
https://doi.org/10.31449/inf.v45i7.3732 Informatica 45 (2021) 67–81 67

Hierarchical Modified Fast R-CNN for Object Detection

Arindam Chaudhuri

Samsung R & D Institute Delhi India, NMIMS University Mumbai India

E-mail: arindamphdthesis@gmail.com, arindam.chaudhuri@nmims.edu

Keywords: object recognition, image classification, Fast R-CNN, MS-COCO, CIFAR100, VisualQA

Received: September 3, 2021

In object detection there is high degree of skewedness for objects' visual separability. It is difficult to

distinguish object categories which demand dedicated classification. The deep convolutional neural

networks (CNNs) are trained as N-way classifiers. As such considerable work is required towards

leveraging hierarchical category structures. We present here Modified Fast region-based CNN (Mod Fast

R-CNN) and Hierarchical Modified Fast region-based CNN (HMod Fast R-CNN) with deep CNNs being

embedded considering categorical hierarchy. The easy classes are separated through coarse classifiers.

The difficult classes are classified by fine classifiers. HMod Fast R-CNN is trained by initial components

training which follows fine-tuning globally using multiple group discriminant analysis. The regularization

is done using coarse category consistency. For large-scale recognition tasks, scalability is done

considering conditional execution of fine category classifiers and layer parameters compression. Using

MS-COCO (benchmark) CIFAR100 and VisualQA datasets we obtain good results. We build several

different HMod Fast R-CNN versions where standard CNNs top-1 error is reduced significantly. HMod

Fast R-CNN’s performance superiority with other object detectors on PASCAL VOC 2007 and VOC 2012

datasets are also highlighted.

Povzetek: Predstavljena je metoda hierarhičnih hitrih R-CNN za detekcijo objektov.

1 Introduction
In computer vision there are several fundamental visual

recognition problems such as image classification [1],

object detection and instance segmentation [2], [3] and

semantic segmentation [4] as shown in Figure 1. Image

classification recognizes objects in semantic categories

from given image as shown in Figure 1 (a). Object

detection recognizes object categories and predicts each

object’s location considering bounding box as shown in

Figure 1 (b). Semantic segmentation predicts pixel wise

classifiers in order to assign specific category label to each

pixel. It thus provides rich image understanding as shown

in Figure 1 (c). However, semantic segmentation does not

distinguish between multiple objects of same category. At

intersection of object detection and semantic segmentation

viz instance segmentation where different objects are

identified and assigned to a separate categorical pixel-

level mask as shown in Figure 1 (d).

Since the birth of convolutional neural networks

(CNN) image classification [5] and object detection [2],

[6] problems have received a high degree of accuracy [5],

[7]. Almost all available object detection techniques [2],

[6], [8], [9] work in multi-stage slow and inelegant

pipelines. The complexity arrives from detection which

requires accurate object localization leading towards (a)

processing of numerous candidate object locations and (b)

achieving precise localization for candidate object

locations which provide only rough localization. The

solution for these problems has often struggled to achieve

good speed, accuracy and simplicity.

The region-based convolutional neural network (R-

CNN) [2] has achieved brilliant accuracy in object

detection. However, it has certain drawbacks [2], [6], [8],

[9] such that (a) training is performed through pipeline

with multiple stages; (b) appreciable space and time

complexity is involved and (c) object detection process

happens slowly. R-CNN works slowly as each object’s

CNN forward pass happens without any computation

sharing. By sharing computation, spatial pyramid pooling

networks (SPPN) [8] speeds up R-CNN. The input

convolutional image’s feature map is computed by SPPN.

Then each object is classified through feature vector taken

from shared feature map. Considering an object,

extraction of features happens through max-pooling

feature-map’s portion within object with fixed output size.

As in spatial pyramid pooling (SPP), concatenation and

pooling are performed for multiple sizes output. SPPN

enhances R-CNN considerably at test time. Due to fast

object feature extraction, training time is less.

This work is motivated from success achieved in

designing CNN hierarchically considering integration of

category hierarchy and linear classifiers. CNN models are

continuously upgraded through enhancement of their

components such as pooling layers [10], activation units

[11], [12] and nonlinear layers [13]. These developments

have improved CNN’s training and learning processes.

This work improves Fast R-CNN’s performance

considerably. The hierarchical model is built layer-wise

considering Fast R-CNN as basic building block. There

exist a wide variety of structures with categorical

68 Informatica 45 (2021) 68–81 A. Chaudhuri

hierarchy [14]. The classification with linear classifiers

having high number of classes is performed through

classifiers’ taxonomy. Here classifiers are verified

considering test image which scales in sub-linear manner

against number of classes [15], [16]. The hierarchy

learning is either pre-specified [17], [18], [19] or achieved

in top-down and bottom-up manner [20], [21], [22], [23],

[24], [25], [26]. Hierarchical classifiers in [27] and [28]

have reached considerable speedup bearing some

accuracy loss. The initial work on category hierarchy for

CNN is available in [29]. [30] achieves good accuracy

with training images subset with re-labeled internal nodes

in class tree hierarchy. [31] uses CNN hierarchy with

scalability and has good classification performance.

Considering above motivation in this work, Modified

Fast R-CNN (Mod Fast R-CNN) and Hierarchical

Modified Fast R-CNN (HMod Fast R-CNN) [32] methods

are proposed. HMod Fast R-CNN performs object

detection by hierarchical learning in order to classify

objects and refine them. This work looks towards

development of HMod Fast R-CNN which integrates deep

CNNs alongwith category hierarchy. The algorithm

streamlines training process towards R-CNN based object

detectors [2], [8]. The image classification task is

decomposed into two steps. The weighted coarse

component Mod Fast R-CNN classifier separates easy

classes. The complex classes are directed towards

weighted fine components which takes care of classes

with confusion. HMod Fast R-CNN is build considering

Fast R-CNN building block through module design

principle. The building blocks are considered to be as one

of the top ranked single Fast R-CNN. The coarse-to-fine

classification is adopted here. Then fine category

classifiers predictions are integrated as possibilistic means

which takes care of inherent data uncertainty. The

proposed architecture is evaluated through MS-COCO

[33], CIFAR100 [34] and VisualQA [35] datasets. A

comparative analysis of HMod Fast R-CNN with respect

to other detectors such as deformable part model (DPM),

all versions of you only look once (YOLO), single shot

multibox detector (SSD) etc is performed on PASCAL

VOC 2007 [36] VOC 2012 [37] datasets alongwith an

error analysis. HMod Fast R-CNN achieves less error

considering memory footprint increase as well as

classification time. The schematic representation of HMod

Fast R-CNN based prediction system [32] is given in

Figure 2 in Appendix. This paper is structured as follows.

The section 2 presents an overview of related work in

object detection. The computational methodology is

highlighted in section 3. The section 4 presents

experimental results. Finally, in section 5 conclusion is

given.

2 Related work
In this section we present significant developments in

deep learning-based object detection in past few years. A

good detection algorithm comes with strong semantic cues

understanding and spatial information about image.

Object detection is fundamental step towards many

computer vision applications such as face recognition

[38], [39], [40], pedestrian detection [41], [42], [43], video

analysis [44], [45] and logo detection [46], [47], [48].

Initially object detection pipeline was divided into

three steps viz (i) proposal generation (ii) feature vector

extraction and (iii) region classification. During proposal

generation objective was to search locations in image viz

regions of interest (RoI) which contain objects. An

intuitive idea is to scan whole image with sliding windows

[49], [50], [51], [52], [53]. Input images are resized into

different scales and multi-scale windows are used to slide

through these images in order to capture information about

multi-scale and different aspect ratios of objects. In next

step on each image’s location, a fixed-length feature

vector is obtained considering sliding window in order to

capture discriminative semantic information of covered

region. This feature vector is encoded by several low-level

visual descriptors [54], [55], [56], [57]. These descriptors

have shown good robustness towards scale, illumination

and rotation variance. Finally, region classifiers are

learned to assign categorical labels to regions covered.

Here support vector machines (SVM) [58] have been used

because they offer good performance on small scale

training data. Alongwith this classification techniques

such as cascade learning [59], bagging [60] and adaboost

[61] have also been used in region classification which

have provided considerable improvements in detection

accuracy.

The successful traditional object detection methods

have focused towards designing feature descriptors in

order to obtain embedding for RoI. With good feature

representations and robust region classifiers impressive

results [62], [63] are achieved on PASCAL VOC dataset

[64]. The deformable part-based machines (DPMs) [65]

learn and integrate multiple part models with deformable

loss. They mine hard negative examples with latent SVM

for discriminative training. Between 2008 to 2012

PASCAL VOC’s progress based on these traditional

methods showed incremental progress for building

complicated ensemble systems. These reflected

limitations of traditional detectors. These limitations are

 (a) (b)

 (c) (d)

Figure 1: Visual recognition tasks in computer vision (a)

image classification (b) object detection (c) semantic

segmentation (d) instance segmentation.

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 69–81 69

reflected during proposal generation, feature descriptors

and detection pipeline. In proposal generation huge

number of redundant proposals are generated with many

false positives during classification. The window scales

designed manually and heuristically could not match

objects well. The feature descriptors are hand-crafted

based on low level visual cues [5], [56], [66] making them

difficult to capture representative semantic information in

complex contexts. In each step of detection pipeline is

designed and optimized separately as a result of which

global optimal solution could not be obtained.

After CNN’s considerable success for image

classification [1], [67], object detection also achieved

remarkable progress on deep learning [2], [68], [69] based

solutions. The newer detection algorithms outperformed

traditional ones by huge margins. In [68] deep CNN model

is optimized using stochastic gradient descent (SGD) via

backpropagation. It provided good performance on digit

recognition. However, deep networks are plagued with

certain limitations like lack of large-scale annotated

training data causing overfitting, limited computation

resources and weak conceptual support compared to

SVMs. In [5] a deep CNN is trained with ImageNet dataset

which showed significant improvement on Large Scale

Visual Recognition Challenge (ILSVRC) in comparison

to all other approaches. After this success deep learning

methods have been quickly adapted to other vision tasks

where they have shown promising results over traditional

methods. As compared to hand-crafted descriptors in

traditional detectors, deep CNN generate hierarchical

feature representations from raw pixels to high level

semantic information. This is learned automatically from

training data and shows more discriminative expression

capability in complex contexts. Deep CNN also achieve

better feature representation with large datasets. In

traditional visual descriptors learning capacity is fixed and

no improvement is reached as more data becomes

available.

The major contributions in deep learning-based object

detection can be categorized into three groups viz

detection components, learning strategies and applications

and benchmarks [32]. The detection components include

detection settings, detection paradigms and backbone

architectures. The learning strategies comes with training

and testing stages. The applications and benchmarks

include commonly used applications and public

benchmark datasets. In present scenario, deep learning-

based object detection frameworks can be divided into two

categories viz two-stage detectors and one-stage detectors.

The two-stage detectors cover R-CNN [2] and its variants

[66], [70], [71] and one-stage detectors has YOLO [72]

and its variants [73], [74]. The one-stage detector makes

categorical object prediction on each location of feature

maps without cascaded region classification step. The

two-stage detectors use proposal generator in order to

generate a sparse set of proposals and extract its features.

This is followed by region classifiers which predict

category of proposed region. The one-stage detectors are

more time-efficient and have greater application towards

real-time object detection. The two-stage detector achieve

better detection performance and report state-of-the-art

results on benchmark datasets.

Single shot detector (SSD) [74] has been one of the

significant developments in object detection methods in

past decade. It does not resample pixels or features for

bounding boxes. By eliminating bounding boxes, it

provides improvements considering speed at which object

detection activities are performed. It provides high

accuracy detection for low resolution images. For real

time object detection YOLO [72] occupies a very

prominent place. It is a state-of-the-art object detection

system whose speed and accuracy has grown over the

years. Till date we have 5 versions of YOLO [72], [75],

[76], [77], [78] each of which supersedes previous

versions. Apart from speed and accuracy some of biggest

advantages of initial two versions of YOLO viz YOLO

and YOLOv2 or YOLO9000 [72], [73] include network

understandability towards generalized object

representation and smaller architecture. The third version

of YOLO, YOLOv3 [75] is extremely fast and accurate. It

uses few tricks to improve training with increased

performance including multiscale predictions, better

backbone classifier and much more. The fourth version of

YOLO, YOLOv4 [76] offers improved performance

above previous versions. It provides superfast training and

accurate object detection. It has also been verified for the

influence of state-of-the-art bag-of-freebies and bag-of-

specials object detection methods during detector training.

The modified state-of-the-art methods include cross

iteration batch normalization and path aggregation

network which are more efficient and suitable for single

GPU training. Finally, fifth version of YOLO, YOLOv5

[77] has also been launched with exceptional

improvements. This version outperforms all previous

versions with EfficientDet average precision and higher

frames per second. Some of the recent major

developments of deep learning-based object detection

methods include [78], [79], [80], [81], [82], [83]. The

Table 1 in Appendix highlights significant state-of-the-art

research works in deep learning-based object detection. It

is to be noted that in each case best possible results are

presented.

3 Computational methodology
In this section computational framework of Mod Fast R-

CNN and HMod Fast R-CNN [32] are presented. In

subsection 3.1 Mod Fast R-CNN architecture with training

is discussed. This is followed by HMod Fast R-CNN

architecture with training in subsection 3.2. In subsection

3.3 HMod Fast R-CNN for detection is discussed.

3.1 Modified Fast R-CNN with training

Mod Fast R-CNN architecture is adopted from [32] with

[70] as baseline method having certain variations. The

architecture is highlighted in Figure 3 in Appendix. The

entire image and objects' set forms input towards Mod Fast

R-CNN network. The convolutional feature map is

produced through processing of entire image alongwith

convolutional and max pooling layers. Considering

70 Informatica 45 (2021) 70–81 A. Chaudhuri

feature map, a fixed length feature vector is extracted for

each object's RoI pooling layer.

The sequence of fully connected (𝑓𝑦_𝑐𝑡) layer takes

each feature vector as input. From 𝑓𝑦_𝑐𝑡 output is fed in 2

sibling output layers producing softmax probability

estimates. The softmax probability are estimated with

respect to 𝑂𝐵 object classes. This considers catch-all

background class and another layer which has 4 real

valued output numbers. For each of 𝑂𝐵 classes, 4 values'

set are encoded considering bounding box refined

positions. The max pooling is used for RoI pooling layer

in order to convert its features into small feature map

considering 𝐻𝑡 × 𝑊ℎ fixed spatial extent. Here 𝐻𝑡 and

𝑊ℎ are layers’ hyper parameters not dependent on any

specific RoI. RoI is rectangular window with

convolutional feature map. A 4-tuple (𝑟𝑤, 𝑐𝑚, ℎ𝑡, 𝑤ℎ)

defines an RoI where (𝑟𝑤, 𝑤ℎ) is top left with ℎ𝑡 and 𝑤ℎ

as its height and width respectively. The ℎ𝑡 × 𝑤ℎ window

is divided by RoI max pooling into 𝐻𝑡 × 𝑊ℎ sub-window

grids having
ℎ𝑡

𝐻𝑡
×

𝑤ℎ

𝑊ℎ
 size approximately. Then sub-

window values are max-pooled into each grid cell output.

Towards each feature map channel independent pooling is

applied. RoI layer has 1 pyramid level. It is a special case

of SPP layer in SPNN [8]. For experiments 6 pre-trained

ImageNet [69] networks with 8 max pooling layers and

between 8 and 18 convolutional layers are used. There are

3 transformations for Mod Fast R-CNN network with pre-

trained network initialization. RoI pooling layer replaces

last max pooling layer. It is configured as 𝐻𝑡 × 𝑊ℎ. This

is followed by 1000-way ImageNet classification training

for network’s last fully connected and softmax layers.

There are 𝐴 + 1 categories for fully connected layers,

softmax layers and bounding-box regressors which are

specific to category. The network is updated to absorb 2

data inputs.

Mod Fast R-CNN uses backpropagation to train all

network weights. Below SPP layer, weight updation is not

possible as SPP layer's backpropagation is not effective.

This inefficiency is spread across receptive field spanning

entire input image starting from each RoI. The training

inputs are large as forward pass processes entire receptive

field. The feature sharing is used during training. For each

image, RoIs are sampled hierarchically through 𝐼 and then
𝑅

𝐼
 images for Mod Fast R-CNN training SGD mini-

batches. In forward and backward passes, computation

and memory are shared for RoIs from same image. Taking

small 𝐼 reduces computation of mini-batch. It slows

convergence of training as same image RoIs are

correlated. Significant results are achieved using 𝐼 = 2

and 𝑅 = 128 with less SGD iterations. Here training

process is synchronized through fine-tuning which

optimizes softmax classifier and bounding box regressors

[2], [8].

In Mod Fast R-CNN 2 sibling output layers are used.

The initial output is discrete probability distribution per

RoI considering 𝐴 + 1 categories which is 𝑝𝑟𝑜𝑏 =
(𝑝𝑟𝑜𝑏0 , … … , 𝑝𝑟𝑜𝑏𝐴). For fully connected layer, 𝑝𝑟𝑜𝑏 is

calculated for softmax considering 𝐴 + 1 outputs. The 2𝑛𝑑

sibling layer has bounding-box regression offsets outputs

for 𝐴 object classes as 𝑣𝑎 = (𝑣𝑥
𝑎 , 𝑣𝑦

𝑎 , 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎). The

parameterization for 𝑣𝑎 is given in [2]. Here 𝑣𝑎 specifies

translation (scale-invariant) and height shift (log-space)

with respect to the object. For each training RoI labeling

is done considering ground-truth class 𝑢 and ground-truth

with bounding-box regression for 𝑣. For each labeled RoI,

there is joint classification for training and bounding-box

regression with respect to multitask loss 𝐿:

𝐿(𝑝, 𝑢, 𝑣𝑢 , 𝑠) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑣𝑢 , 𝑠) (1)

For true class 𝑢, log loss is 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢. 𝐿𝑙𝑜𝑐

is second task loss which is specified considering true

bounding-box regression target tuples such that 𝑠 =
(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑤ℎ , 𝑠ℎ𝑡) with predicted tuple 𝑣𝑎 =

 (𝑣𝑥
𝑎 , 𝑣𝑦

𝑎 , 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎) for class 𝑢. When 𝑢 ≥ 1 [𝑢 ≥ 1] = 1

else 0 is inversion bracket indicator function. Background

class with catch-all convention is marked as 𝑢 = 0. 𝐿𝑙𝑜𝑐 is

ignored with background RoIs having no ground-truth

bounding box. The bounding-box regression loss is:

𝐿𝑙𝑜𝑐(𝑣𝑢 , 𝑠) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑣𝑖

𝑢 − 𝑠𝑖)𝑖∈(𝑥,𝑦,𝑤ℎ,ℎ𝑡) (2)

In equation (2) smooth function is:

 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑤

 (3)

In 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥), loss 𝐿2 in Mod Fast R-CNN and

SPPN [8] is more outliers’ sensitive than robust loss 𝐿1.

The loss 𝐿2 needs to be carefully tuned in terms of learning

rates to prevent gradients exploding with unbounded

training as regression targets. This sensitivity is eliminated

through equation (3). In equation (1) balance between 𝐿1

and 𝐿2 is controlled by 𝜆. With 𝜆 = 1 ground-truth

regression targets 𝑠𝑖 ~ 𝑁(0,1). The class-agnostic object

network is trained using loss factor [69]. The localization

and classification are separated by 2-network system. The

images (𝑁 = 2) selected uniformly at random are used

from SGD minibatch created at fine tuning. The dataset is

permuted to perform in iterations. From each image 64

RoIs are sampled considering mini-batches of 𝑅 = 128

size. 25% of RoIs are taken from objects which have

intersection over union (IoU) overlap having ground-truth

bounding box ≥ 0.5 [2].

𝜕𝐿

𝜕𝑥𝑖
= ∑ ∑ [𝑖 = 𝑖 ∗ (𝑟, 𝑗)]𝑗𝑟

𝜕𝐿

𝜕𝑦𝑟𝑗
 (4)

The partial derivative
𝜕𝐿

𝜕𝑦𝑟𝑗
 accumulates if 𝑖 is selected

as argmax considering 𝑦𝑟𝑗 through max pooling for each

mini-batch RoI 𝑟 and for pooling output unit 𝑦𝑟𝑗 . Using

backwards function of layer over RoI pooling layer, partial

derivatives
𝜕𝐿

𝜕𝑦𝑟𝑗
 are calculated. Considering softmax

classification and bounding-box regression for fully

connected layers, an initialization is done through zero-

mean Gaussian distributions. Here standard deviations are

taken as 0.01 and 0.001 for both cases with 0 as the bias

initialization. For weights learning rate is 1 per layer and

for biases learning rate is 2 per layer considering all layers.

The global learning rate is 0.001. Trainval SGD is

executed for 30000 minibatch iterations when training on

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 71–81 71

PASCAL VOC 2007 or VOC 2012. Then learning rate is

lowered to 0.0001 and training is done for next 10000

iterations. SGD is executed for more iterations, when

training is done on larger datasets. For weights and biases,

momentum is 0.9 and parameter decay is 0.0005. Brute-

force learning and image pyramids are used to achieved

scale invariant object detection. These approaches used

here are taken from [8]. During training and testing for

brute-force approach each image is being processed at

predefined pixel size. Using training data, network learns

scale-invariant object detection. From an image pyramid,

approximate scale-invariance to network is provided by

multi-scale approach. Each object proposal is scale

normalized approximately through image pyramid at test

time. Each time when an image is sampled, pyramid scale

is randomly sampled at multi-scale training. The detection

considers running forward pass. Here objects are assumed

to be precomputed as Fast R-CNN network where it is

fine-tuned. The network input is image or image pyramid

as well as 𝑅 objects list towards score. 𝑅 is typically taken

as 2000, though cases are there when it is about 45000 at

test time. Using image pyramid, each RoI is placed to scale

such that scaled RoI is near to 2242 pixels [8].

Considering each test RoI 𝑟 forward pass output is

posterior probability distribution 𝑝𝑟𝑜𝑏 with predicted

bounding-box set offsets relative to 𝑟 for each 𝐴 classes

which gets its refined bounding-box prediction. For each

object class 𝑘 through estimated probability

𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠 = 𝑘|𝑟) ≜ 𝑝𝑘, a detection confidence is

assigned to 𝑟. Then for each class using Fast R-CNN

algorithm [84] non-maximum suppression is performed

independently.

The time spent for calculating convolutional layers is

greater than fully connected layers considering whole-

image classification. The processing time for number of

RoIs is large enough for detection. It is about 50% of

forward pass time required for calculating fully connected

layers [84], [85]. By compressing large fully connected

layers with truncated singular value decomposition (SVD)

easy acceleration is achieved. Each layer is parameterized

by 𝑢 × 𝑣 weight matrix 𝑊 which is approximately

factorized as 𝑊 ≈ 𝑈∑𝑡 𝑉𝑇 .Here 𝑈 is 𝑢 × 𝑡 matrix

constituting 𝑊′𝑠first 𝑡 left-singular vectors, ∑𝑡 is

𝑡 × 𝑡 diagonal matrix with 𝑊′𝑠 top 𝑡 singular values and

𝑉 is 𝑣 × 𝑡 matrix constituting 𝑊′𝑠 first 𝑡 right-singular

vectors. The parameter count is reduced from 𝑢𝑣 to 𝑡(𝑢 +
𝑣) through truncated SVD. This works well when 𝑡 <
𝑚𝑖𝑛(𝑢, 𝑣). Corresponding to 𝑊 single fully connected

layer network is compressed by replacing 2 fully

connected layers with no in between non-linearity. With

no biases, weight matrix ∑𝑡 𝑉𝑇 is used for first few layers

and with original biases linked with 𝑊, 𝑈 is used for

second few layers. As RoIs number grows, good speedups

are achieved through this compression.

3.2 Hierarchical modified fast R-CNN with

training

Now architecture of HMod Fast R-CNN [32] is presented.

Based on the success of Mod Fast R-CNN [32], HMod

Fast R-CNN is discussed in this section. The image dataset

has images {𝑥𝑖 , 𝑦𝑖}𝑖 with 𝑥𝑖 and 𝑦𝑖 representing image data

and label respectively. The dataset {𝑆𝑗
𝑓

}
𝑗=1

𝐶𝑡
 contains 𝐶𝑡

fine categories of images. The category hierarchy with 𝐴

coarse categories {𝑆𝑎
𝑐𝑡}𝑎=1

𝐴 is used towards formation of

learning process. HMod Fast R-CNN emulates category

hierarchy structure with coarse categories making up fine

categories.

As shown in Figure 4 [32] in Appendix end-to-end

classification happens here. It consists of 5 components

viz (a) high-level feature extraction layer (b) low-level

feature extraction layer (c) weighted coarse component

independent layers {𝐵𝑎}𝑎=1
𝐴 (d) weighted fine component

independent layers {𝐹𝑎}𝑎=1
𝐴 and (e) possibilistic averaging

layer. The extraction layers are present on leftmost side of

Figure 4. They take raw image pixel as input and extract

high-level features followed by low-level features. The

configuration of extraction layers is kept same as

preceding layers with respect to building block net. The

weighted coarse component independent layers assign

weight factor to each of 𝐴 layers and gives coarse

prediction based on best weight achieved. The

probabilities in weighted coarse category provide: (a)

weight factor towards combining predictions which fine

category components make and (b) consider threshold

conditional executions of fine category components are

enabled for which coarse probabilities are quite large. The

independent layers are represented considering weighted

fine category classifiers set {𝐹𝑎}𝑎=1
𝐴 where weighted fine

category predictions are made by each classifier. Each

weighted fine category component classifies small

categories set accurately. As such from here fine

prediction is produced with respect to partial categories

set. When partial set do not have probabilities of other fine

categories, they are taken as zero. From building block

Mod Fast R-CNN layer configurations are copied.

However, in final classification layer filter numbers are

taken as partial set size.

The common layers are shared for both weighted

coarse category and fine category components. This is

because of reasons stated here. The preceeding layers in

deep networks [63] respond towards low-level features

which are class-agnostic for example corners and edges.

The class-specific features are extracted from rear layers.

The preceding layers are shared by both coarse and fine

components as for both coarse and fine classification tasks

low-level features are useful. The floating-point

operations network execution memory footprint is

considerably reduced. HMod Fast R-CNN parameters are

also decreased which is vital towards network’s training.

Finally, there is a possibilistic averaging layer where fine

category and coarse category predictions are received and

converted to possibilistic measures through equation (5).

Then a weighted average is produced as final prediction

result. It is to be noted that merging part plays a significant

role in averaging layer of HMod Fast R-CNN. The

weighted factors are decided based on certain heuristics

[32]. In initial iterations weight factors are decided based

on dataset considered. The distribution of coarse-grained

and fine-grained images are considered in deciding

72 Informatica 45 (2021) 72–81 A. Chaudhuri

weighted factors in later iterations. This helps in reaching

best possible results in final prediction. The possibilistic

measures handles inherent uncertainty in data better than

probabilistic values

𝑝𝑜𝑠𝑠𝑏(𝑥𝑖) =
∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖)𝐴

𝑎=1

∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝐴
𝑎=1

 (5)

In equation (5) 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎) is possibility of coarse

category 𝑎 considering image 𝑥𝑖 which is predicted

through coarse category component 𝐵 and 𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖) is

prediction achieved through fine category component 𝐹𝑎.

Considering building block Mod Fast R-CNN, layer

configurations for both coarse and fine category

components are reused. The flexibility in modular design

gives best module Mod Fast R-CNN as building block.

As fine category components are inserted into HMod

Fast R-CNN, parameters in rear layers increases linearly

with respect to coarse categories. This increases training

complexity as well as overfitting risk considering same

amount of training data. Within stochastic gradient

descent mini-batch, training images are routed

probabilistically towards various fine category

components. To ensure parameter gradients larger

minibatch are required in fine category components which

are estimated through quite large number of training

samples. The training memory footprint is increased by

large training mini-batch but training process is

considerably slow. HMod Fast R-CNN training is

decomposed into several steps as shown in Figure 5 [32].

HMod Fast R-CNN is sequentially pre-trained for

coarse and fine category components. First a building

block Mod Fast R-CNN 𝐹𝑝 is pretrained through training

set. There is a resemblance in building block Mod Fast R-

CNN with preceding and rear layers in coarse category

component. As a result of this for initialization purpose,

weights of 𝐹𝑝 are placed into coarse category component.

Fine category components {𝐹𝑎}𝑎 are independently pre-

trained in parallel. Each 𝐹𝑎 specializes towards

classification of fine categories considering coarse

category 𝑆𝑎
𝑐𝑡. Thus, pre-training of each 𝐹𝑎 uses images

{𝑥𝑖|𝑖 ∈ 𝑆𝑎
𝑐𝑡} with coarse category 𝑆𝑎

𝑐𝑡. The initialization

is done for shared preceding layers which are kept fixed

now. All rear layers are initialized for each 𝐹𝑎 except last

convolutional layer through writing learned parameters

from pre-trained model 𝐹𝑝.

3.3 Hierarchical modified fast R-CNN for

Detection

After HMod Fast R-CNN [32] is trained, detection is

performed. This section highlights this issue. The

complete HMod Fast R-CNN is fine-tuned when coarse

and fine category components are appropriately pre-

trained. Every fine category component is directed

towards classifying fixed fine categories subset, when

learning is done for category hierarchy and associated

mapping 𝑷𝟎. The coarse categories semantics predicted

through coarse category component must remain

consistent coarse category component during fine-tuning.

The consistency term in coarse category is included in

order to regularize multiple group discriminant loss. The

mapping 𝑷: [𝟏, 𝑪𝒕] ⟼ [𝟏, 𝑨] which is fine-to-coarse in

nature paves a way towards specification of target coarse

category distribution {𝒕𝒂}. Here 𝒕𝒂 is placed as fraction for

all training images within coarse category 𝑺𝒂
𝒄𝒕 with

assumption that distribution for coarse categories over

training dataset is near to that in trained mini-batch:

𝑡𝑎 =
∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)

∑ ∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)
𝐴
𝑎′=1

 (6)

For fine-tuning HMod Fast R-CNN final loss function is:

𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ log(𝑝𝑜𝑠𝑠𝑏𝑦𝑖

)
𝑛

𝑖=1
+

𝜆

2
∑ (𝑡𝑎 −

1

𝑛
∑ 𝐵𝑖𝑎

𝑛
𝑖=1)

2
𝐴
𝑎=1 (7)

Here training mini-batch size is 𝑛 and regularization

constant 𝜆 = 20. As fine category components are added

into HMod Fast R-CNN, rear layers with parameters,

memory footprint and execution time variables are

linearly scaled with coarse categories. In order to scale

HMod Fast R-CNN to large-scale visual recognition, layer

parameter compression techniques and conditional

execution are used. It is not required to test all fine

category classifiers for given image because they have

weights 𝐵𝑖𝑎 which are not significant as shown in equation

(7). The final predictions are negligible here. HMod Fast

R-CNN classification is accelerated through conditional

executions of top weighted fine components. Thus, 𝐵𝑖𝑎 is

given a threshold using 𝐵𝑡 = (𝛽𝐴)−1 and reset 𝐵𝑖𝑎 = 0

when 𝐵𝑖𝑎 < 𝐵𝑡. The evaluation is not done for fine

category classifiers with 𝐵𝑖𝑎 = 0. With HMod Fast R-

CNN rear layers parameter in classifiers of fine category

is directly proportional to number of coarse categories. In

order to reduce memory footprint compression of layer

parameters is done at test time.

The product quantization approach is chosen to

compress parameter matrix 𝑊 ∈ 𝑅𝑚×𝑛 by partitioning as

segments having width 𝑠 horizontally such that 𝑊 =

[𝑊1, … … , 𝑊
(

𝑛

𝑠
)
]. K-means then clusters rows into

𝑊𝑖∀𝑖 ∈ [1, (
𝑛

𝑠
)]. A compression factor of

32𝑚𝑛

(32𝑘𝑛+
8𝑚𝑛

𝑠
)
 is

achieved through storing cluster indices which are near at

8-bit integer matrix 𝐼 ∈ 𝑅𝑚×(
𝑛

𝑠
)
 with cluster centers in

floating number matrix 𝐶 ∈ 𝑅𝑘×𝑛. The hyperparameters

for parameter compression are (𝑠, 𝑘).

4 Experimental results
The results from various experiments performed are

presented in this section. HMod Fast R-CNN is evaluated

Figure 2: HMod Fast R-CNN training algorithm.

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 73–81 73

on benchmark datasets MS-COCO [33] and CIFAR100

[34], [86] as well as VisualQA [35]. It is implemented

through Caffe [87]. Back propagation [32] is used towards

network training. NVIDIA Tesla V100 card is used to

simulate all test experiments.

MS-COCO [33] is large-scale object detection,

segmentation and captioning dataset. It comes with

several prominent features such as object segmentation,

recognition in context and super pixel stuff segmentation.

It consists of 330000 images with more than 200000

labeled images. It has 1.5 million object instances with 80

object categories, 91 stuff categories, 5 captions per image

and 250000 people with key points. Figures 6(a) and 6(b)

consider 10 superior overlapping coarse categories. The

coarse category optimal number depends on dataset. There

is also impact within categories inherent hierarchy.

There are 100 natural image classes in CIFAR100

[34], [86] dataset. The prepared dataset comprises of

50000 and 10000 images for training and testing

respectively. The dataset pre-processing is done using

contrast normalization globally and ZCA-cor whitening.

For training image patches of 30 × 30 size is flipped and

cropped randomly. A 4 stacked layer NIN network is

adopted which is denoted as CIFAR100-NIN and placed

in HMod Fast R-CNN’s building block. The preceeding

layers from 𝑐𝑜𝑛𝑣1 to 𝑝𝑜𝑜𝑙1 are shared by components

from weighted fine category. These are responsible

towards 10% and 35% of total parameters and floating-

point operations respectively. The rest layers are

considered as independent layers. In order to construct

category hierarchy, 10000 images are chosen at random

and taken as heldout set considering training set. There is

a visual similarity for fine categories considering similar

coarse categories. Pre-training is done for rear layers of

fine components category. The initial learning rate is 0.05.

This decreases by factor 10 for every 6000 iterations.

With mini-batches of 256 size, fine-tuning is done with

respect to 20000 iterations. Here initial learning rate is

0.005. This decreases by factor 10 for every 10000

iterations. 10view testing [32] is used towards evaluation.

Six 30 × 30 patches (with 5 corner patches and 1 center

patch) alongwith their reflections (horizontal) and

predictions (average) are extracted. HMod Fast R-CNN

has lower testing error than CIFAR100-NIN.

With category hierarchy construction, clustering

algorithm adjusts coarse category. When hyperparameter

𝛾 is varied, coarse categories can be made overlapping or

disjoint. Their impacts are investigated on classification

error. The experiments are performed with 5, 10, 16 and

20 coarse categories with varying the values of 𝛾. Figures

7(a) and 7(b) consider 10 superior overlapping coarse

categories achieved with 𝛾 = 6. The coarse category

optimal number and 𝛾 depend on dataset. They are also

impacted within categories inherent hierarchy.

In comparison with building block net, shared layers

usage results in sublinear computational complexity and

memory footprint of HMod Fast R-CNN considering fine

category classifiers. HMod Fast R-CNN consumes less

than four times memory as building block net with no

compression of parameters considering 10 fine category

classifiers with respect to MS-COCO and CIFAR100-

NIN. Tables 2 and 3 highlight significance of

classification error, memory footprint and net execution

time. Using pre-trained building block net, HMod Fast R-

CNN is structured with coarse category and all fine

category components which use independent preceding

layers initialization. The central cropping is used with

single-view testing with slight error increase. The memory

footprint and testing time is considerably reduced through

shared layers.

By varying hyperparameter 𝛽 fine category

components are affected considerably. The tradeoff exists

between execution time and classification. For fine

category when more components are executed higher

accuracy is achieved through large 𝛽 values. As shown in

Tables 2 and 3 there is slight error increase when

conditional executions are enabled through 𝛽 = 6. HMod

Fast R-CNN achieves 3 times testing time as compared

with building block net. The fine category HMod Fast R-

CNNs with independent layers from 𝑐𝑜𝑛𝑣2 to 𝑐𝑜𝑛𝑣6 are

compressed and memory footprint reduces from 448 MB

to 269 MB with slight error increase. As highlighted in

Tables 2 and 3 HMod Fast R-CNN memory footprint is

nearly 2 times in comparison with building block model.

As a result of this, it is mandatory to compare strong

baseline with identical complexity for HMod Fast R-

CNN.

CIFAR100-NIN is adapted with doubled filters for all

convolutional layers. This results in memory footprint

increase by more than 3 times. This is denoted as

CIFAR100-NIN-double. The error is higher than HMod

Fast R-CNN but lower than building block net.

Conceptually HMod Fast R-CNN differs from model

averaging [32]. With model averaging full category sets

are classified for all models. There is an independent

training for each model. As different initializations are

used, predictions are different. Partial category sets are

classified for each classifier in fine category HMod Fast

R-CNN. In order to make comparison between HMod Fast

R-CNN and model averaging, 2 CIFAR100-NIN

networks are trained independently. This is followed by

their prediction average which is treated as final

prediction. Tables 4 and 5 show that HMod Fast R-CNN

achieves lower error. It is noted that HMod Fast R-CNN

bears orthogonality towards model averaging. There is a

considerable performance enhancement for HMod Fast R-

CNN ensembles. It is fine-tuned using multiple group

discriminant analysis in order to verify coarse category

consistency term effectiveness in equation (7). Tables 4

and 5 show higher testing error for HMod Fast R-CNN is

fine-tuned considering consistency in coarse category.

There is considerable performance improvement for

HMod Fast R-CNN using MS-COCO and CIFAR100

datasets. In order to further support the experimental

hypothesis some results on Visual QA dataset are

highlighted in Tables 6 and 7.

A comparative performance analysis of Mod Fast R-

CNN and HMod Fast R-CNN [32] with Fast R-CNN,

YOLO, Fast YOLO, YOLOv3, YOLOv4, YOLOv5, DPM

and SSD on PASCAL VOC 2007 and VOC 2012 datasets

74 Informatica 45 (2021) 74–81 A. Chaudhuri

is presented in Table 8. In order to achieve better results

few object detectors are trained through union of

PASCAL VOC 2007 and VOC 2012 datasets. An error

analysis of HMod Fast R-CNN [32] with Fast R-CNN and

all versions of YOLO on same dataset is shown in Figure

8. Here localization and background errors percentage in

top N detection category wise is highlighted. In order to

further strengthen the results a comparative analysis of

Mod Fast R-CNN and HMod Fast R-CNN with state-of-

the-art methods is presented in Table 9.

Before concluding this section, we throw some light

on design evaluation of HMod Fast R-CNN. In this

direction, several experiments are performed to achieve

optimal performance for HMod Fast R-CNN. However,

there remains certain questions which needs to be

discussed. Some of these aspects have been addressed here

and rest of them form the future scope of work.

The first question is: Is training using multi-tasking

helpful? The multi-task training is always useful because

Figure 3: Testing error (10-view) against number of

coarse categories with MS-COCO dataset.

Figure 4: Overlapping coarse categories with respect to

fine category occurrences with MS-COCO dataset.

Figure 5: Testing error (10-view) against number of

coarse categories with CIFAR100 dataset.

Figure 6: Overlapping coarse categories with respect to

fine category occurrences with CIFAR100 dataset.

Model Top-1, Top-5 Mem (MB) Time (s)

Base:

CIFAR100-NIN
31.90 186 0.05

Mod Fast

R-CNN w/o SL
31.87 736 2.00

HMod Fast

R-CNN w/o SL
31.72 1250 2.36

HMod Fast

R-CNN
31.36 455 0.31

HMod Fast

R-CNN + CE
31.21 448 0.14

HMod Fast R-

CNN + CE + PC
31.05 270 0.14

Table 1: Testing errors, memory footprint and testing time

– building block nets and HMod Fast R-CNN:

Comparative analysis on MS-COCO dataset (mini-batch

size (for testing) = 100; SL = Shared layers, CE =

Conditional execution, PC = Parameter comparison).

Model Top-1, Top-5 Mem (MB) Time(s)

Base:

CIFAR100-NIN
33.96 186 0.05

Mod Fast

R-CNN w/o SL
33.90 736 2.00

HMod Fast

R-CNN w/o SL
33.69 1250 2.37

HMod Fast

R-CNN
33.34 455 0.27

HMod Fast

R-CNN + CE
33.19 448 0.10

HMod Fast R-

CNN + CE + PC
31.05 270 0.10

Table 2: Testing errors, memory footprint and testing time

– building block nets and HMod Fast R-CNN:

Comparative analysis on CIFAR100 dataset (mini-batch

size (for testing) = 100; SL = Shared layers., CE =

Conditional execution, PC = Parameter comparison).

Method Error

Model averaging (2 CIFAR100-NIN nets) 36.05

CIFAR100-NIN-double 34.24

Base: CIFAR100-NIN 33.96

Mod Fast R-CNN (no fine tuning) 32.66

Mod Fast R-CNN (fine tuning without CCC) 32.09

Mod Fast R-CNN (fine tuning with CCC) 31.87

HMod Fast R-CNN (no fine tuning) 32.34

HMod Fast R-CNN (fine tuning without CCC) 32.05

HMod Fast R-CNN (fine tuning with CCC) 31.84

Table 3: Testing errors (10-view) on MS-COCO.

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 75–81 75

there is no need to manage sequentially-trained tasks

pipeline. This potentially improves accuracy results as

there is an influence among the tasks considering shared

representation which CNN uses here. The classification

loss is one such measure which baseline network uses

during training. Another useful measure used here is

multi-task loss. It is observed that there is an improvement

of pure classification accuracy with respect to only

classification training through multi-task training.

The second question is: Is brute-force scale invariance

always useful here? The brute-force scale invariance is

achieved here through single scale and multi scale (using

image pyramids). The scale of image is specified as its

shortest side length. Here single and multi-scale pyramids

have produced good results. There are certain instances

where single scale has shown best tradeoff between speed

and accuracy considering very deep models.

The third question is: Is more training data required to

verify the results? As a rule of thumb, when trained with

large datasets, performance of object detector improves.

The same verdict is true here. Here as and when training

data volumes are increased object detection performance

grows considerably. Further heterogeneity in training data

helps network towards learning capability generalization.

The fourth question is: Is using more object proposals

always better? Object detectors use two types of proposal

viz object proposals with sparse set and dense set. Here

dense set proposals have worked well. This has

considerably improved HMod Fast R-CNN object

detection accuracy. As proposals have a pure

computational role, increasing their number/image have

produced good results.

The fifth question is: What is the optimal number of

layers required in HMod Fast R-CNN to achieve best

performance? This depends on object detection dataset

where HMod Fast R-CNN architecture is evaluated. This

aspect in non-trivial in nature and there is no thumb rule.

Method Error

Model averaging (2 CIFAR100-NIN nets) 36.05

CIFAR100-NIN-double 34.24

Base: CIFAR100-NIN 33.96

Mod Fast R-CNN (no fine tuning) 33.66

Mod Fast R-CNN (fine tuning without CCC) 33.09

Mod Fast R-CNN (fine tuning with CCC) 31.90

HMod Fast R-CNN (no fine tuning) 33.34

HMod Fast R-CNN (fine tuning without CCC) 33.05

HMod Fast R-CNN (fine tuning with CCC) 31.86

Table 4: Testing errors (10-view) on CIFAR100 dataset

(CCC = coarse category consistency).

Model Top-1, Top-5 Mem (MB) Time (s)

Base: Prior

VisualQA
34.03 186 0.05

Mod Fast

R-CNN w/o SL
33.96 736 2.07

HMod Fast

R-CNN w/o SL
33.87 1250 2.39

HMod Fast

R-CNN
33.72 455 0.27

HMod Fast

R-CNN + CE
33.22 448 0.10

HMod Fast R-

CNN + CE + PC
31.06 270 0.10

Table 5: Testing errors, memory footprint and testing time

– building block nets and HMod Fast R-CNN:

Comparative analysis on VisualQA dataset (mini-batch

size (for testing) = 100; SL = Shared layers, CE =

Conditional execution, PC = Parameter comparison).

Method Error

d-LSTM+n-I Visual QA 34.69

Base: Prior Visual QA 34.03

Mod Fast R-CNN (no fine tuning) 33.96

Mod Fast R-CNN (fine tuning without CCC) 33.36

Mod Fast R-CNN (fine tuning with CCC) 32.00

HMod Fast R-CNN (no fine tuning) 33.86

HMod Fast R-CNN (fine tuning without CCC) 33.26

HMod Fast R-CNN (fine tuning with CCC) 31.98

Table 6: Testing errors (10-view) on VisualQA dataset

(CCC = coarse category consistency).

Object Detectors Training mAP FPS

100 Hz DPM 2007 16.0 100

Fast R-CNN 2007+2012 70.0 0.5

Faster R-CNN 2007+2012 70.7 0.5

YOLO 2007+2012 72.7 155

YOLOv2 2007+2012 75.5 45

YOLOv3 2007+2012 76.5 31

YOLOv4 2007+2012 77.6 27

YOLOv5 2007+2012 78.6 26

Mod Fast R-CNN 2007+2012 81.06 0.5

HMod Fast R-CNN 2007+2012 87.6 0.3

Table 7: A comparative performance analysis of HMod

Fast R-CNN vs other object detectors on PASCAL VOC

2007 and 2012 datasets (2007+2012: union of VOC2007

trainval and test and VOC 2012 trainval).

Object Detectors Significant Results

SAF R-CNN AMR: 9.32

Deep Network Cascades AMR: 31.11; FPS: 15

LOGO-Net mAP: 69.9

SCL mAP: 16.3

SL2 mAP: 46.9

Local Structured HOG-LBP mAP: 34.3

Faster R-CNN mAP: 70.7

Fast R-CNN mAP: 70.0

FPN mAP: 59.1

YOLO mAP: 72.7; FPS: 155

YOLO9000/YOLOv2 mAP: 75.5; FPS: 45

SSD mAP: 76.8; FPS: 22

YOLOv3 mAP: 76.5; FPS: 31

YOLOv4 mAP: 77.6; FPS: 27

YOLOv5 mAP: 78.6; FPS: 26

Low-cost ISS mAP: 99.4

ADS + Hardw Accelerators mAP: 83.64; FPS: 30

xYOLO mAP: 68.22; FPS: 9.66

Grape Disease Detection mAP: 95.57

Mod Fast R-CNN mAP: 81.06; FPS: 0.5

HMod Fast R-CNN mAP: 87.6; FPS: 0.3

Table 8: A comparative performance analysis of HMod

Fast R-CNN vs significant state-of-the-art object

detection methods (AMR: Average Miss Rate; mAP:

Mean Average Precision).

76 Informatica 45 (2021) 76–81 A. Chaudhuri

Here prior experience in building network architecture

with image datasets has produced good results.

5 Conclusion
In this work, we presented HMod Fast R-CNN which is

hierarchical updated version of Mod Fast R-CNN. It

improves Fast R-CNN’s architecture considerably. The

computational system comprises of extraction layers,

weighted coarse and fine component layers and

possibilistic averaging layer. The possibilistic averaging

layer converts fine category and coarse category

probabilistic predictions into possibilistic measures which

is weighted average and considered as final prediction

result. The possibilistic measures effectively address

inherent uncertainty in data. The experimental results with

MS-COCO, CIFAR100 and VisualQA datasets provide

several new insights. This fact is highlighted using four

variant building block nets. The proposed network’s

performance superiority over other object detectors on

MS-COCO, PASCAL VOC 2007 and VOC 2012 datasets

are also illustrated. HMod Fast R-CNN architecture can be

Table 9: An error analysis of HMod Fast R-CNN vs Faster R-CNN, Fast R-CNN, YOLO, YOLOv2, YOLOv3,

YOLOv4, YOLOv5 on PASCAL VOC 2007 and 2012 datasets.

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 77–81 77

further extended with more than five levels. This will

improve experimental results in terms of object detection

accuracy as well as accelerates overall process considering

theoretical viewpoints. The future work looks towards

developing HMod Fast R-CNN with more layers and

verifying results with significant image datasets.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian

Sun. Deep residual learning for image recognition.

IEEE Conference on Computer Vision and Pattern

Recognition, 770–778, 2016.
https://doi.org/10.1109/CVPR.2016.90

[2] Ross Girshick, Jeff Donahue, Trevor Darrell and

Jitendra Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. IEEE

Conference on Computer Vision and Pattern

Recognition, 580–587, 2014.
https://doi.org/10.1109/CVPR.2014.81

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár and

Ross Girshick. Mask R-CNN. IEEE International

Conference on Computer Vision, 2961–2969, 2017.
https://doi.org/10.1109/ICCV.2017.322

[4] Liang-Chieh Chen, George Papandreou, Iasonas

Kokkinos, Kevin Murphy and Alan L. Yuille.

Semantic image segmentation with deep

convolutional nets and fully connected CRFS. arXiv,

arXiv:1412.7062, 2014.

[5] Alex Krizhevsky, Ilya Sutskever and Geoffrey

Hinton. ImageNet classification with deep

convolutional neural networks. International

Conference on Neural Information Processing

Systems, 25:1097–1105, 2012.
https://doi.org/10.1.1.299.205

[6] Pierre Sermanet, David Eigen, Xiang Zhang,

Michael Mathieu, Rob Fergus and Yann LeCun.

OverFeat: Integrated recognition, localization and

detection using convolutional networks. arXiv,

arXiv:1312.6229, 2014.

[7] Yann LeCun, Bernhard Boser, John Denker, David

Henderson, Robert Howard, William Hubbard and

Lawrence Jackel. Backpropagation applied to

handwritten zip code recognition. Neural

Computation, 1(4): 541–551, 1989.
https://doi.org/10.1162/neco.1989.1.4.541

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian

Sun. Spatial pyramid pooling in deep convolutional

networks for visual recognition. arXiv, arXiv:

1406.4729, 2014.

[9] Yukun Zhu, Raquel Urtasun, Rusian Salakhutdinov

and Sanja Fidler. segDeepM: Exploiting

segmentation and context in deep neural networks

for object detection. arXiv, arXiv:1502.04275, 2015.

[10] Mathew D. Zeiler and Rob Fergus. Stochastic

pooling for regularization of deep convolutional

neural networks. arXiv, arXiv:1301.3557, 2013.

[11] Ian Goodfellow, David Warde-Farley, Mehdi Mirza,

Aaron Courville and Yoshua Bengio. Maxout

networks. International Conference on Machine

Learning, 28(3):1319–1327, 2013.
https://doi.org/10.5555/3042817.3043084

[12] Jost Tobias Springenberg and Martin Riedmiller.

Improving deep neural networks with probabilistic

maxout units. arXiv, arXiv:1312.6116, 2013.

[13] Min Lin, Qiang Chen and Shuicheng Yan. Network

in network. arXiv, arXiv:1312.4400, 2013.

[14] Anne-Marie Tousch, StěPhane. Herbin and Jean-

Yves Audibert. Semantic hierarchies for image

annotation: A survey. Patten Recognition,

45(1):333–345, 2012.
https://doi.org/abs/10.1016/j.patcog.2011.05.017

[15] Samy Bengio, Jason Weston and David Grangier.

Label embedding trees for large multi-class tasks.

International Conference on Neural Information

Processing Systems, 1:163–171, 2010.
https://doi.org/abs/10.5555/2997189.2997208

[16] Tianshi Gao and Daphne Koller. Discriminative

learning of relaxed hierarchy for large-scale visual

recognition. IEEE Conference on Computer Vision

and Pattern Recognition, 2072–2079, 2011.
https://doi.org/10.1109/ICCV.2011.612648

[17] Marcin Marszalek and Cordelia Schmid. Semantic

hierarchies for visual object recognition. IEEE

Conference on Computer Vision and Pattern

Recognition, 1–7, 2007.
https://doi.org/10.1109/CVPR.2007.383272

[18] Nakul Verma, Dhruv Mahajan, Sundararajan

Sellamanickam and Vinod Nair. Learning

hierarchical similarity metrics. IEEE Conference on

Computer Vision and Pattern Recognition, 2280–

2287, 2012.
https://doi.org/10.1109/CVPR.2012.6247938C

[19] Yangqing Jia, Joshua T. Abbott, Joseph. Austerweil,

Tom Griffiths and Trevor Darrell. Visual concept

learning: Combining machine vision and bayesian

generalization on concept hierarchies. International

Conference on Neural Information Processing

Systems, 2:1842–1850, 2013.
https://doi.org/10.5555/2999792.2999818

[20] Ruslan Salakhutdinov, Antonio Torralba and Josh

Tenenbaum. Learning to share visual appearance for

multiclass object detection. IEEE Conference on

Computer Vision and Pattern Recognition, 1481–

1488, 2011.
https://doi.org/10.1109/CVPR.2011.5995720

[21] Gregory Griffin and Pietro Perona. Learning and

using taxonomies for fast visual categorization.

IEEE Conference on Computer Vision and Pattern

Recognition, 1–8, 2008.
https://doi.org/10.1109/CVPR.2008.4587410

[22] Marcin Marszałek and Cordelia Schmid.

Constructing category hierarchies for visual

recognition. Proceedings of European Conference on

Computer Vision, IV:479–491, 2008.
https://doi.org/10.1007/978-3-540-88693-8_35

[23] Li-Jia Li, Chong Wang, Yongwhan Lim, David M.

Blei and Li Fei-Fei. Building and using a

semantivisual image hierarchy. IEEE Conference on

Computer Vision and Pattern Recognition, 3336–

3343, 2010.
https://doi.org/10.1109/CVPR.2010.5540027

[24] Hichem Bannour and Cěline Hudelot. Hierarchical

image annotation using semantic hierarchies. ACM

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1.1.299.205
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.5555/3042817.3043084
https://doi.org/abs/10.1016/j.patcog.2011.05.017
https://doi.org/abs/10.5555/2997189.2997208
https://doi.org/10.1109/ICCV.2011.612648
https://doi.org/10.1109/CVPR.2007.383272
https://doi.org/10.1109/CVPR.2012.6247938C
https://doi.org/10.5555/2999792.2999818
https://doi.org/10.1109/CVPR.2011.5995720
https://doi.org/10.1109/CVPR.2008.4587410
https://doi.org/10.1007/978-3-540-88693-8_35
https://doi.org/10.1109/CVPR.2010.5540027

78 Informatica 45 (2021) 78–81 A. Chaudhuri

International Conference on Information and

Knowledge Management, 2431–2434, 2012.
https://doi.org/10.1145/2396761.2398659

[25] Jia Deng, Sanjeev Satheesh, Alexander C. Berg and

Fei. Li. Fast and balanced: Efficient label tree

learning for large scale object recognition.

International Conference on Neural Information

Processing Systems, 1:567–575, 2011.
https://doi.org/10.5555/2986459.2986523

[26] Josef Sivic, Bryan C. Russell, Andrew Zisserman,

William T. Freeman and Alexei A. Efros.

Unsupervised discovery of visual object class

hierarchies. IEEE Conference on Computer Vision

and Pattern Recognition, 1–8, 2008.
https://doi.org/10.1007/s11263-009-0271-8

[27] Jia Deng, Jonathan Krause, Alexander C. Berg and

Li Fei-Fei. Hedging your bets: Optimizing accuracy-

specificity trade-offs in large scale visual

recognition. IEEE Conference on Computer Vision

and Pattern Recognition, 3450–3457, 2012.
https://doi.org/10.1109/CVPR.2012.6248086

[28] Baoyuan Liu, Fereshteh Sadeghi, Marshall Tappen,

Ohad Shamir and Ce Liu. Probabilistic label trees for

efficient large scale image classification. IEEE

Conference on Computer Vision and Pattern

Recognition, 843–850, 2013.
https://doi.org/10.1109/CVPR.2013.114

[29] Nitish Srivastava and Russ Salakhutdinov.

Discriminative transfer learning with tree-based

priors. International Conference on Neural

Information Processing Systems, 2:2094–2102,

2013.

[30] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome,

Kevin Murphy, Samy Bengio, Yuan Li, Hartmut

Neven and Hartwig Adam. Large-scale object

classification using label relation graphs. European

Conference on Computer Vision, I:48–64, 2014.
https://doi.org/10.1007/978-3-319-10590-1_4

[31] Tianjun Xiao, Jiaxing. Zhang, Kuiyuan. Yang,

Yuxin Peng and Zheng Zhang. Error driven

incremental learning in deep convolutional neural

network for large-scale image classification. ACM

International Conference on Multimedia, 177–186,

2014. https://doi.org/10.1145/2647868.2654926

[32] Arindam Chaudhuri. Some insights and observations

on real time object detectors considering several

benchmarks. Technical Report, Samsung R & D

Institute Delhi, India, 2021.

[33] MS-COCO dataset: https://cocodataset.org

[34] CIFAR100 dataset:

https://web.stanford.edu/~hastie/CASI_files/DATA/

cifar100.html

[35] VisualQA dataset: https://visualqa.org/download.html

[36] PASCAL VOC 2007 dataset:
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

[37] PASCAL VOC 2012 dataset:
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

[38] Yi Sun, Ding Liang, Xiaogang Wang and Xiaoou

Tang. Deepid3: Face recognition with very deep

neural networks. arXiv, arXiv:1502.00873, 2015.

[39] Yi Sun, Xiaogang Wang and Xiaoou Tang. Deep

learning face representation by joint identification-

verification. arXiv, arXiv:1406.4773v1, 2014.

[40] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,

Bhiksha Raj and Le Song. Sphereface: Deep

hypersphere embedding for face recognition. IEEE

Conference on Computer Vision and Pattern

Recognition, 6738–6746, 2017.
https://doi.org/10.1109/CVPR.2017.713

[41] Xiaodan Liang, Shengmei Shen, Tingfa Xu, Jiashi

Feng and Shuicheng Yan. Scale-aware fast R-CNN

for pedestrian detection. IEEE Transactions on

Multimedia, 20(4):985–996, 2018.
https://doi.org/10.1109/TMM.2017.2759508

[42] Jan Hosang, Mohamed Omran, Rodrigo Benenson

and Bernt Schiele. Taking a deeper look at

pedestrians. IEEE Conference on Computer Vision

and Pattern Recognition, 4073–4082, 2015.
https://doi.org/10.1109/CVPR.2015.7299034

[43] Anelia Angelova, Alex Krizhevsky, Vincent

Vanhoucke, Abhijit S. Ogale and Dave Ferguson.

Real-time pedestrian detection with deep network

cascades. British Machine Vision Conference, 32.1–

32.12, 2015. https://doi.org/10.5244/C.29.32

[44] Andrej Karpathy, George Toderici, Sanketh Shetty,

Thomas Leung, Rahul Sukthankar and Li Fei-Fei.

Large-scale video classification with convolutional

neural networks. IEEE Conference on Computer

Vision and Pattern Recognition, 1725–1732, 2014.
https://doi.org/10.1109/CVPR.2014.223

[45] Hossein Mobahi, Ronan Collobert and Jason

Weston. Deep learning from temporal coherence in

video. ACM International Conference on Machine

Learning, 737–744, 2009.
https://doi.org/10.1145/1553374.1553469

[46] Steven C. Hoi, Xiongwei Wu, Hantang Liu, Yue Wu,

Huiqiong Wang, Hui Xue and Qiang Wu. Logo-net:

Large-scale deep logo detection and brand

recognition with deep region based convolutional

networks. arXiv, arXiv:1511.02462, 2015.

[47] Hang Su, Xiatian Zhu and Shaogang Gong. Deep

learning logo detection with data expansion by

synthesizing context. arXiv, arXiv:1612.09322v3,

2017.

[48] Hang Su, Shaogang Gong and Xiatian Zhu. Scalable

deep learning logo detection. arXiv, arXiv:

1803.11417, 2018.

[49] Andrea Vedaldi, Varun Gulshan, Manik Varma and

Andrew Zisserman. Multiple kernels for object

detection. IEEE International Conference on

Computer Vision, 606–613, 2009.
https://doi.org/10.1109/ICCV.2009.5459183

[50] Paul Viola and Michael Jones. Rapid object

detection using a boosted cascade of simple features.

IEEE Conference on Computer Vision and Pattern

Recognition, 1–1, 2001.

https://doi.org/10.1109/CVPR.2001.990517

[51] Hedi Harzallah, Frederic Jurie and Cordelia Schmid.

Combining efficient object localization and image

classification. IEEE International Conference on

Computer Vision, 237–244, 2009.

https://doi.org/10.1145/2396761.2398659
https://doi.org/10.5555/2986459.2986523
https://doi.org/10.1007/s11263-009-0271-8
https://doi.org/10.1109/CVPR.2012.6248086
https://doi.org/10.1109/CVPR.2013.114
https://doi.org/10.1007/978-3-319-10590-1_4
https://doi.org/10.1145/2647868.2654926
https://cocodataset.org/
https://visualqa.org/download.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://doi.org/10.1109/CVPR.2017.713
https://doi.org/10.1109/TMM.2017.2759508
https://doi.org/10.1109/CVPR.2015.7299034
https://doi.org/10.5244/C.29.32
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1145/1553374.1553469
https://doi.org/10.1109/ICCV.2009.5459183

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 79–81 79

https://doi.org/10.1109/ICCV.2009.5459257

[52] Navneet Dalal and Bill Triggs. Histograms of

oriented gradients for human detection. IEEE

Conference on Computer Vision and Pattern

Recognition, 886–893, 2005.

https://doi.org/10.1109/CVPR.2005.177

[53] Paul Viola and Michael J. Jones. Robust real-time

face detection. International Journal of Computer

Vision, 57(2):137–154, 2004.

https://doi.org/10.1023/B:VISI.0000013087.49260.f

b

[54] David G. Lowe. Object recognition from local scale-

invariant features. IEEE International Conference on

Computer Vision, 2:1150–1157, 1999.

https://doi.org/10.1109/ICCV.1999.790410

[55] Rainer Lienhart and Jochen Maydt. An extended set

of Haar like features for rapid object detection. IEEE

International Conference on Image Processing, 1:

900–903, 2002.

https://doi.org/10.1109/ICIP.2002.1038171

[56] Herbert Bay, Tinne Tuytelaars and Luc Van Gool.

SURF: Speeded up robust features. European

Conference on Computer Vision, 404–417, 2006.

https://doi.org/10.1007/11744023_32

[57] Marti A. Hearst, Susan T. Dumais, Edgar Osuna,

John Platt and Bernhard Scholkopf. Support vector

machines. IEEE Intelligent Systems and their

Applications, 13(4):18–28, 1998.

https://doi.org/10.1109/5254.708428

[58] David Opitz and Richard Maclin. Popular ensemble

methods: An empirical study. Journal of Artificial

Intelligence Research, 11:169–198, 1999.

https://doi.org/10.1613/jair.614

[59] Yoav Freund and Robert E. Schapire. Experiments

with a new boosting algorithm. ACM International

Conference on Machine Learning, 148–156, 1996.

https://doi.org/10.5555/3091696.3091715

[60] Yinan Yu, Junge Zhang, Yongzhen Huang, Shuai

Zhang, Weiqiang Ren, Chong Wang, Kaiqui Huang

and Tieniu Tan. Object detection by context and

boosted HOG-LBP. European Conference on

Computer Vision on PASCAL VOC Workshop,

2010.

[61] Pedro Felzenszwalb, Ross Girshick, David

McAllester and Deva Ramanan, Discriminatively

trained mixtures of deformable part models,

European Conference on Computer Vision on

PASCAL VOC Workshop, 2008.

[62] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John Winn and Andrew Zisserman. The

PASCAL visual object classes (VOC) challenge.

International Journal of Computer Vision,

88(2):303–338, 2010.

https://doi.org/10.1007/s11263-009-0275-4

[63] Pedro Felzenszwalb, Ross Girshick, David

McAllester and Deva Ramanan. Object detection

with discriminatively trained part-based models.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(9):1627–1645, 2010.

https://doi.org/10.1109/TPAMI.2009.167

[64] David G. Lowe. Distinctive image features from

scale-invariant key points. International Journal of

Computer Vision, 60: 91–110, 2004.

https://doi.org/10.1023/B:VISI.0000029664.99615.

94

[65] Timo Ojala, Matti Pietikainen and Topi Maenpaa.

Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(7):971–987, 2002.

https://doi.org/10.1109/TPAMI.2002.1017623

[66] Shaoqing Ren, Kaiming He, Ross Girshick and Jian

Sun. Faster R-CNN: Towards real-time object

detection with region proposal networks. arXiv,

arXiv:1506.01497, 2015.

[67] Kunihiko Fukushima and Sei Miyake. Neocognitron:

A self-organizing neural network model for a

mechanism of visual pattern recognition.

Competition and Cooperation in Neural Networks,

267–285, 1982. https://doi.org/10.1007/978-3-642-

46466-9_18

[68] Yann LeCun, Lěon Bottou, Yoshua Bengio and

Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of IEEE,

86(11):2278–2324, 1998.

https://doi.org/10.1109/5.726791

[69] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai

Li and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. IEEE International

Conference on Computer Vision and Pattern

Recognition, 248–255, 2009.

https://doi.org/10.1109/CVPR.2009.5206848

[70] Ross Girshick. Fast R-CNN. arXiv,

arXiv:1504.08083, 2015.

[71] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming

He, Bharath Hariharan and Serge Belongie. Feature

pyramid networks for object detection. IEEE

Conference on Computer Vision and Pattern

Recognition, 2117–2125, 2017.

https://doi.org/10.1109/CVPR.2017.106

[72] Joseph Redmon, Santosh Divvala, Ross Girshick and

Ali Farhadi. You only look once: Unified, real-time

object detection. IEEE Conference on Computer

Vision and Pattern Recognition, 779–788, 2016.

https://doi.org/10.1109/CVPR.2016.91

[73] Joseph Redmon and Ali Farhadi. YOLO9000:

Better, faster, stronger. IEEE Conference on

Computer Vision and Pattern Recognition, 6517-

6525, 2017. https://doi.org/10.1109/CVPR.2017.690

[74] Wei Liu, Dragomir Anguelov, Dumitru Erhan,

Christian Szegedy, Scott Reed, Cheng-Yang Fu and

Alexander C. Berg. SSD: Single shot multibox

detector. European Conference on Computer Vision,

21–37, 2016. https://doi.org/10.1007/978-3-319-

46448-0_2

[75] Joseph Redmon and Ali Farhadi. YOLOv3:An

incremental improvement. arXiv, arXiv:

1804.02767v1, 2018.

[76] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao.

YOLOv4: Optimal speed and accuracy of object

detection. arXiv, arXiv:2004.10934v1, 2020.

80 Informatica 45 (2021) 80–81 A. Chaudhuri

[77] YOLOv5: https://github.com/ultralytics/yolov5

[78] Zaid S. Sabri and Zhiyong Li. Low-cost intelligent

surveillance system based on Fast CNN. PeerJ

Computer Science, 7:e402, 2021.

https://doi.org/10.7717/peerj-cs.402

[79] Vittorio Mazzia, Francesco Salvetti, Aleem Khaliq

and Marcello Chiaberge. Real-time apple detection

system using embedded systems with hardware

accelerators: An edge AI application. IEEE Access,

8:9102–9114, 2020.

https://doi.org/10.1109/ACCESS.2020.2964608

[80] Zhengyi Luo, Austin Small, Liam Dugan and

Stephen Lane. Cloud chaser: Real time deep learning

computer vision on low computing power devices.

arXiv, arXiv:1810.01069v2, 2020.

[81] Daniel Barry, Munir Shah, Merei Keijsers, Humayun

Khan and Banon Hopman. xYOLO: A model for

real-time object detection in humanoid soccer on

low-end hardware. arXiv, arXiv:1910.03159v1,

2019.

[82] Shekofa Ghoury, Cemil Sungur and Akif Durdu.

Real-time disease detection of grape and grape

leaves using Faster R-CNN and SSD MobileNet

architectures. International Conference on Advanced

Technologies, Computer Engineering and Science,

Alanya, Turkey, 2019.

[83] Anil Kumar, Praneeth Chowdhary and Govinda Rao.

Smart embedded device for object and text

recognition through real-time video using Raspberry

PI. International Journal of Engineering and

Technology, 7(4):556–562, 2019.

http://dx.doi.org/10.14419/ijet.v7i4.19.27959

[84] Dumitru Erhan, Christian Szegedy, Alexander

Toshev and Dragomir Anguelov. Scalable object

detection using deep neural networks. arXiv,

arXiv:1312.2249, 2014.

[85] Matthew. Zeiler and Rob Fergus. Visualizing and

understanding convolutional networks. European

Conference on Computer Vision, I:818–833, 2014.

https://doi.org/10.1007/978-3-319-10590-1_53

[86] Alex Krizhevsky and Geoffrey Hinton. Learning

multiple layers of features from tiny images.

Technical Report, Computer Science Department,

University of Toronto, Toronto, Canada, 2009.

[87] Yangqing Jia, Evan Shelhamer, Jeff Donahue,

Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama and Trevor Darrell. Caffe:

Convolutional architecture for fast feature

embedding. ACM International Conference on

Multimedia, 675–678, 2014.

https://doi.org/10.1145/2647868.2654889

Appendix
Reference Year Object Detectors Significant Results

Li et al [41] 2018 SAF R-CNN AMR: 9.32

Angelova et al [43] 2015 Deep Network Cascades AMR: 31.11; FPS: 15

Hoi et al [46] 2015 LOGO-Net mAP: 69.9

Su et al [47] 2017 SCL mAP: 16.3

Su et al [48] 2018 SL2 mAP: 46.9

Yu et al [60] 2010 Local Structured HOG-LBP mAP: 34.3

Ren et al [66] 2015 Faster R-CNN mAP: 70.7

Girshick et al [70] 2015 Fast R-CNN mAP: 70.0

Lin et al [71] 2017 FPN mAP: 59.1

Redmon et al [72] 2016 YOLO mAP: 72.7; FPS: 155

Redmon et al [73] 2017 YOLO9000/YOLOv2 mAP: 75.5; FPS: 45

Liu et al [74] 2016 SSD mAP: 76.8; FPS: 22

Redmon et al [75] 2018 YOLOv3 mAP: 76.5; FPS: 31

Bochkovskiy et al [76] 2020 YOLOv4 mAP: 77.6; FPS: 27

Jocher et al [77] 2020 YOLOv5 mAP: 78.6; FPS: 26

Sabri et al [78] 2021 Low-cost ISS mAP: 99.4

Mazzia et al [79] 2020 ADS + Hardw Accelerators mAP: 83.64; FPS: 30

Barry et al [81] 2019 xYOLO mAP: 68.22; FPS: 9.66

Ghoury et al [82] 2019 Grape Disease Detection mAP: 95.57

Table 10: Significant state-of-the-art research works in deep learning-based object detection (AMR: Average Miss Rate;

mAP: Mean Average Precision).

https://github.com/ultralytics/yolov5

Hierarchical Modified Fast R-CNN for Object Detection Informatica 45 (2021) 81–81 81

Figure 7: Prediction framework through HMod Fast R-CNN.

Figure 8: Architecture of Mod Fast R-CNN.

Figure 9: Architecture of HMod Fast R-CNN.

82 Informatica 45 (2021) 82–81 A. Chaudhuri

