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Genetic Algorithms (GAs) are powerful general-purpose optimization search algorithms based upon the 
principles of evolution observed in nature. Mutation operator is one of the GA operators that used to 
produce new chromosomes or modify some features of them depending on some small probability value. 
The objective of this operator is to prevent falling of all solutions in population into a local optimum of 
solved problem. This paper evaluates the effect of applying well known mutation operators on selected 
non-deterministic polynomial (NP) hard problems and compares the results. The problems that will be 
introduced in this paper are: traveling salesman problem (TSP), 0/1 Knapsack problem, Shubert 
function, and system of linear equations.

Povzetek: Članek raziskuje učinkovitost mutacije v genetskih algoritmih pri reševanju NP-težkih 
problemov.

1 Introduction
GAs are powerful general purpose optimization search 
algorithms based upon the principles of evolution 
observed in nature.  Even with today’s high-powered 
computers, using an exhaustive search to find the optimal 
solution for even relatively small problems can be 
prohibitively expensive. For many problems, genetic 
algorithms can often find good solutions, near-optimal, in 
around 100 generations. This can be many times faster 
than an exhaustive search. Solution to a problem solved 
by genetic algorithms is evolved. Algorithm is started 
with a set of solutions, represented by chromosomes, 
called population. Solutions from one population are 
taken and used to form a new population. This is 
motivated by a hope, that the new population will be 
better than the old one. Solutions which are selected to 
form new solutions, offspring, are considered according 
to their fitness; the more suitable they are the more 
chances they have to reproduce. Then crossover and 
mutation are applied on them to find new points in the 
search space.

This paper will use GA to solve NP problems. A 
decision problem is called an NP problem if particular 
examples of it can be solved in polynomial time by a 
nondeterministic process i.e. by generating possible 
solutions at random guessing. There are many problems 

for which no polynomial-time algorithm is known, this 
paper will consider three of them; Traveling Salesman 
Problem (TSP), 0/1 Knapsack problem, and Shubert
function.

Given a finite number of cities along with the cost of 
travel between each pair of them; TSP try to find the 
cheapest way of visiting all the cities each of which
exactly once before returning back to the starting 
point. TSP difficulty comes from the fact that for N cities
there are N!/2N possible paths. There are several 
algorithms, which approach this problem. This paper will 
use GA to solve this problem by applying several types 
of mutation methods and compare the results. These 
types, depending on the representation used are: 
Reciprocal exchange Mutation, Inversion mutation, 
Insertion mutation, Displacement mutation, Boundary 
mutation and Uniform random mutation.

The main idea of 0/1 Knapsack problem is how to fill
the knapsack with the subset of given items to reach 
maximum profit without exceeding the knapsack 
capacity. The knapsack problem arises whenever there is 
resource allocation with financial constraints. Profit 
would be the importance of the item, while the cost is the 
amount of space it occupies in the knapsack. So we need 
to maximize our profit while minimizing our cost. This 
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problem shows how to deal with constraints. One way to 
achieve that is based on the application of special repair 
algorithms to correct any infeasible solutions. This paper 
will use GA to solve this problem by applying several
types of mutation methods and compare the results. These 
mutation types depending on the representation used are: 
Flip bit, Boundary, Non-uniform, Inversion, Insertion and 
Displacement.

In Shubert function the target is to benchmark global 
optimization methods. The formulation of the global 
optimization problem is to find the absolute minimum for
a given function over the allowed range of its variables. 
So, Shubert function is used as an indicator for the
efficiency of these methods. The Shubert function could 
be 1, 2, 3… or n dimension. The object function for one-
dimension Shubert function can be given as:

For n-dimension Shubert function, there are n*pow(3,n)
global solutions. The object function for n-dimension 
Shubert function can then be given as:

GAs are general purpose search algorithms, so we can use 
them for searching the global minima of the Shubert 
function. This paper will use GA to solve this problem by 
several types of mutation methods and compare the 
results. These types depending on the representation used 
are: Boundary mutation, Uniform random mutation and 
Non-uniform mutation.

Many problems lend themselves to being solved with 
systems of linear equations. However, solving systems of 
linear equations is a common computational problem well 
known to mathematicians, scientists and engineers. 
Several algorithms exist for solving this problem. But, 
when the equations contain interval coefficients, i.e.
intervals in which the desired coefficient values are 
known to lie, the problem may not be solvable in any 
reasonable sense. In fact, it has been shown that the 
general problem of solving systems of linear equations
with interval coefficients is NP-hard which is extremely 
difficult to be solved. Hence, this paper will use GA to 
solve this problem by applying several types of mutation 
methods and compare the results. These types, depending 
on the representation used are: Boundary mutation, 
Uniform random mutation, Non-uniform mutation, 
Reciprocal mutation, Inversion mutation, Insertion 
mutation, and Displacement mutation.

2 Related Work
In recent years, the genetic algorithms for solving NP 
hard problems have achieved great results [1] [2] [3] [4].
In particular, the Traveling Salesman Problem (TSP) has 
been receiving continuous and growing attention in 
artificial intelligence, computational mathematics and 
optimization. For instance, the work in [5] proposed an 

improved GA to solve TSP through adopting an untwist 
operator which can unite the knots of route effectively, 
so it can shorten the length of route and quicken the 
convergent speed. In [6], a new selection strategy is 
incorporated into the conventional genetic algorithm to 
improve the performance of genetic algorithm in solving 
TSP. The results show that the number of evolutional 
iterations to reach an optimal solution can be 
significantly reduced.  Liu and Huang [7] proposed a
novel genetic algorithm to overcome the defections of 
slow convergence of traditional GA. The algorithm
creates crossover and mutation by merging two kinds of 
heuristics. Simulation results indicated that it can get 
high-quality solution while consume less running time.

The 0/1 Knapsack Problem is a well-known NP hard 
problem [8] [9] [10] [11] as it appears in many real life 
world with different application. In [12] an evolutionary 
genetic algorithm for solving multi objective 0/1 
Knapsack Problem is introduced. Experimental outcome 
show that the proposed algorithm outperforms the
existing evolutionary approach. In addition, the work in 
[13] proposed a genetic algorithm using greedy approach 
to solve this problem. The experiments prove the 
feasibility and validity of the algorithm.

Shubert function optimization problem has also been 
studied in literature. Based on the principle of free energy
minimization of thermodynamics, a new thermodynamics
evolutionary algorithm (TDEA) for solving Shubert 
function optimization problem has been proposed in [14].  
The results show that thermodynamics evolutionary 
algorithm is of potential to obtain global optimum or 
more accurate solutions than other evolutionary methods.

The problem of solving systems of linear equations
with use of AI based approaches has been studied by 
many researches for decades. Different definitions for the 
solution of such problem have been considered and 
various AI techniques have been successfully developed 
[15] [16] [17]. Recently, the research in [18] aimed to 
approximate the exact algebraic solution of this problem 
through minimizing its cost function. To do so, two 
different AI approaches were adopted:  the neural 
networks (NN) based approach and the genetic 
algorithms (GA) based one. The results shows that it will
be interesting to combine both GA based and NN based 
approaches into one single method. GA can be used at 
the beginning phase for global search, whereas the NN 
based technique can be used in the final, local search 
phase to improve the solution obtained by GA.

3 GA Operation
GA is an iterative procedure that consists of a constant 
population size of individuals which are decoded and 
evaluated according to a fitness function. To form a new 
population, individuals are selected according to their 
fitness. A crossover and mutation are then applied on 
them to find new points in the search space. Figure 1 
shows the iterative procedure of a general GA. For our 
research work, we will adopt the GA procedure steps to 
solve four well known NP problems: Traveling Salesman 
Problem (TSP), 0/1 Knapsack problem, Shubert function, 
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and system of linear equations. To do so, Table 1 shows 
how these steps are applied on the four problems.

Figure 1: A general GA procedure.

Table 1: Choice of parameters for each GA step.

4 Mutation Operator
Text of the conclusion From biology view, mutation is 
any change of DNA material that can be reproduced.
From computer science view, mutation is a genetic 
operator that follows crossover operator. It usually acts 
on only one individual chosen based on a probability or 
fitness function. One or more genetic components of the 
individual are scanned. And this component is modified 
based on some user-definable probability or condition. 
Without mutation, offspring chromosomes would be 
limited to only the genes available within the initial 
population. Mutation should be able to introduce new 
genetic material as well as modify existing one. With 
these new gene values, the genetic algorithm may be able 
to arrive at better solution than was previously possible. 
Mutation operator prevents premature convergence to 
local optima by randomly sampling new points in the 
search space. There are many types of mutation and these 
types depend on the representation itself.

4.1 Applying Mutation on TSP
Since integer representation is the best representation for 
TSP, the following mutation types were applied to this 
problem:
 Reciprocal: two cities are exchanged, swapped, after 

they are selected randomly. 
 Inversion: two cut points are selected randomly, and 

then the sub tour between them is inverted.
 Insertion: a city and a place to be inserted in it are 

selected randomly. 
 Boundary: a city is chosen and replaced randomly 

with either the upper or lower bound for that city. 
The chromosome is then searched for the upper or 
lower bound and that city is replaced with the bound 
as shown in Figure 2.

Figure 2: Boundary mutation.

 Displacement: a sub tour and a place to be inserted in 
it are selected randomly as shown in Figure 3.

Figure 3: Displacement mutation.

 Uniform: a city selected for mutation is replaced with 
a uniform random value between the user-specified 
upper and lower bounds for that city. Then the 
chromosome is searched for the uniform random 
value found and replaces it with that city.



516 Informatica 35 (2011) 513–518 B.H. Hasan et al.

4.2 Applying Mutation on 0/1 Knapsack
since binary representation is the best representation for 
0/1 Knapsack problem, the following mutation types were 
applied to this problem:
 Flip bit: an item is selected randomly and its value is 

inverted from 0, selected, to 1, unselected, or vice 
versa as shown in Figure 4.

Figure 4: Flip mutation.

 Inversion: items between two randomly chosen 
points in the individual are reversed in order.

 Insertion: an item is taken at random and inserted 
randomly into another position in the sequence.

 Displacement: A randomly selected section of the 
individual is moved as a block to another location in 
the individual.

 Boundary: an item is selected randomly and its value 
is replaced randomly either by the upper bound (1) or 
the lower bound (0).

 Non-uniform: This type increases the probability that 
the amount of the mutation will be close to 0 as the 
generation number increases. This mutation operator 
keeps the population from stagnating in the early 
stages of the evolution then allows the genetic 
algorithm to fine tune the solution in the later stages 
of evolution as shown in Figure 5. 

Figure 5: Non-uniform mutation.

If sv
t = <v1,…,vm> is a chromosome (t is the 

generation number) and the element vk was selected 
for this mutation, the result is a vector  sv

t+1 = 
<v1,…,vk’,…,vm>, where vk’= mutate(vk ,     (t,n)), 
where n is the number of bits per one element of a 
chromosome, mutate(vk, pos) means mutate the k-th 
value element on pos bit, and:

4.3 Applying Mutation on Shubert 
Function

for best practices, floating point representation is 
commonly used for encoding Shubert function with two 
genes, variables, in each individual. Accordingly, a 2-

dimension Shubert function is adopted. This function has 
760 local minima, 18 of which are global minima with 
value -186.73067. Its object function is:

Since this is a two dimension function, with only two 
variables, the following mutation types are used:

 Boundary: a gene is selected and replaced 
randomly by the upper (10) or lower (-10) 
bound.

 Uniform random: a gene is selected randomly 
and replaced by a random number from the 
interval of [-10.0, 10.0].

 Non-uniform: If sv
t = <v1,…, vm> is a 

chromosome, t is the generation number, and the 
element vk was selected for this mutation, the 
result is a vector sv

t+1 = <v1,…,vk’,…,vm>, 
where,

LB and UB are lower and upper domain bounds 
of the variable vk. In addition, the following 
function is used:

Where r is a random number from [0, 1], T is 
the maximum generation number, and b is a 
system parameter determining the degree of 
dependency of the iteration number.

4.4 Applying Mutation on Linear System 
Equation

The floating-point representation is used for encoding 
individuals in such system with every gene represents the 
value of one variable. The individuals of the initial 
population can be generated randomly within a specified 
interval for each variable,  and the evaluation function is 
used to indicate how far the obtained solution from the 
correct one. For the general system of linear equations:

a11X1 + a12X2 + … + a1nXn = b1

a21X1 + a22X2 + … + a2nXn = b2

…                    …                …

an1X1 + an2X2+ … + annXn = bn

suppose that the vector V = (v1,v2,…,vn) represents a 
solution. Then the evaluation function will be:
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Eventually, the following mutation types will be applied 
for this linear equation system: Boundary, Uniform 
random, Non-uniform, Reciprocal, Inversion, Insertion, 
and Displacement.

5 Test and Results
After running the program 50 times for each type of 
mutation, we get the results represented in tables 2, 3, 4, 
and 5 for TSP, 0/1 Knapsack, Shubert function, and 
linear equation system problems respectively.

Table 2: Output per mutation type applied to TSP.

Table 3: Output per mutation type applied to 0/1 
Knapsack.

Table 4: Output per mutation type applied to Shubert 
function (x1, x2).

Table 5: Output per mutation type applied to Linear 
Equation System.

Now, for evaluating the effectiveness of each mutation 
type applied to TSP, two hypotheses are considered:
First Hypothesis (H0): Minsertion = Minversion = Mreciprocal = 
Mdisplacement = Muniform = Mboundary

Second Hypothesis (H1): Minsertion< = Minversion <= 
Mreciprocal <= Mdisplacement< = Muniform <= Mboundary

Here, MX  is the mean of the number of generations 
required to reach the desired solution using the X 
mutation. In H0 we assume that all types of mutation are 
having the same mean M, but in H1 we assume that there 
is a difference between them; such that the mean in the 
first type is less than, better, the mean in the second type 
and so on. Now, we apply the Jonckheere-Terpstra test of 
the statistical package SPSS on the collected data for 
TSP to either accept or reject the above hypotheses. The 
results in Table 6 give some statistics. The very 
important part of these results is the value of P (in the 
last line). Since P = 0.000 which is < 0.01, we reject H0 

and accept H1. This means that the proposed order of 
mutation types in H1 is correct.

Parameter Value

Number of Levels 6

Population Size 300

Observed J-T Statistic 25605.500

Mean J-T Statistic 18750.000

Std. Deviation of J-T Statistic 855.730

Std. J-T Statistic 8.011

Asymp. Sig. (2-tailed) 0.000

Table 6: Results of Jonckheere-Terpsta Test on TSP.

For evaluating the effectiveness of each mutation type 
applied to 0/1 Knapsack, two hypotheses are considered:
First Hypothesis (H0): Mboundary = MFlipBit = MnonUniform = 
Minsertion = Mdisplacement = Minversion

Second Hypothesis (H1): Mboundary <= MFlipBit <=
MnonUniform <= Minsertion <= Mdisplacement <= Minversion

After applying the Jonckheere-Terpstra test, we get the 
results shown in Table 7. Since P = 0.016 which is > 0.01, 
we reject H1 and accept H0.

Parameter Value

Number of Levels 6

Population Size 300

Observed J-T Statistic 20801.500

Mean J-T Statistic 18750.000

Std. Deviation of J-T Statistic 854.717

Std. J-T Statistic 2.400

Asymp. Sig. (2-tailed) 0.016

Table 7: Results of Jonckheere-Terpsta Test on 0/1 
Knapsack..

To evaluate the effectiveness of each mutation type 
applied to Shubert, the following two hypotheses are
considered:
First Hypothesis (H0): Mboundary = MNon-Uniformt= MUniform

Second Hypothesis (H1): Mboundary<= MUniform <= MNon-

Uniform

After applying the Jonckheere-Terpstra test, we get the 
results shown in Table 8. Accordingly, since P = 0.000 
which is < 0.01, we reject H0 and accept H1.

Parameter Value

Number of Levels 3

Population Size 150

Observed J-T Statistic 6382.000

Mean J-T Statistic 3750.000

Std. Deviation of J-T Statistic 287.284

Std. J-T Statistic 9.162

Asymp. Sig. (2-tailed) 0.000

Table 8: Results of Jonckheere-Terpsta Test on Shubert 
f(x1, x2)

To evaluate the effectiveness of each mutation type 
applied to the linear equation system, the following two 
hypotheses are considered:
First Hypothesis (H0): MnonUniform= MBoundary = 
Mdisplacement = Mreciprocal = Minversion = Minsertion= Muniform
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Second Hypothesis (H1): MnonUniform<=M Boundary <= 
Mdisplacement<= Mreciprocal <=Minversion<=Minsertion <= Muniform

After applying the Jonckheere-Terpstra test, we get the 
results shown in Table 9. Accordingly, since P = 0.000 
which is < 0.01, we reject H0 and accept H1.

Parameter Value

Number of Levels 7

Population Size 350

Observed J-T Statistic 38576.000

Mean J-T Statistic 26250.000

Std. Deviation of J-T Statistic 1082.035

Std. J-T Statistic 11.392

Asymp. Sig. (2-tailed) 0.000

Table 9: Results of Jonckheere-Terpsta Test on Linear 
Equation System

6 Conclusions and Future Work
Genetic algorithms are an effective way to solve many 
problems especially NP-hard problem.  In this paper,
genetic algorithms were used to solve TSP, 0/1-
Knapsack problem Shubert Function, and linear equation 
system. Mutation is one of the important operators of 
genetic algorithms since the type of mutation used often 
has great effects on the results. The research study shows 
that insertion mutation is the best suite for TSP, 
Boundary and non-uniform mutations are the best to use 
for Shubert function and linear equation system, but for 
0/1 knapsack problem all mutation types used gave 
nearly the same result. For future work, other NP 
problems can be solved with genetic algorithms, and new 
mutations can be obtained by combining two or more 
types of mutation operators.

References
[1] M. Fangfang, and L. Han, “An Algorithm in 

Solving the TSP Based on the Improved Genetic 
Algorithm,” 1st IEEE International Conference on 
Information Science and Engineering (ICISE), 
2009, pp. 106-108.

[2] Y.Yi, and Q. Fang, “The improved hybrid genetic 
algorithm for solving TSP based on Handel-C”, 3rd 
IEEE International Conference on Advanced 
Computer Theory and Engineering (ICACTE), vol. 
3, 2010, pp. 330-333.

[3] Z. Tao, “TSP Problem Solution Based on Improved 
Genetic Algorithm”, 4th IEEE International 
Conference on Natural Computation, vol. 1, 2008, 
pp. 686-690.

[4] T.  Hong, W. Lin, S. Liu, and J. Lin, “Experimental 
analysis of dynamic migration intervals on 0/1 
knapsack problems”, IEEE Congress on 
Evolutionary Computation, 2007, pp. 1163-1167.

[5] L. Wang, J. Zhang, and H. Li, “An Improved 
Genetic Algorithm for TSP”, IEEE International 
Conference on Machine Learning and Cybernetics, 
vol. 2, 2007, pp. 925-928 

[6] J. Lu, N.Fang, D. Shao, and C. Liu, “An Improved 
Immune-Genetic Algorithm for the Traveling 

Salesman Problem”, 3rd IEEE International 
Conference on Natural Computation, 2007, pp. 297-
301.

[7] Y. Liu, and J. Huang, “A Novel Genetic Algorithm 
and Its Application in TSP ”, IEEE IFIP 
International Conference on Network and Parallel 
Computing, 2008, pp. 263-266.

[8] H. Ishibuchi, and K. Narukawa, “Performance 
evaluation of simple multiobjective genetic local 
search algorithms on multiobjective 0/1 knapsack 
problems”, IEEE Congress on Evolutionary
Computation, vol. 1, 2004, pp. 441-448.

[9] D.S. Vianna, and J.E.C. Arroyo, “A GRASP 
algorithm for the multi-objective knapsack 
problem”, 24th IEEE International Conference of 
the Chilean Computer Science Society, 2004, pp. 
69-75.

[10] H.H. Yang, S.W. Wang, H.T. Ko, and J.C. Lin, “A 
novel approach for crossover based on attribute 
reduction - a case of 0/1 knapsack problem”, IEEE 
International Conference on Industrial Engineering 
and Engineering Management, 2009, pp. 1733-
1737. 

[11] C.L. Mumford, ”Comparing representations &
recombination operators for the multi-objective 0/1 
knapsack problem”, The IEEE 2003 Congress on 
Evolutionary Computation, vol. 2, 2003, pp. 854-
861.

[12] S.N. Mohanty, and R. Satapathy, “An evolutionary 
multiobjective genetic algorithm to solve 0/1 
Knapsack Problem”, 2nd IEEE International 
Conference on Computer Science and Information 
Technology, 2009, pp. 397-399.

[13] S. Kaystha, and S. Agarwal, “Greedy genetic 
algorithm to Bounded Knapsack Problem”, 3rd 
IEEE International Conference on Computer 
Science and Information Technology (ICCSIT), 
vol. 6, 2010, pp. 301-305.

[14] W. Xuan, W. Shao-song, and X. Li, “Solving 
Shubert Function Optimization Problem by Using 
Thermodynamics Evolutionary Algorithm”, IEEE 
International Conference on Biomedical 
Engineering and Computer Science (ICBECS), 
2010, pp. 1-4.

[15] G. Alefeld, V. Kreinovich, and G. Mayer , “On the 
Solution Sets of Particular Classes of Linear 
Interval Systems”, Journal of Computaional and 
Applied Mathematics, 2003, pp. 1–15.

[16] S. Markov, “An Iterative Method for Algebraic 
Solution to Interval Equations”, Journal of Applied 
Numerical Mathematics, 1999, pp. 225–239.

[17] S. Ning, and R.B. Kearfott, “A comparison of some 
methods for solving linear interval equations”, 
SIAM Journal of Numerical Analysis, 1997, vol. 
34(4), pp. 1289–1305.

[18] N.H. Viet and M. Kleiber, “AI Methods in Solving 
Systems of Interval Linear Equations”, In 
proccedings of the ICAISC 2006, Springer-Verlag, 
LNAI 4029, pp. 150–159.


