), 

all versions of you only look once (YOLO), single shot 

multibox detector (SSD) etc is performed on PASCAL 

VOC 2007 [36] VOC 2012 [37] datasets alongwith an 

error analysis. HMod Fast R-CNN achieves less error 

considering memory footprint increase as well as 

classification time. The schematic representation of HMod 

Fast R-CNN based prediction system [32] is given in 

Figure 2 in Appendix. This paper is structured as follows. 

The section 2 presents an overview of related work in 

object detection. The computational methodology is 

highlighted in section 3. The section 4 presents 

experimental results. Finally, in section 5 conclusion is 

given. 

2 Related work 
In this section we present significant developments in 

deep learning-based object detection in past few years. A 

good detection algorithm comes with strong semantic cues 

understanding and spatial information about image. 

Object detection is fundamental step towards many 

computer vision applications such as face recognition 

[38], [39], [40], pedestrian detection [41], [42], [43], video 

analysis [44], [45] and logo detection [46], [47], [48]. 

Initially object detection pipeline was divided into 

three steps viz (i) proposal generation (ii) feature vector 

extraction and (iii) region classification. During proposal 

generation objective was to search locations in image viz 

regions of interest (RoI) which contain objects. An 

intuitive idea is to scan whole image with sliding windows 

[49], [50], [51], [52], [53]. Input images are resized into 

different scales and multi-scale windows are used to slide 

through these images in order to capture information about 

multi-scale and different aspect ratios of objects. In next 

step on each image’s location, a fixed-length feature 

vector is obtained considering sliding window in order to 

capture discriminative semantic information of covered 

region. This feature vector is encoded by several low-level 

visual descriptors [54], [55], [56], [57]. These descriptors 

have shown good robustness towards scale, illumination 

and rotation variance. Finally, region classifiers are 

learned to assign categorical labels to regions covered. 

Here support vector machines (SVM) [58] have been used 

because they offer good performance on small scale 

training data. Alongwith this classification techniques 

such as cascade learning [59], bagging [60] and adaboost 

[61] have also been used in region classification which 

have provided considerable improvements in detection 

accuracy. 

The successful traditional object detection methods 

have focused towards designing feature descriptors in 

order to obtain embedding for RoI. With good feature 

representations and robust region classifiers impressive 

results [62], [63] are achieved on PASCAL VOC dataset 

[64]. The deformable part-based machines (DPMs) [65] 

learn and integrate multiple part models with deformable 

loss. They mine hard negative examples with latent SVM 

for discriminative training. Between 2008 to 2012 

PASCAL VOC’s progress based on these traditional 

methods showed incremental progress for building 

complicated ensemble systems. These reflected 

limitations of traditional detectors. These limitations are 

 
 (a) (b) 

 

 
 (c) (d) 

Figure 1: Visual recognition tasks in computer vision (a) 

image classification (b) object detection (c) semantic 

segmentation (d) instance segmentation. 
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reflected during proposal generation, feature descriptors 

and detection pipeline. In proposal generation huge 

number of redundant proposals are generated with many 

false positives during classification. The window scales 

designed manually and heuristically could not match 

objects well. The feature descriptors are hand-crafted 

based on low level visual cues [5], [56], [66] making them 

difficult to capture representative semantic information in 

complex contexts. In each step of detection pipeline is 

designed and optimized separately as a result of which 

global optimal solution could not be obtained.  

After CNN’s considerable success for image 

classification [1], [67], object detection also achieved 

remarkable progress on deep learning [2], [68], [69] based 

solutions. The newer detection algorithms outperformed 

traditional ones by huge margins. In [68] deep CNN model 

is optimized using stochastic gradient descent (SGD) via 

backpropagation. It provided good performance on digit 

recognition. However, deep networks are plagued with 

certain limitations like lack of large-scale annotated 

training data causing overfitting, limited computation 

resources and weak conceptual support compared to 

SVMs. In [5] a deep CNN is trained with ImageNet dataset 

which showed significant improvement on Large Scale 

Visual Recognition Challenge (ILSVRC) in comparison 

to all other approaches. After this success deep learning 

methods have been quickly adapted to other vision tasks 

where they have shown promising results over traditional 

methods. As compared to hand-crafted descriptors in 

traditional detectors, deep CNN generate hierarchical 

feature representations from raw pixels to high level 

semantic information. This is learned automatically from 

training data and shows more discriminative expression 

capability in complex contexts. Deep CNN also achieve 

better feature representation with large datasets. In 

traditional visual descriptors learning capacity is fixed and 

no improvement is reached as more data becomes 

available. 

The major contributions in deep learning-based object 

detection can be categorized into three groups viz 

detection components, learning strategies and applications 

and benchmarks [32]. The detection components include 

detection settings, detection paradigms and backbone 

architectures. The learning strategies comes with training 

and testing stages. The applications and benchmarks 

include commonly used applications and public 

benchmark datasets. In present scenario, deep learning-

based object detection frameworks can be divided into two 

categories viz two-stage detectors and one-stage detectors. 

The two-stage detectors cover R-CNN [2] and its variants 

[66], [70], [71] and one-stage detectors has YOLO [72] 

and its variants [73], [74]. The one-stage detector makes 

categorical object prediction on each location of feature 

maps without cascaded region classification step. The 

two-stage detectors use proposal generator in order to 

generate a sparse set of proposals and extract its features. 

This is followed by region classifiers which predict 

category of proposed region. The one-stage detectors are 

more time-efficient and have greater application towards 

real-time object detection. The two-stage detector achieve 

better detection performance and report state-of-the-art 

results on benchmark datasets.  

Single shot detector (SSD) [74] has been one of the 

significant developments in object detection methods in 

past decade. It does not resample pixels or features for 

bounding boxes. By eliminating bounding boxes, it 

provides improvements considering speed at which object 

detection activities are performed. It provides high 

accuracy detection for low resolution images. For real 

time object detection YOLO [72] occupies a very 

prominent place. It is a state-of-the-art object detection 

system whose speed and accuracy has grown over the 

years. Till date we have 5 versions of YOLO [72], [75], 

[76], [77], [78] each of which supersedes previous 

versions. Apart from speed and accuracy some of biggest 

advantages of initial two versions of YOLO viz YOLO 

and YOLOv2 or YOLO9000 [72], [73] include network 

understandability towards generalized object 

representation and smaller architecture. The third version 

of YOLO, YOLOv3 [75] is extremely fast and accurate. It 

uses few tricks to improve training with increased 

performance including multiscale predictions, better 

backbone classifier and much more. The fourth version of 

YOLO, YOLOv4 [76] offers improved performance 

above previous versions. It provides superfast training and 

accurate object detection. It has also been verified for the 

influence of state-of-the-art bag-of-freebies and bag-of-

specials object detection methods during detector training. 

The modified state-of-the-art methods include cross 

iteration batch normalization and path aggregation 

network which are more efficient and suitable for single 

GPU training. Finally, fifth version of YOLO, YOLOv5 

[77] has also been launched with exceptional 

improvements. This version outperforms all previous 

versions with EfficientDet average precision and higher 

frames per second. Some of the recent major 

developments of deep learning-based object detection 

methods include [78], [79], [80], [81], [82], [83]. The 

Table 1 in Appendix highlights significant state-of-the-art 

research works in deep learning-based object detection. It 

is to be noted that in each case best possible results are 

presented. 

3 Computational methodology  
In this section computational framework of Mod Fast R-

CNN and HMod Fast R-CNN [32] are presented. In 

subsection 3.1 Mod Fast R-CNN architecture with training 

is discussed. This is followed by HMod Fast R-CNN 

architecture with training in subsection 3.2. In subsection 

3.3 HMod Fast R-CNN for detection is discussed. 

3.1 Modified Fast R-CNN with training 

Mod Fast R-CNN architecture is adopted from [32] with 

[70] as baseline method having certain variations. The 

architecture is highlighted in Figure 3 in Appendix. The 

entire image and objects' set forms input towards Mod Fast 

R-CNN network. The convolutional feature map is 

produced through processing of entire image alongwith 

convolutional and max pooling layers. Considering 
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feature map, a fixed length feature vector is extracted for 

each object's RoI pooling layer.  

The sequence of fully connected (𝑓𝑦_𝑐𝑡) layer takes 

each feature vector as input. From 𝑓𝑦_𝑐𝑡 output is fed in 2 

sibling output layers producing softmax probability 

estimates. The softmax probability are estimated with 

respect to 𝑂𝐵 object classes. This considers catch-all 

background class and another layer which has 4 real 

valued output numbers. For each of 𝑂𝐵 classes, 4 values' 

set are encoded considering bounding box refined 

positions. The max pooling is used for RoI pooling layer 

in order to convert its features into small feature map 

considering 𝐻𝑡 × 𝑊ℎ fixed spatial extent. Here 𝐻𝑡 and 

𝑊ℎ are layers’ hyper parameters not dependent on any 

specific RoI. RoI is rectangular window with 

convolutional feature map. A 4-tuple (𝑟𝑤, 𝑐𝑚, ℎ𝑡, 𝑤ℎ) 

defines an RoI where (𝑟𝑤, 𝑤ℎ) is top left with ℎ𝑡 and 𝑤ℎ 

as its height and width respectively. The ℎ𝑡 × 𝑤ℎ window 

is divided by RoI max pooling into 𝐻𝑡 × 𝑊ℎ sub-window 

grids having 
ℎ𝑡

𝐻𝑡
×

𝑤ℎ

𝑊ℎ
 size approximately. Then sub-

window values are max-pooled into each grid cell output. 

Towards each feature map channel independent pooling is 

applied. RoI layer has 1 pyramid level. It is a special case 

of SPP layer in SPNN [8]. For experiments 6 pre-trained 

ImageNet [69] networks with 8 max pooling layers and 

between 8 and 18 convolutional layers are used. There are 

3 transformations for Mod Fast R-CNN network with pre-

trained network initialization. RoI pooling layer replaces 

last max pooling layer. It is configured as 𝐻𝑡 × 𝑊ℎ. This 

is followed by 1000-way ImageNet classification training 

for network’s last fully connected and softmax layers. 

There are 𝐴 + 1 categories for fully connected layers, 

softmax layers and bounding-box regressors which are 

specific to category. The network is updated to absorb 2 

data inputs. 

Mod Fast R-CNN uses backpropagation to train all 

network weights. Below SPP layer, weight updation is not 

possible as SPP layer's backpropagation is not effective. 

This inefficiency is spread across receptive field spanning 

entire input image starting from each RoI. The training 

inputs are large as forward pass processes entire receptive 

field. The feature sharing is used during training. For each 

image, RoIs are sampled hierarchically through 𝐼 and then 
𝑅

𝐼
 images for Mod Fast R-CNN training SGD mini-

batches. In forward and backward passes, computation 

and memory are shared for RoIs from same image. Taking 

small 𝐼 reduces computation of mini-batch. It slows 

convergence of training as same image RoIs are 

correlated. Significant results are achieved using 𝐼 = 2 

and 𝑅 = 128 with less SGD iterations. Here training 

process is synchronized through fine-tuning which 

optimizes softmax classifier and bounding box regressors 

[2], [8]. 

In Mod Fast R-CNN 2 sibling output layers are used. 

The initial output is discrete probability distribution per 

RoI considering 𝐴 + 1 categories which is 𝑝𝑟𝑜𝑏 =
(𝑝𝑟𝑜𝑏0 , … … , 𝑝𝑟𝑜𝑏𝐴). For fully connected layer, 𝑝𝑟𝑜𝑏 is 

calculated for softmax considering 𝐴 + 1 outputs. The 2𝑛𝑑 

sibling layer has bounding-box regression offsets outputs 

for 𝐴 object classes as 𝑣𝑎 =  (𝑣𝑥
𝑎 , 𝑣𝑦

𝑎 , 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎 ). The 

parameterization for 𝑣𝑎  is given in [2]. Here 𝑣𝑎  specifies 

translation (scale-invariant) and height shift (log-space) 

with respect to the object. For each training RoI labeling 

is done considering ground-truth class 𝑢 and ground-truth 

with bounding-box regression for 𝑣. For each labeled RoI, 

there is joint classification for training and bounding-box 

regression with respect to multitask loss 𝐿: 

𝐿(𝑝, 𝑢, 𝑣𝑢 , 𝑠) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑣𝑢 , 𝑠) (1) 

For true class 𝑢, log loss is 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢. 𝐿𝑙𝑜𝑐  

is second task loss which is specified considering true 

bounding-box regression target tuples such that 𝑠 =
(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑤ℎ , 𝑠ℎ𝑡) with predicted tuple 𝑣𝑎 =

 (𝑣𝑥
𝑎 , 𝑣𝑦

𝑎 , 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎 ) for class 𝑢. When 𝑢 ≥ 1 [𝑢 ≥ 1] = 1 

else 0 is inversion bracket indicator function. Background 

class with catch-all convention is marked as 𝑢 = 0. 𝐿𝑙𝑜𝑐  is 

ignored with background RoIs having no ground-truth 

bounding box. The bounding-box regression loss is: 

𝐿𝑙𝑜𝑐(𝑣𝑢 , 𝑠) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑣𝑖

𝑢 − 𝑠𝑖)𝑖∈(𝑥,𝑦,𝑤ℎ,ℎ𝑡)  (2) 

In equation (2) smooth function is: 

 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2     |𝑥| < 1
|𝑥| − 0.5       𝑜𝑤

 (3) 

In 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥), loss 𝐿2 in Mod Fast R-CNN and 

SPPN [8] is more outliers’ sensitive than robust loss 𝐿1. 

The loss 𝐿2 needs to be carefully tuned in terms of learning 

rates to prevent gradients exploding with unbounded 

training as regression targets. This sensitivity is eliminated 

through equation (3). In equation (1) balance between 𝐿1 

and 𝐿2 is controlled by 𝜆. With 𝜆 = 1 ground-truth 

regression targets 𝑠𝑖  ~ 𝑁(0,1). The class-agnostic object 

network is trained using loss factor [69]. The localization 

and classification are separated by 2-network system. The 

images (𝑁 = 2) selected uniformly at random are used 

from SGD minibatch created at fine tuning. The dataset is 

permuted to perform in iterations. From each image 64 

RoIs are sampled considering mini-batches of 𝑅 = 128 

size. 25% of RoIs are taken from objects which have 

intersection over union (IoU) overlap having ground-truth 

bounding box ≥ 0.5 [2]. 

 
𝜕𝐿

𝜕𝑥𝑖
= ∑ ∑ [𝑖 = 𝑖 ∗ (𝑟, 𝑗)]𝑗𝑟

𝜕𝐿

𝜕𝑦𝑟𝑗
 (4) 

The partial derivative 
𝜕𝐿

𝜕𝑦𝑟𝑗
 accumulates if 𝑖 is selected 

as argmax considering 𝑦𝑟𝑗  through max pooling for each 

mini-batch RoI 𝑟 and for pooling output unit 𝑦𝑟𝑗 . Using 

backwards function of layer over RoI pooling layer, partial 

derivatives 
𝜕𝐿

𝜕𝑦𝑟𝑗
 are calculated. Considering softmax 

classification and bounding-box regression for fully 

connected layers, an initialization is done through zero-

mean Gaussian distributions. Here standard deviations are 

taken as 0.01 and 0.001 for both cases with 0 as the bias 

initialization. For weights learning rate is 1 per layer and 

for biases learning rate is 2 per layer considering all layers. 

The global learning rate is 0.001. Trainval SGD is 

executed for 30000 minibatch iterations when training on 
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PASCAL VOC 2007 or VOC 2012. Then learning rate is 

lowered to 0.0001 and training is done for next 10000 

iterations. SGD is executed for more iterations, when 

training is done on larger datasets. For weights and biases, 

momentum is 0.9 and parameter decay is 0.0005. Brute-

force learning and image pyramids are used to achieved 

scale invariant object detection. These approaches used 

here are taken from [8]. During training and testing for 

brute-force approach each image is being processed at 

predefined pixel size. Using training data, network learns 

scale-invariant object detection. From an image pyramid, 

approximate scale-invariance to network is provided by 

multi-scale approach. Each object proposal is scale 

normalized approximately through image pyramid at test 

time. Each time when an image is sampled, pyramid scale 

is randomly sampled at multi-scale training. The detection 

considers running forward pass. Here objects are assumed 

to be precomputed as Fast R-CNN network where it is 

fine-tuned. The network input is image or image pyramid 

as well as 𝑅 objects list towards score. 𝑅 is typically taken 

as 2000, though cases are there when it is about 45000 at 

test time. Using image pyramid, each RoI is placed to scale 

such that scaled RoI is near to 2242 pixels [8]. 

Considering each test RoI 𝑟 forward pass output is 

posterior probability distribution 𝑝𝑟𝑜𝑏 with predicted 

bounding-box set offsets relative to 𝑟 for each 𝐴 classes 

which gets its refined bounding-box prediction. For each 

object class 𝑘 through estimated probability 

𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠 =  𝑘|𝑟) ≜ 𝑝𝑘, a detection confidence is 

assigned to 𝑟. Then for each class using Fast R-CNN 

algorithm [84] non-maximum suppression is performed 

independently. 

The time spent for calculating convolutional layers is 

greater than fully connected layers considering whole-

image classification. The processing time for number of 

RoIs is large enough for detection. It is about 50% of 

forward pass time required for calculating fully connected 

layers [84], [85]. By compressing large fully connected 

layers with truncated singular value decomposition (SVD) 

easy acceleration is achieved. Each layer is parameterized 

by 𝑢 × 𝑣 weight matrix 𝑊 which is approximately 

factorized as 𝑊 ≈ 𝑈∑𝑡  𝑉𝑇 .Here 𝑈 is 𝑢 × 𝑡 matrix 

constituting 𝑊′𝑠first 𝑡 left-singular vectors, ∑𝑡 is 

𝑡 × 𝑡 diagonal matrix with 𝑊′𝑠 top 𝑡 singular values and 

𝑉 is 𝑣 × 𝑡 matrix constituting 𝑊′𝑠 first 𝑡 right-singular 

vectors. The parameter count is reduced from 𝑢𝑣 to 𝑡(𝑢 +
𝑣) through truncated SVD. This works well when 𝑡 <
𝑚𝑖𝑛(𝑢, 𝑣). Corresponding to 𝑊 single fully connected 

layer network is compressed by replacing 2 fully 

connected layers with no in between non-linearity. With 

no biases, weight matrix ∑𝑡  𝑉𝑇 is used for first few layers 

and with original biases linked with 𝑊, 𝑈 is used for 

second few layers. As RoIs number grows, good speedups 

are achieved through this compression. 

3.2 Hierarchical modified fast R-CNN with 

training 

Now architecture of HMod Fast R-CNN [32] is presented. 

Based on the success of Mod Fast R-CNN [32], HMod 

Fast R-CNN is discussed in this section. The image dataset 

has images {𝑥𝑖 , 𝑦𝑖}𝑖 with 𝑥𝑖 and 𝑦𝑖  representing image data 

and label respectively. The dataset {𝑆𝑗
𝑓

}
𝑗=1

𝐶𝑡
 contains 𝐶𝑡 

fine categories of images. The category hierarchy with 𝐴 

coarse categories {𝑆𝑎
𝑐𝑡}𝑎=1

𝐴  is used towards formation of 

learning process. HMod Fast R-CNN emulates category 

hierarchy structure with coarse categories making up fine 

categories. 

As shown in Figure 4 [32] in Appendix end-to-end 

classification happens here. It consists of 5 components 

viz (a) high-level feature extraction layer (b) low-level 

feature extraction layer (c) weighted coarse component 

independent layers {𝐵𝑎}𝑎=1
𝐴  (d) weighted fine component 

independent layers {𝐹𝑎}𝑎=1
𝐴  and (e) possibilistic averaging 

layer. The extraction layers are present on leftmost side of 

Figure 4. They take raw image pixel as input and extract 

high-level features followed by low-level features. The 

configuration of extraction layers is kept same as 

preceding layers with respect to building block net. The 

weighted coarse component independent layers assign 

weight factor to each of 𝐴 layers and gives coarse 

prediction based on best weight achieved. The 

probabilities in weighted coarse category provide: (a) 

weight factor towards combining predictions which fine 

category components make and (b) consider threshold 

conditional executions of fine category components are 

enabled for which coarse probabilities are quite large. The 

independent layers are represented considering weighted 

fine category classifiers set {𝐹𝑎}𝑎=1
𝐴  where weighted fine 

category predictions are made by each classifier. Each 

weighted fine category component classifies small 

categories set accurately. As such from here fine 

prediction is produced with respect to partial categories 

set. When partial set do not have probabilities of other fine 

categories, they are taken as zero. From building block 

Mod Fast R-CNN layer configurations are copied. 

However, in final classification layer filter numbers are 

taken as partial set size. 

The common layers are shared for both weighted 

coarse category and fine category components. This is 

because of reasons stated here. The preceeding layers in 

deep networks [63] respond towards low-level features 

which are class-agnostic for example corners and edges. 

The class-specific features are extracted from rear layers. 

The preceding layers are shared by both coarse and fine 

components as for both coarse and fine classification tasks 

low-level features are useful. The floating-point 

operations network execution memory footprint is 

considerably reduced. HMod Fast R-CNN parameters are 

also decreased which is vital towards network’s training. 

Finally, there is a possibilistic averaging layer where fine 

category and coarse category predictions are received and 

converted to possibilistic measures through equation (5). 

Then a weighted average is produced as final prediction 

result. It is to be noted that merging part plays a significant 

role in averaging layer of HMod Fast R-CNN. The 

weighted factors are decided based on certain heuristics 

[32]. In initial iterations weight factors are decided based 

on dataset considered. The distribution of coarse-grained 

and fine-grained images are considered in deciding 
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weighted factors in later iterations. This helps in reaching 

best possible results in final prediction. The possibilistic 

measures handles inherent uncertainty in data better than 

probabilistic values 

𝑝𝑜𝑠𝑠𝑏(𝑥𝑖) =
∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖)𝐴

𝑎=1

∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝐴
𝑎=1

 (5) 

In equation (5) 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎) is possibility of coarse 

category 𝑎 considering image 𝑥𝑖 which is predicted 

through coarse category component 𝐵 and 𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖) is 

prediction achieved through fine category component 𝐹𝑎. 

Considering building block Mod Fast R-CNN, layer 

configurations for both coarse and fine category 

components are reused. The flexibility in modular design 

gives best module Mod Fast R-CNN as building block. 

As fine category components are inserted into HMod 

Fast R-CNN, parameters in rear layers increases linearly 

with respect to coarse categories. This increases training 

complexity as well as overfitting risk considering same 

amount of training data. Within stochastic gradient 

descent mini-batch, training images are routed 

probabilistically towards various fine category 

components. To ensure parameter gradients larger 

minibatch are required in fine category components which 

are estimated through quite large number of training 

samples. The training memory footprint is increased by 

large training mini-batch but training process is 

considerably slow. HMod Fast R-CNN training is 

decomposed into several steps as shown in Figure 5 [32]. 

HMod Fast R-CNN is sequentially pre-trained for 

coarse and fine category components. First a building 

block Mod Fast R-CNN 𝐹𝑝 is pretrained through training 

set. There is a resemblance in building block Mod Fast R-

CNN with preceding and rear layers in coarse category 

component. As a result of this for initialization purpose, 

weights of 𝐹𝑝 are placed into coarse category component. 

Fine category components {𝐹𝑎}𝑎 are independently pre-

trained in parallel. Each 𝐹𝑎 specializes towards 

classification of fine categories considering coarse 

category 𝑆𝑎
𝑐𝑡. Thus, pre-training of each 𝐹𝑎 uses images 

{𝑥𝑖|𝑖 ∈  𝑆𝑎
𝑐𝑡} with coarse category 𝑆𝑎

𝑐𝑡. The initialization 

is done for shared preceding layers which are kept fixed 

now. All rear layers are initialized for each 𝐹𝑎 except last 

convolutional layer through writing learned parameters 

from pre-trained model 𝐹𝑝. 

3.3 Hierarchical modified fast R-CNN for 

Detection 

After HMod Fast R-CNN [32] is trained, detection is 

performed. This section highlights this issue. The 

complete HMod Fast R-CNN is fine-tuned when coarse 

and fine category components are appropriately pre-

trained. Every fine category component is directed 

towards classifying fixed fine categories subset, when 

learning is done for category hierarchy and associated 

mapping 𝑷𝟎. The coarse categories semantics predicted 

through coarse category component must remain 

consistent coarse category component during fine-tuning. 

The consistency term in coarse category is included in 

order to regularize multiple group discriminant loss. The 

mapping 𝑷: [𝟏, 𝑪𝒕] ⟼ [𝟏, 𝑨] which is fine-to-coarse in 

nature paves a way towards specification of target coarse 

category distribution {𝒕𝒂}. Here 𝒕𝒂 is placed as fraction for 

all training images within coarse category 𝑺𝒂
𝒄𝒕 with 

assumption that distribution for coarse categories over 

training dataset is near to that in trained mini-batch: 

𝑡𝑎 =
∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)

∑ ∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)
𝐴
𝑎′=1

 (6) 

For fine-tuning HMod Fast R-CNN final loss function is: 

𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ log(𝑝𝑜𝑠𝑠𝑏𝑦𝑖

)
𝑛

𝑖=1
+ 

𝜆

2
∑ (𝑡𝑎 −

1

𝑛
∑ 𝐵𝑖𝑎

𝑛
𝑖=1 )

2
𝐴
𝑎=1  (7) 

Here training mini-batch size is 𝑛 and regularization 

constant 𝜆 = 20. As fine category components are added 

into HMod Fast R-CNN, rear layers with parameters, 

memory footprint and execution time variables are 

linearly scaled with coarse categories. In order to scale 

HMod Fast R-CNN to large-scale visual recognition, layer 

parameter compression techniques and conditional 

execution are used. It is not required to test all fine 

category classifiers for given image because they have 

weights 𝐵𝑖𝑎 which are not significant as shown in equation 

(7). The final predictions are negligible here. HMod Fast 

R-CNN classification is accelerated through conditional 

executions of top weighted fine components. Thus, 𝐵𝑖𝑎 is 

given a threshold using 𝐵𝑡 = (𝛽𝐴)−1 and reset 𝐵𝑖𝑎 = 0 

when 𝐵𝑖𝑎 < 𝐵𝑡. The evaluation is not done for fine 

category classifiers with 𝐵𝑖𝑎 = 0. With HMod Fast R-

CNN rear layers parameter in classifiers of fine category 

is directly proportional to number of coarse categories. In 

order to reduce memory footprint compression of layer 

parameters is done at test time. 

The product quantization approach is chosen to 

compress parameter matrix 𝑊 ∈ 𝑅𝑚×𝑛 by partitioning as 

segments having width 𝑠 horizontally such that 𝑊 =

[𝑊1, … … , 𝑊
(

𝑛

𝑠
)
]. K-means then clusters rows into 

𝑊𝑖∀𝑖 ∈ [1, (
𝑛

𝑠
)]. A compression factor of 

32𝑚𝑛

(32𝑘𝑛+
8𝑚𝑛

𝑠
)
 is 

achieved through storing cluster indices which are near at 

8-bit integer matrix 𝐼 ∈ 𝑅𝑚×(
𝑛

𝑠
)
 with cluster centers in 

floating number matrix 𝐶 ∈ 𝑅𝑘×𝑛. The hyperparameters 

for parameter compression are (𝑠, 𝑘). 

4 Experimental results  
The results from various experiments performed are 

presented in this section. HMod Fast R-CNN is evaluated 

 
Figure 2: HMod Fast R-CNN training algorithm. 
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on benchmark datasets MS-COCO [33] and CIFAR100 

[34], [86] as well as VisualQA [35]. It is implemented 

through Caffe [87]. Back propagation [32] is used towards 

network training. NVIDIA Tesla V100 card is used to 

simulate all test experiments. 

MS-COCO [33] is large-scale object detection, 

segmentation and captioning dataset. It comes with 

several prominent features such as object segmentation, 

recognition in context and super pixel stuff segmentation. 

It consists of 330000 images with more than 200000 

labeled images. It has 1.5 million object instances with 80 

object categories, 91 stuff categories, 5 captions per image 

and 250000 people with key points. Figures 6(a) and 6(b) 

consider 10 superior overlapping coarse categories. The 

coarse category optimal number depends on dataset. There 

is also impact within categories inherent hierarchy. 

There are 100 natural image classes in CIFAR100 

[34], [86] dataset. The prepared dataset comprises of 

50000 and 10000 images for training and testing 

respectively. The dataset pre-processing is done using 

contrast normalization globally and ZCA-cor whitening. 

For training image patches of 30 × 30 size is flipped and 

cropped randomly. A 4 stacked layer NIN network is 

adopted which is denoted as CIFAR100-NIN and placed 

in HMod Fast R-CNN’s building block. The preceeding 

layers from 𝑐𝑜𝑛𝑣1 to 𝑝𝑜𝑜𝑙1 are shared by components 

from weighted fine category. These are responsible 

towards 10% and 35% of total parameters and floating-

point operations respectively. The rest layers are 

considered as independent layers. In order to construct 

category hierarchy, 10000 images are chosen at random 

and taken as heldout set considering training set. There is 

a visual similarity for fine categories considering similar 

coarse categories. Pre-training is done for rear layers of 

fine components category. The initial learning rate is 0.05. 

This decreases by factor 10 for every 6000 iterations. 

With mini-batches of 256 size, fine-tuning is done with 

respect to 20000 iterations. Here initial learning rate is 

0.005. This decreases by factor 10 for every 10000 

iterations. 10view testing [32] is used towards evaluation. 

Six 30 × 30 patches (with 5 corner patches and 1 center 

patch) alongwith their reflections (horizontal) and 

predictions (average) are extracted. HMod Fast R-CNN 

has lower testing error than CIFAR100-NIN. 

With category hierarchy construction, clustering 

algorithm adjusts coarse category. When hyperparameter 

𝛾 is varied, coarse categories can be made overlapping or 

disjoint. Their impacts are investigated on classification 

error. The experiments are performed with 5, 10, 16 and 

20 coarse categories with varying the values of 𝛾. Figures 

7(a) and 7(b) consider 10 superior overlapping coarse 

categories achieved with 𝛾 = 6. The coarse category 

optimal number and 𝛾 depend on dataset. They are also 

impacted within categories inherent hierarchy. 

In comparison with building block net, shared layers 

usage results in sublinear computational complexity and 

memory footprint of HMod Fast R-CNN considering fine 

category classifiers. HMod Fast R-CNN consumes less 

than four times memory as building block net with no 

compression of parameters considering 10 fine category 

classifiers with respect to MS-COCO and CIFAR100-

NIN. Tables 2 and 3 highlight significance of 

classification error, memory footprint and net execution 

time. Using pre-trained building block net, HMod Fast R-

CNN is structured with coarse category and all fine 

category components which use independent preceding 

layers initialization. The central cropping is used with 

single-view testing with slight error increase. The memory 

footprint and testing time is considerably reduced through 

shared layers. 

By varying hyperparameter 𝛽 fine category 

components are affected considerably. The tradeoff exists 

between execution time and classification. For fine 

category when more components are executed higher 

accuracy is achieved through large 𝛽 values. As shown in 

Tables 2 and 3 there is slight error increase when 

conditional executions are enabled through 𝛽 = 6. HMod 

Fast R-CNN achieves 3 times testing time as compared 

with building block net. The fine category HMod Fast R-

CNNs with independent layers from 𝑐𝑜𝑛𝑣2 to 𝑐𝑜𝑛𝑣6 are 

compressed and memory footprint reduces from 448 MB 

to 269 MB with slight error increase. As highlighted in 

Tables 2 and 3 HMod Fast R-CNN memory footprint is 

nearly 2 times in comparison with building block model. 

As a result of this, it is mandatory to compare strong 

baseline with identical complexity for HMod Fast R-

CNN. 

CIFAR100-NIN is adapted with doubled filters for all 

convolutional layers. This results in memory footprint 

increase by more than 3 times. This is denoted as 

CIFAR100-NIN-double. The error is higher than HMod 

Fast R-CNN but lower than building block net. 

Conceptually HMod Fast R-CNN differs from model 

averaging [32]. With model averaging full category sets 

are classified for all models. There is an independent 

training for each model. As different initializations are 

used, predictions are different. Partial category sets are 

classified for each classifier in fine category HMod Fast 

R-CNN. In order to make comparison between HMod Fast 

R-CNN and model averaging, 2 CIFAR100-NIN 

networks are trained independently. This is followed by 

their prediction average which is treated as final 

prediction. Tables 4 and 5 show that HMod Fast R-CNN 

achieves lower error. It is noted that HMod Fast R-CNN 

bears orthogonality towards model averaging. There is a 

considerable performance enhancement for HMod Fast R-

CNN ensembles. It is fine-tuned using multiple group 

discriminant analysis in order to verify coarse category 

consistency term effectiveness in equation (7). Tables 4 

and 5 show higher testing error for HMod Fast R-CNN is 

fine-tuned considering consistency in coarse category. 

There is considerable performance improvement for 

HMod Fast R-CNN using MS-COCO and CIFAR100 

datasets. In order to further support the experimental 

hypothesis some results on Visual QA dataset are 

highlighted in Tables 6 and 7.  

A comparative performance analysis of Mod Fast R-

CNN and HMod Fast R-CNN [32] with Fast R-CNN, 

YOLO, Fast YOLO, YOLOv3, YOLOv4, YOLOv5, DPM 

and SSD on PASCAL VOC 2007 and VOC 2012 datasets 
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is presented in Table 8. In order to achieve better results 

few object detectors are trained through union of 

PASCAL VOC 2007 and VOC 2012 datasets. An error 

analysis of HMod Fast R-CNN [32] with Fast R-CNN and 

all versions of YOLO on same dataset is shown in Figure 

8. Here localization and background errors percentage in 

top N detection category wise is highlighted. In order to 

further strengthen the results a comparative analysis of 

Mod Fast R-CNN and HMod Fast R-CNN with state-of-

the-art methods is presented in Table 9. 

Before concluding this section, we throw some light 

on design evaluation of HMod Fast R-CNN. In this 

direction, several experiments are performed to achieve 

optimal performance for HMod Fast R-CNN. However, 

there remains certain questions which needs to be 

discussed. Some of these aspects have been addressed here 

and rest of them form the future scope of work. 

The first question is: Is training using multi-tasking 

helpful? The multi-task training is always useful because 

 
Figure 3: Testing error (10-view) against number of 

coarse categories with MS-COCO dataset. 

 

 
Figure 4: Overlapping coarse categories with respect to 

fine category occurrences with MS-COCO dataset. 

 
Figure 5: Testing error (10-view) against number of 

coarse categories with CIFAR100 dataset. 

 
Figure 6: Overlapping coarse categories with respect to 

fine category occurrences with CIFAR100 dataset. 

Model Top-1, Top-5 Mem (MB) Time (s) 

Base: 

CIFAR100-NIN 
31.90 186 0.05 

Mod Fast 

R-CNN w/o SL 
31.87 736 2.00 

HMod Fast 

R-CNN w/o SL 
31.72 1250 2.36 

HMod Fast 

R-CNN 
31.36 455 0.31 

HMod Fast 

R-CNN + CE 
31.21 448 0.14 

HMod Fast R-

CNN + CE + PC 
31.05 270 0.14 

Table 1: Testing errors, memory footprint and testing time 

– building block nets and HMod Fast R-CNN: 

Comparative analysis on MS-COCO dataset (mini-batch 

size (for testing) = 100; SL = Shared layers, CE = 

Conditional execution, PC = Parameter comparison). 

Model Top-1, Top-5 Mem (MB) Time(s) 

Base: 

CIFAR100-NIN 
33.96 186 0.05 

Mod Fast  

R-CNN w/o SL 
33.90 736 2.00 

HMod Fast  

R-CNN w/o SL 
33.69 1250 2.37 

HMod Fast  

R-CNN 
33.34 455 0.27 

HMod Fast  

R-CNN + CE 
33.19 448 0.10 

HMod Fast R-

CNN + CE + PC 
31.05 270 0.10 

Table 2: Testing errors, memory footprint and testing time 

– building block nets and HMod Fast R-CNN: 

Comparative analysis on CIFAR100 dataset (mini-batch 

size (for testing) = 100; SL = Shared layers., CE = 

Conditional execution, PC = Parameter comparison). 

Method Error 

Model averaging (2 CIFAR100-NIN nets) 36.05 

CIFAR100-NIN-double 34.24 

Base: CIFAR100-NIN 33.96 

Mod Fast R-CNN (no fine tuning) 32.66 

Mod Fast R-CNN (fine tuning without CCC) 32.09 

Mod Fast R-CNN (fine tuning with CCC) 31.87 

HMod Fast R-CNN (no fine tuning) 32.34 

HMod Fast R-CNN (fine tuning without CCC) 32.05 

HMod Fast R-CNN (fine tuning with CCC) 31.84 

Table 3: Testing errors (10-view) on MS-COCO. 
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there is no need to manage sequentially-trained tasks 

pipeline. This potentially improves accuracy results as 

there is an influence among the tasks considering shared 

representation which CNN uses here. The classification 

loss is one such measure which baseline network uses 

during training. Another useful measure used here is 

multi-task loss. It is observed that there is an improvement 

of pure classification accuracy with respect to only 

classification training through multi-task training. 

The second question is: Is brute-force scale invariance 

always useful here? The brute-force scale invariance is 

achieved here through single scale and multi scale (using 

image pyramids). The scale of image is specified as its 

shortest side length. Here single and multi-scale pyramids 

have produced good results. There are certain instances 

where single scale has shown best tradeoff between speed 

and accuracy considering very deep models. 

The third question is: Is more training data required to 

verify the results? As a rule of thumb, when trained with 

large datasets, performance of object detector improves. 

The same verdict is true here. Here as and when training 

data volumes are increased object detection performance 

grows considerably. Further heterogeneity in training data 

helps network towards learning capability generalization. 

The fourth question is: Is using more object proposals 

always better? Object detectors use two types of proposal 

viz object proposals with sparse set and dense set. Here 

dense set proposals have worked well. This has 

considerably improved HMod Fast R-CNN object 

detection accuracy. As proposals have a pure 

computational role, increasing their number/image have 

produced good results. 

The fifth question is: What is the optimal number of 

layers required in HMod Fast R-CNN to achieve best 

performance? This depends on object detection dataset 

where HMod Fast R-CNN architecture is evaluated. This 

aspect in non-trivial in nature and there is no thumb rule. 

Method Error 

Model averaging (2 CIFAR100-NIN nets) 36.05 

CIFAR100-NIN-double 34.24 

Base: CIFAR100-NIN 33.96 

Mod Fast R-CNN (no fine tuning) 33.66 

Mod Fast R-CNN (fine tuning without CCC) 33.09 

Mod Fast R-CNN (fine tuning with CCC) 31.90 

HMod Fast R-CNN (no fine tuning) 33.34 

HMod Fast R-CNN (fine tuning without CCC) 33.05 

HMod Fast R-CNN (fine tuning with CCC) 31.86 

Table 4: Testing errors (10-view) on CIFAR100 dataset 

(CCC = coarse category consistency). 

Model Top-1, Top-5 Mem (MB) Time (s) 

Base: Prior 

VisualQA 
34.03 186 0.05 

Mod Fast  

R-CNN w/o SL 
33.96 736 2.07 

HMod Fast 

R-CNN w/o SL 
33.87 1250 2.39 

HMod Fast 

R-CNN 
33.72 455 0.27 

HMod Fast 

R-CNN + CE 
33.22 448 0.10 

HMod Fast R-

CNN + CE + PC 
31.06 270 0.10 

Table 5: Testing errors, memory footprint and testing time 

– building block nets and HMod Fast R-CNN: 

Comparative analysis on VisualQA dataset (mini-batch 

size (for testing) = 100; SL = Shared layers, CE = 

Conditional execution, PC = Parameter comparison). 

Method Error 

d-LSTM+n-I Visual QA 34.69 

Base: Prior Visual QA 34.03 

Mod Fast R-CNN (no fine tuning) 33.96 

Mod Fast R-CNN (fine tuning without CCC) 33.36 

Mod Fast R-CNN (fine tuning with CCC) 32.00 

HMod Fast R-CNN (no fine tuning) 33.86 

HMod Fast R-CNN (fine tuning without CCC) 33.26 

HMod Fast R-CNN (fine tuning with CCC) 31.98 

Table 6: Testing errors (10-view) on VisualQA dataset 

(CCC = coarse category consistency). 

Object Detectors Training mAP FPS 

100 Hz DPM 2007 16.0 100 

Fast R-CNN 2007+2012 70.0 0.5 

Faster R-CNN 2007+2012 70.7 0.5 

YOLO 2007+2012 72.7 155 

YOLOv2 2007+2012 75.5 45 

YOLOv3 2007+2012 76.5 31 

YOLOv4 2007+2012 77.6 27 

YOLOv5 2007+2012 78.6 26 

Mod Fast R-CNN 2007+2012 81.06 0.5 

HMod Fast R-CNN 2007+2012 87.6 0.3 

Table 7: A comparative performance analysis of HMod 

Fast R-CNN vs other object detectors on PASCAL VOC 

2007 and 2012 datasets (2007+2012: union of VOC2007 

trainval and test and VOC 2012 trainval). 

Object Detectors Significant Results 

SAF R-CNN AMR: 9.32 

Deep Network Cascades AMR: 31.11; FPS: 15 

LOGO-Net mAP: 69.9 

SCL mAP: 16.3 

SL2 mAP: 46.9 

Local Structured HOG-LBP mAP: 34.3 

Faster R-CNN mAP: 70.7 

Fast R-CNN mAP: 70.0 

FPN mAP: 59.1 

YOLO mAP: 72.7; FPS: 155 

YOLO9000/YOLOv2 mAP: 75.5; FPS: 45 

SSD mAP: 76.8; FPS: 22 

YOLOv3 mAP: 76.5; FPS: 31 

YOLOv4 mAP: 77.6; FPS: 27 

YOLOv5 mAP: 78.6; FPS: 26 

Low-cost ISS mAP: 99.4 

ADS + Hardw Accelerators mAP: 83.64; FPS: 30 

xYOLO mAP: 68.22; FPS: 9.66  

Grape Disease Detection mAP: 95.57 

Mod Fast R-CNN mAP: 81.06; FPS: 0.5 

HMod Fast R-CNN mAP: 87.6; FPS: 0.3 

Table 8: A comparative performance analysis of HMod 

Fast R-CNN vs significant state-of-the-art object 

detection methods (AMR: Average Miss Rate; mAP: 

Mean Average Precision). 
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Here prior experience in building network architecture 

with image datasets has produced good results. 

5 Conclusion 
In this work, we presented HMod Fast R-CNN which is 

hierarchical updated version of Mod Fast R-CNN. It 

improves Fast R-CNN’s architecture considerably. The 

computational system comprises of extraction layers, 

weighted coarse and fine component layers and 

possibilistic averaging layer. The possibilistic averaging 

layer converts fine category and coarse category 

probabilistic predictions into possibilistic measures which 

is weighted average and considered as final prediction 

result. The possibilistic measures effectively address 

inherent uncertainty in data. The experimental results with 

MS-COCO, CIFAR100 and VisualQA datasets provide 

several new insights. This fact is highlighted using four 

variant building block nets. The proposed network’s 

performance superiority over other object detectors on 

MS-COCO, PASCAL VOC 2007 and VOC 2012 datasets 

are also illustrated. HMod Fast R-CNN architecture can be 

 
Table 9: An error analysis of HMod Fast R-CNN vs Faster R-CNN, Fast R-CNN, YOLO, YOLOv2, YOLOv3, 

YOLOv4, YOLOv5 on PASCAL VOC 2007 and 2012 datasets. 
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further extended with more than five levels. This will 

improve experimental results in terms of object detection 

accuracy as well as accelerates overall process considering 

theoretical viewpoints. The future work looks towards 

developing HMod Fast R-CNN with more layers and 

verifying results with significant image datasets. 
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Appendix 
Reference Year Object Detectors Significant Results 

Li et al [41] 2018 SAF R-CNN AMR: 9.32 

Angelova et al [43] 2015 Deep Network Cascades AMR: 31.11; FPS: 15 

Hoi et al [46] 2015 LOGO-Net mAP: 69.9 

Su et al [47] 2017 SCL  mAP: 16.3 

Su et al [48] 2018 SL2  mAP: 46.9 

Yu et al [60] 2010 Local Structured HOG-LBP mAP: 34.3 

Ren et al [66] 2015 Faster R-CNN mAP: 70.7 

Girshick et al [70] 2015 Fast R-CNN mAP: 70.0 

Lin et al [71] 2017 FPN mAP: 59.1 

Redmon et al [72] 2016 YOLO mAP: 72.7; FPS: 155 

Redmon et al [73] 2017 YOLO9000/YOLOv2 mAP: 75.5; FPS: 45 

Liu et al [74] 2016 SSD mAP: 76.8; FPS: 22 

Redmon et al [75] 2018 YOLOv3 mAP: 76.5; FPS: 31 

Bochkovskiy et al [76] 2020 YOLOv4 mAP: 77.6; FPS: 27 

Jocher et al [77] 2020 YOLOv5 mAP: 78.6; FPS: 26 

Sabri et al [78] 2021 Low-cost ISS mAP: 99.4 

Mazzia et al [79] 2020 ADS + Hardw Accelerators mAP: 83.64; FPS: 30 

Barry et al [81] 2019 xYOLO mAP: 68.22; FPS: 9.66  

Ghoury et al [82] 2019 Grape Disease Detection mAP: 95.57 

Table 10: Significant state-of-the-art research works in deep learning-based object detection (AMR: Average Miss Rate; 

mAP: Mean Average Precision). 

https://github.com/ultralytics/yolov5
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Figure 7: Prediction framework through HMod Fast R-CNN. 

 
Figure 8: Architecture of Mod Fast R-CNN. 

 
Figure 9: Architecture of HMod Fast R-CNN. 
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