
Informatica 35 (2011) 513-518 513

Evaluating the Effectiveness of Mutation Operators on the Behavior
of Genetic Algorithms Applied to Non-deterministic Polynomial
Problems

Basima Hani F. Hasan
Department of Computer Science
Yarmouk University, 21163 Irbid, Jordan
E-mail: basmah@yu.edu.jo

Moutaz Saleh M. Saleh
Department of Computer Science & Engineering
Qatar University, 2713 Doha, Qatar
E-mail: moutaz.saleh@qu.edu.qa

Keywords: evaluation, genetic, mutation operator, TSP, 0/1 knapsack problem, Shubert function, linear system

Received: April 25, 2011

Genetic Algorithms (GAs) are powerful general-purpose optimization search algorithms based upon the
principles of evolution observed in nature. Mutation operator is one of the GA operators that used to
produce new chromosomes or modify some features of them depending on some small probability value.
The objective of this operator is to prevent falling of all solutions in population into a local optimum of
solved problem. This paper evaluates the effect of applying well known mutation operators on selected
non-deterministic polynomial (NP) hard problems and compares the results. The problems that will be
introduced in this paper are: traveling salesman problem (TSP), 0/1 Knapsack problem, Shubert
function, and system of linear equations.

Povzetek: Članek raziskuje učinkovitost mutacije v genetskih algoritmih pri reševanju NP-težkih
problemov.

1 Introduction
GAs are powerful general purpose optimization search
algorithms based upon the principles of evolution
observed in nature. Even with today’s high-powered
computers, using an exhaustive search to find the optimal
solution for even relatively small problems can be
prohibitively expensive. For many problems, genetic
algorithms can often find good solutions, near-optimal, in
around 100 generations. This can be many times faster
than an exhaustive search. Solution to a problem solved
by genetic algorithms is evolved. Algorithm is started
with a set of solutions, represented by chromosomes,
called population. Solutions from one population are
taken and used to form a new population. This is
motivated by a hope, that the new population will be
better than the old one. Solutions which are selected to
form new solutions, offspring, are considered according
to their fitness; the more suitable they are the more
chances they have to reproduce. Then crossover and
mutation are applied on them to find new points in the
search space.

This paper will use GA to solve NP problems. A
decision problem is called an NP problem if particular
examples of it can be solved in polynomial time by a
nondeterministic process i.e. by generating possible
solutions at random guessing. There are many problems

for which no polynomial-time algorithm is known, this
paper will consider three of them; Traveling Salesman
Problem (TSP), 0/1 Knapsack problem, and Shubert
function.

Given a finite number of cities along with the cost of
travel between each pair of them; TSP try to find the
cheapest way of visiting all the cities each of which
exactly once before returning back to the starting
point. TSP difficulty comes from the fact that for N cities
there are N!/2N possible paths. There are several
algorithms, which approach this problem. This paper will
use GA to solve this problem by applying several types
of mutation methods and compare the results. These
types, depending on the representation used are:
Reciprocal exchange Mutation, Inversion mutation,
Insertion mutation, Displacement mutation, Boundary
mutation and Uniform random mutation.

The main idea of 0/1 Knapsack problem is how to fill
the knapsack with the subset of given items to reach
maximum profit without exceeding the knapsack
capacity. The knapsack problem arises whenever there is
resource allocation with financial constraints. Profit
would be the importance of the item, while the cost is the
amount of space it occupies in the knapsack. So we need
to maximize our profit while minimizing our cost. This

514 Informatica 35 (2011) 513–518 B.H. Hasan et al.

problem shows how to deal with constraints. One way to
achieve that is based on the application of special repair
algorithms to correct any infeasible solutions. This paper
will use GA to solve this problem by applying several
types of mutation methods and compare the results. These
mutation types depending on the representation used are:
Flip bit, Boundary, Non-uniform, Inversion, Insertion and
Displacement.

In Shubert function the target is to benchmark global
optimization methods. The formulation of the global
optimization problem is to find the absolute minimum for
a given function over the allowed range of its variables.
So, Shubert function is used as an indicator for the
efficiency of these methods. The Shubert function could
be 1, 2, 3… or n dimension. The object function for one-
dimension Shubert function can be given as:

For n-dimension Shubert function, there are n*pow(3,n)
global solutions. The object function for n-dimension
Shubert function can then be given as:

GAs are general purpose search algorithms, so we can use
them for searching the global minima of the Shubert
function. This paper will use GA to solve this problem by
several types of mutation methods and compare the
results. These types depending on the representation used
are: Boundary mutation, Uniform random mutation and
Non-uniform mutation.

Many problems lend themselves to being solved with
systems of linear equations. However, solving systems of
linear equations is a common computational problem well
known to mathematicians, scientists and engineers.
Several algorithms exist for solving this problem. But,
when the equations contain interval coefficients, i.e.
intervals in which the desired coefficient values are
known to lie, the problem may not be solvable in any
reasonable sense. In fact, it has been shown that the
general problem of solving systems of linear equations
with interval coefficients is NP-hard which is extremely
difficult to be solved. Hence, this paper will use GA to
solve this problem by applying several types of mutation
methods and compare the results. These types, depending
on the representation used are: Boundary mutation,
Uniform random mutation, Non-uniform mutation,
Reciprocal mutation, Inversion mutation, Insertion
mutation, and Displacement mutation.

2 Related Work
In recent years, the genetic algorithms for solving NP
hard problems have achieved great results [1] [2] [3] [4].
In particular, the Traveling Salesman Problem (TSP) has
been receiving continuous and growing attention in
artificial intelligence, computational mathematics and
optimization. For instance, the work in [5] proposed an

improved GA to solve TSP through adopting an untwist
operator which can unite the knots of route effectively,
so it can shorten the length of route and quicken the
convergent speed. In [6], a new selection strategy is
incorporated into the conventional genetic algorithm to
improve the performance of genetic algorithm in solving
TSP. The results show that the number of evolutional
iterations to reach an optimal solution can be
significantly reduced. Liu and Huang [7] proposed a
novel genetic algorithm to overcome the defections of
slow convergence of traditional GA. The algorithm
creates crossover and mutation by merging two kinds of
heuristics. Simulation results indicated that it can get
high-quality solution while consume less running time.

The 0/1 Knapsack Problem is a well-known NP hard
problem [8] [9] [10] [11] as it appears in many real life
world with different application. In [12] an evolutionary
genetic algorithm for solving multi objective 0/1
Knapsack Problem is introduced. Experimental outcome
show that the proposed algorithm outperforms the
existing evolutionary approach. In addition, the work in
[13] proposed a genetic algorithm using greedy approach
to solve this problem. The experiments prove the
feasibility and validity of the algorithm.

Shubert function optimization problem has also been
studied in literature. Based on the principle of free energy
minimization of thermodynamics, a new thermodynamics
evolutionary algorithm (TDEA) for solving Shubert
function optimization problem has been proposed in [14].
The results show that thermodynamics evolutionary
algorithm is of potential to obtain global optimum or
more accurate solutions than other evolutionary methods.

The problem of solving systems of linear equations
with use of AI based approaches has been studied by
many researches for decades. Different definitions for the
solution of such problem have been considered and
various AI techniques have been successfully developed
[15] [16] [17]. Recently, the research in [18] aimed to
approximate the exact algebraic solution of this problem
through minimizing its cost function. To do so, two
different AI approaches were adopted: the neural
networks (NN) based approach and the genetic
algorithms (GA) based one. The results shows that it will
be interesting to combine both GA based and NN based
approaches into one single method. GA can be used at
the beginning phase for global search, whereas the NN
based technique can be used in the final, local search
phase to improve the solution obtained by GA.

3 GA Operation
GA is an iterative procedure that consists of a constant
population size of individuals which are decoded and
evaluated according to a fitness function. To form a new
population, individuals are selected according to their
fitness. A crossover and mutation are then applied on
them to find new points in the search space. Figure 1
shows the iterative procedure of a general GA. For our
research work, we will adopt the GA procedure steps to
solve four well known NP problems: Traveling Salesman
Problem (TSP), 0/1 Knapsack problem, Shubert function,

EVALUATING THE EFFECTIVENESS OF MUTATION … Informatica 35 (2011) 513–518 515

and system of linear equations. To do so, Table 1 shows
how these steps are applied on the four problems.

Figure 1: A general GA procedure.

Table 1: Choice of parameters for each GA step.

4 Mutation Operator
Text of the conclusion From biology view, mutation is
any change of DNA material that can be reproduced.
From computer science view, mutation is a genetic
operator that follows crossover operator. It usually acts
on only one individual chosen based on a probability or
fitness function. One or more genetic components of the
individual are scanned. And this component is modified
based on some user-definable probability or condition.
Without mutation, offspring chromosomes would be
limited to only the genes available within the initial
population. Mutation should be able to introduce new
genetic material as well as modify existing one. With
these new gene values, the genetic algorithm may be able
to arrive at better solution than was previously possible.
Mutation operator prevents premature convergence to
local optima by randomly sampling new points in the
search space. There are many types of mutation and these
types depend on the representation itself.

4.1 Applying Mutation on TSP
Since integer representation is the best representation for
TSP, the following mutation types were applied to this
problem:
 Reciprocal: two cities are exchanged, swapped, after

they are selected randomly.
 Inversion: two cut points are selected randomly, and

then the sub tour between them is inverted.
 Insertion: a city and a place to be inserted in it are

selected randomly.
 Boundary: a city is chosen and replaced randomly

with either the upper or lower bound for that city.
The chromosome is then searched for the upper or
lower bound and that city is replaced with the bound
as shown in Figure 2.

Figure 2: Boundary mutation.

 Displacement: a sub tour and a place to be inserted in
it are selected randomly as shown in Figure 3.

Figure 3: Displacement mutation.

 Uniform: a city selected for mutation is replaced with
a uniform random value between the user-specified
upper and lower bounds for that city. Then the
chromosome is searched for the uniform random
value found and replaces it with that city.

516 Informatica 35 (2011) 513–518 B.H. Hasan et al.

4.2 Applying Mutation on 0/1 Knapsack
since binary representation is the best representation for
0/1 Knapsack problem, the following mutation types were
applied to this problem:
 Flip bit: an item is selected randomly and its value is

inverted from 0, selected, to 1, unselected, or vice
versa as shown in Figure 4.

Figure 4: Flip mutation.

 Inversion: items between two randomly chosen
points in the individual are reversed in order.

 Insertion: an item is taken at random and inserted
randomly into another position in the sequence.

 Displacement: A randomly selected section of the
individual is moved as a block to another location in
the individual.

 Boundary: an item is selected randomly and its value
is replaced randomly either by the upper bound (1) or
the lower bound (0).

 Non-uniform: This type increases the probability that
the amount of the mutation will be close to 0 as the
generation number increases. This mutation operator
keeps the population from stagnating in the early
stages of the evolution then allows the genetic
algorithm to fine tune the solution in the later stages
of evolution as shown in Figure 5.

Figure 5: Non-uniform mutation.

If sv
t = <v1,…,vm> is a chromosome (t is the

generation number) and the element vk was selected
for this mutation, the result is a vector sv

t+1 =
<v1,…,vk’,…,vm>, where vk’= mutate(vk , (t,n)),
where n is the number of bits per one element of a
chromosome, mutate(vk, pos) means mutate the k-th
value element on pos bit, and:

4.3 Applying Mutation on Shubert
Function

for best practices, floating point representation is
commonly used for encoding Shubert function with two
genes, variables, in each individual. Accordingly, a 2-

dimension Shubert function is adopted. This function has
760 local minima, 18 of which are global minima with
value -186.73067. Its object function is:

Since this is a two dimension function, with only two
variables, the following mutation types are used:

 Boundary: a gene is selected and replaced
randomly by the upper (10) or lower (-10)
bound.

 Uniform random: a gene is selected randomly
and replaced by a random number from the
interval of [-10.0, 10.0].

 Non-uniform: If sv
t = <v1,…, vm> is a

chromosome, t is the generation number, and the
element vk was selected for this mutation, the
result is a vector sv

t+1 = <v1,…,vk’,…,vm>,
where,

LB and UB are lower and upper domain bounds
of the variable vk. In addition, the following
function is used:

Where r is a random number from [0, 1], T is
the maximum generation number, and b is a
system parameter determining the degree of
dependency of the iteration number.

4.4 Applying Mutation on Linear System
Equation

The floating-point representation is used for encoding
individuals in such system with every gene represents the
value of one variable. The individuals of the initial
population can be generated randomly within a specified
interval for each variable, and the evaluation function is
used to indicate how far the obtained solution from the
correct one. For the general system of linear equations:

a11X1 + a12X2 + … + a1nXn = b1

a21X1 + a22X2 + … + a2nXn = b2

… … …

an1X1 + an2X2+ … + annXn = bn

suppose that the vector V = (v1,v2,…,vn) represents a
solution. Then the evaluation function will be:

EVALUATING THE EFFECTIVENESS OF MUTATION … Informatica 35 (2011) 513–518 517

n

i

n

j

bivjaij
1 1

.

0.1

Eventually, the following mutation types will be applied
for this linear equation system: Boundary, Uniform
random, Non-uniform, Reciprocal, Inversion, Insertion,
and Displacement.

5 Test and Results
After running the program 50 times for each type of
mutation, we get the results represented in tables 2, 3, 4,
and 5 for TSP, 0/1 Knapsack, Shubert function, and
linear equation system problems respectively.

Table 2: Output per mutation type applied to TSP.

Table 3: Output per mutation type applied to 0/1
Knapsack.

Table 4: Output per mutation type applied to Shubert
function (x1, x2).

Table 5: Output per mutation type applied to Linear
Equation System.

Now, for evaluating the effectiveness of each mutation
type applied to TSP, two hypotheses are considered:
First Hypothesis (H0): Minsertion = Minversion = Mreciprocal =
Mdisplacement = Muniform = Mboundary

Second Hypothesis (H1): Minsertion< = Minversion <=
Mreciprocal <= Mdisplacement< = Muniform <= Mboundary

Here, MX is the mean of the number of generations
required to reach the desired solution using the X
mutation. In H0 we assume that all types of mutation are
having the same mean M, but in H1 we assume that there
is a difference between them; such that the mean in the
first type is less than, better, the mean in the second type
and so on. Now, we apply the Jonckheere-Terpstra test of
the statistical package SPSS on the collected data for
TSP to either accept or reject the above hypotheses. The
results in Table 6 give some statistics. The very
important part of these results is the value of P (in the
last line). Since P = 0.000 which is < 0.01, we reject H0

and accept H1. This means that the proposed order of
mutation types in H1 is correct.

Parameter Value

Number of Levels 6

Population Size 300

Observed J-T Statistic 25605.500

Mean J-T Statistic 18750.000

Std. Deviation of J-T Statistic 855.730

Std. J-T Statistic 8.011

Asymp. Sig. (2-tailed) 0.000

Table 6: Results of Jonckheere-Terpsta Test on TSP.

For evaluating the effectiveness of each mutation type
applied to 0/1 Knapsack, two hypotheses are considered:
First Hypothesis (H0): Mboundary = MFlipBit = MnonUniform =
Minsertion = Mdisplacement = Minversion

Second Hypothesis (H1): Mboundary <= MFlipBit <=
MnonUniform <= Minsertion <= Mdisplacement <= Minversion

After applying the Jonckheere-Terpstra test, we get the
results shown in Table 7. Since P = 0.016 which is > 0.01,
we reject H1 and accept H0.

Parameter Value

Number of Levels 6

Population Size 300

Observed J-T Statistic 20801.500

Mean J-T Statistic 18750.000

Std. Deviation of J-T Statistic 854.717

Std. J-T Statistic 2.400

Asymp. Sig. (2-tailed) 0.016

Table 7: Results of Jonckheere-Terpsta Test on 0/1
Knapsack..

To evaluate the effectiveness of each mutation type
applied to Shubert, the following two hypotheses are
considered:
First Hypothesis (H0): Mboundary = MNon-Uniformt= MUniform

Second Hypothesis (H1): Mboundary<= MUniform <= MNon-

Uniform

After applying the Jonckheere-Terpstra test, we get the
results shown in Table 8. Accordingly, since P = 0.000
which is < 0.01, we reject H0 and accept H1.

Parameter Value

Number of Levels 3

Population Size 150

Observed J-T Statistic 6382.000

Mean J-T Statistic 3750.000

Std. Deviation of J-T Statistic 287.284

Std. J-T Statistic 9.162

Asymp. Sig. (2-tailed) 0.000

Table 8: Results of Jonckheere-Terpsta Test on Shubert
f(x1, x2)

To evaluate the effectiveness of each mutation type
applied to the linear equation system, the following two
hypotheses are considered:
First Hypothesis (H0): MnonUniform= MBoundary =
Mdisplacement = Mreciprocal = Minversion = Minsertion= Muniform

518 Informatica 35 (2011) 513–518 B.H. Hasan et al.

Second Hypothesis (H1): MnonUniform<=M Boundary <=
Mdisplacement<= Mreciprocal <=Minversion<=Minsertion <= Muniform

After applying the Jonckheere-Terpstra test, we get the
results shown in Table 9. Accordingly, since P = 0.000
which is < 0.01, we reject H0 and accept H1.

Parameter Value

Number of Levels 7

Population Size 350

Observed J-T Statistic 38576.000

Mean J-T Statistic 26250.000

Std. Deviation of J-T Statistic 1082.035

Std. J-T Statistic 11.392

Asymp. Sig. (2-tailed) 0.000

Table 9: Results of Jonckheere-Terpsta Test on Linear
Equation System

6 Conclusions and Future Work
Genetic algorithms are an effective way to solve many
problems especially NP-hard problem. In this paper,
genetic algorithms were used to solve TSP, 0/1-
Knapsack problem Shubert Function, and linear equation
system. Mutation is one of the important operators of
genetic algorithms since the type of mutation used often
has great effects on the results. The research study shows
that insertion mutation is the best suite for TSP,
Boundary and non-uniform mutations are the best to use
for Shubert function and linear equation system, but for
0/1 knapsack problem all mutation types used gave
nearly the same result. For future work, other NP
problems can be solved with genetic algorithms, and new
mutations can be obtained by combining two or more
types of mutation operators.

References
[1] M. Fangfang, and L. Han, “An Algorithm in

Solving the TSP Based on the Improved Genetic
Algorithm,” 1st IEEE International Conference on
Information Science and Engineering (ICISE),
2009, pp. 106-108.

[2] Y.Yi, and Q. Fang, “The improved hybrid genetic
algorithm for solving TSP based on Handel-C”, 3rd
IEEE International Conference on Advanced
Computer Theory and Engineering (ICACTE), vol.
3, 2010, pp. 330-333.

[3] Z. Tao, “TSP Problem Solution Based on Improved
Genetic Algorithm”, 4th IEEE International
Conference on Natural Computation, vol. 1, 2008,
pp. 686-690.

[4] T. Hong, W. Lin, S. Liu, and J. Lin, “Experimental
analysis of dynamic migration intervals on 0/1
knapsack problems”, IEEE Congress on
Evolutionary Computation, 2007, pp. 1163-1167.

[5] L. Wang, J. Zhang, and H. Li, “An Improved
Genetic Algorithm for TSP”, IEEE International
Conference on Machine Learning and Cybernetics,
vol. 2, 2007, pp. 925-928

[6] J. Lu, N.Fang, D. Shao, and C. Liu, “An Improved
Immune-Genetic Algorithm for the Traveling

Salesman Problem”, 3rd IEEE International
Conference on Natural Computation, 2007, pp. 297-
301.

[7] Y. Liu, and J. Huang, “A Novel Genetic Algorithm
and Its Application in TSP ”, IEEE IFIP
International Conference on Network and Parallel
Computing, 2008, pp. 263-266.

[8] H. Ishibuchi, and K. Narukawa, “Performance
evaluation of simple multiobjective genetic local
search algorithms on multiobjective 0/1 knapsack
problems”, IEEE Congress on Evolutionary
Computation, vol. 1, 2004, pp. 441-448.

[9] D.S. Vianna, and J.E.C. Arroyo, “A GRASP
algorithm for the multi-objective knapsack
problem”, 24th IEEE International Conference of
the Chilean Computer Science Society, 2004, pp.
69-75.

[10] H.H. Yang, S.W. Wang, H.T. Ko, and J.C. Lin, “A
novel approach for crossover based on attribute
reduction - a case of 0/1 knapsack problem”, IEEE
International Conference on Industrial Engineering
and Engineering Management, 2009, pp. 1733-
1737.

[11] C.L. Mumford, ”Comparing representations &
recombination operators for the multi-objective 0/1
knapsack problem”, The IEEE 2003 Congress on
Evolutionary Computation, vol. 2, 2003, pp. 854-
861.

[12] S.N. Mohanty, and R. Satapathy, “An evolutionary
multiobjective genetic algorithm to solve 0/1
Knapsack Problem”, 2nd IEEE International
Conference on Computer Science and Information
Technology, 2009, pp. 397-399.

[13] S. Kaystha, and S. Agarwal, “Greedy genetic
algorithm to Bounded Knapsack Problem”, 3rd
IEEE International Conference on Computer
Science and Information Technology (ICCSIT),
vol. 6, 2010, pp. 301-305.

[14] W. Xuan, W. Shao-song, and X. Li, “Solving
Shubert Function Optimization Problem by Using
Thermodynamics Evolutionary Algorithm”, IEEE
International Conference on Biomedical
Engineering and Computer Science (ICBECS),
2010, pp. 1-4.

[15] G. Alefeld, V. Kreinovich, and G. Mayer , “On the
Solution Sets of Particular Classes of Linear
Interval Systems”, Journal of Computaional and
Applied Mathematics, 2003, pp. 1–15.

[16] S. Markov, “An Iterative Method for Algebraic
Solution to Interval Equations”, Journal of Applied
Numerical Mathematics, 1999, pp. 225–239.

[17] S. Ning, and R.B. Kearfott, “A comparison of some
methods for solving linear interval equations”,
SIAM Journal of Numerical Analysis, 1997, vol.
34(4), pp. 1289–1305.

[18] N.H. Viet and M. Kleiber, “AI Methods in Solving
Systems of Interval Linear Equations”, In
proccedings of the ICAISC 2006, Springer-Verlag,
LNAI 4029, pp. 150–159.

