
https://doi.org/10.31449/inf.47i9.3772 Informatica 47 (2023) 35-50 35

Retrieval of Interactive Requirements of Data Intensive Applications

using Random Forest Classifier

Renita Raymond1, S Margret Anouncia2,*
1,2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

E-mail: renita.r@vit.ac.in1, smargretanouncia@vit.ac.in2,*
*Corresponding Author

Keywords: requirement classification, interaction-based requirements, data-intensive applications, random forest

classifier

Received: January 4, 2021

Classifying requirements in data-intensive systems based on their interactions can assist the requirements

engineering process in becoming more systematic and transparent, resulting in higher requirement

compliance and software project completion. However, understanding the requirements centred on

interactions with the system is particularly tough due to the increased complexity of big data. In most

cases, awareness of interaction-based requirements is critical in moving forward with prediction and

decision-making. As a result, the classification of interactive requirements plays a critical role in

removing the difficulties from unclear requirements. Various approaches to effective requirement

classification are being devised. However, due to inadequate requirement management reflecting the fast-

changing organizational change, classification accuracy does not achieve its maximum potential. The best

approach for reducing misclassification rate and retrieving interactive requirements for data-intensive

systems would be to use Word Embedding and Random Forest Classifier retrieval mechanism, as none of

the studies to date have emphasized it. It also assessed the impact by comparing the results to metrics

derived from the Random Forest classifier's training on word count characteristics. The data set used to

experiment with the classification, particularly for interaction-based needs, is unique to our work and has

not been covered by any other studies to date. The researchers will benefit from this study as they will

better understand the requirement classification process. With an F1 score of 0.91, precision of 0.89, and

recall of 0.93, statistical analysis showed that Word Embedding followed by Random Forest Classifier

produced a relatively high classification result to differentiate interactive requirements for data-intensive

systems.

Povzetek: Z uporabo algoritma naključnih gozdov je izboljšana klasifikacija interaktivnih zahtev v

podatkovno intenzivnih aplikacijah.

1 Introduction
Generally, Big Data is described as a massive chunk of

unstructured and structured data making it difficult to

process using traditional methods [1]. Data-Intensive

Applications (DIA) help business organizations to drive

predictive and informative decisions by analyzing this

massive chunk of data. Big data software requirements

discover business values. Therefore, to elicit software

requirements for the DIA, it is necessary to outline the

implication of the projects at an earlier stage [2].

Requirement Engineering (RE) assist in collaborating

with various stakeholders and business analyst expertise

in analytical thinking to perceive and comply with the

value and priority of each requirement. According to

statistics, RE was the source of 60% of software

development faults. As a result, soliciting relevant

requirements minimizes the risk of software-intensive

projects and consequently improves quality [3].
Requirements are also iterative, dynamic, interactive, and

never complete [4]. As most of the requirements written

are in natural language, developers, analysts, and software

architects always find it difficult to classify the

requirements as it is time-consuming and error-prone

manually. These tasks require expertise, training,

experience, and domain knowledge [5]. By utilizing

Natural Language Processing (NLP), developers can

organize and structure the requirements to perform feature

extraction, classification, speech recognition, etc.

Appropriate classification of requirements from Software

Requirement Specification (SRS) improves the quality of

software-intensive products [6]. Nevertheless, the

requirements engineering process for traditional and big

data business intelligence systems share many

commonalities, and it also differs in many aspects. A very

clear sympathetic is necessary to understand and classify

the interactive requirements for end-user applications [7].

In DIA, interactive requirements must be processed

separately and classified accurately to improve the quality

of requirements and reduce budget over-run. Techniques

for automatically classifying the elicited interactive-based

requirements into different classes are required [8].

According to Manal et al. [9], Machine Learning (ML)

approaches for classifying requirements in requirement

documents have produced better results than traditional

mailto:smargretanouncia@vit.ac.in2,*

36 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

natural language processing approaches. However, the

systematic level of understanding is still lacking.

Similarly, various approaches are used to classify

functional and non -functional requirements [10].

However, there was no automated tool to support the

analysis and management of interactive-based

requirements, leading to various consequences like

budget overrun, quality and security issues, and customer

dissatisfaction in DIA. Furthermore, as the vast amount of

data generated is increasing significantly on the internet,

it is formidable for the developers to categorize and

extract meaningful information especially textual

requirements from the SRS, due to their complex

semantic meaning. A supervised machine learning

technique is used for the classification of requirements.

Based on the acquired knowledge from training, it is

possible to categorize analogous documents into various

classes. Nevertheless, it is a more challenging task when

designing DIA as the corpus to be classified increases to

million petabytes every day on the internet. As mentioned

earlier, word embedding and an improved random forest

algorithm help catalogue the interactive requirements

from the SRS.

In the proposed framework, requirement feature

extraction and requirement document classification are

the two significant steps. In the first step, text features

extracted are from the SRS documents using pre-

processing. The extracted text features are represented as

real-valued feature vectors in a predefined vector space

using word embedding. In the next phase of classification,

the converted feature vectors are categorized into four

types, namely Input Requirement (IReq), Output

Requirement (OReq), Transaction Requirement (TSReq),

and Transformation Requirement (TFReq). IReq is the set

of requirements from the environment required to produce

a given level of outputs, OReq is the set requirements

provisioned for the environment, TSReq is the set of

requirements that are stable and filtered out. TFReq is the

computation performed based on the requirement. Then,

a query set is created with the help of keywords seen in

the SRS. Non Metric Space Library (NMSLIB) creates

indexing and retrieves the most similar documents

according to the query set with a similarity score. Also,

the performance is measured by training the corpus using

the improved random forest classifier algorithm.

The remainder of the paper is structured as follows.

Section 2 and 3 consist of related work and motivation.

Section 4 explains the design and implementation of our

retrieval of IREq, OReq, TFReq, and TSReq using

similarity search and some background work associated

with it, and Section 5 presents results. Finally, Section 6

consists of some conclusions along with the future scope.

2 Related work
RE is one of the essential aspects of research in the field

of software engineering. Studies proclaim that failure to

understand and classify requirements are the root cause

for

exceeding the allocated budget and time, leading to

software system failure. They were manually classifying

the requirements accordingly as FR and NFRs are

difficult. Several researchers have stated that the

requirements can be extracted and classified as FR and

NFRs automatically from the natural language documents

using various machine learning approaches and fuzzy

techniques. Many techniques, especially for the

classification of NFRs, have been devised and applied to

various applications. Nevertheless, none of the methods

addressed the classification of interaction-based

requirements for data-intensive applications like banking,

e-commerce, etc. This section outlines the various

methods involved classification of requirements

generally.

A software system's success depends significantly

upon adherence to non-functional requirements because

when it is being missed or ignored, significant issues

arise. To address this issue, Slank et al. [13] proposed a

tool-based approach, namely the NFR locator. This tool

classifies and extracts the sentences in natural language

texts into their respective NFR categories. Though the

NFR locator helps the analyst effectively extract NFRs in

available natural language documents through automated

NLP, it works well only with texts. It cannot process

images and tables in the unconstrained document present.

Similarly, security-related issues must be considered with

caution for completing software that meets the customer's

needs. Text mining techniques and prediction models

have been used to classify the security requirements [14].

In 2017, Liang et al. [15, 16] combined feature

extraction and machine learning algorithms to classify

user review requirements automatically and concluded

that AUR -BoW with Bagging provides the best

classification results. Requirements can also be classified

as FR and NFRs accurately using semi-supervised and

unsupervised machine learning algorithms.

A semi-Supervised classification technique can also

be used to extract the FR and NFRs from the SRS

automatically. Compared to supervised techniques, Semi-

Supervised techniques provide better results because, in

the latter one, only a minor amount of data needs to be

labelled. In the former one, all the data set need to be

labelled for classification. One such example is the app

store, where the requirements present in the review from

the app store are classified as functional and non-

functional requirements using a self-labelling algorithm

which is a part of the semi-supervised classification

technique [17]. Semi-supervised classification methods

help in classifying the requirements accordingly. Also, it

will be enhanced with unsupervised learning techniques

in the future.

2.1 Requirement pre-processing

SRS consists of incredibly massive data of all sorts, and

they are heterogeneous by nature with inconsistent values.

Pre-processing is a very crucial task that must be

completed before the data is used for model training.

Authors of [47, 49] alleged the main pre-processing stages

as tokenization, stop words removal, error correction,

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 37

normalization, and vectorization. Uysal et al. [48]

evaluated the combination of pre-processing methods on

two domains, namely e-mail and news, in two different

languages. Results showed that choosing appropriate

combinations of pre-processing tasks significantly

improves classification accuracy depending on the

domain and language studied. It is evident that pre-

processing leads to better data sets that are clean and more

manageable and must for any business organization to get

meaningful insights.

2.2 Feature extraction

An SRS, modelled after business requirement

specification, consists of all the requirements categorized

into four types: IReq, OReq, TSReq, and TFReq. It is

represented in vectors after pre-processing so that the

machine learning algorithms train the corpus and classify

it accordingly. The feature extraction process extracts the

text features from the SRS documents using NLP pre-

processing techniques by converting text into feature

vectors.

Feature Extraction improves the accuracy of the learning

algorithm as well as shortens the time. Selecting features

from some effective ways like the vector space model

reduces feature space dimensions [18]. Feature extraction

algorithms like Term Frequency – Inverse Document

Frequency (TF-IDF), Bag of Words (BoW), and

Word2Vec calculate the weights of the words in the text

by initiating a feature vector of the text using a predefined

keyword set [19]. This section includes various feature

extraction techniques used to extract the features and their

limitations.

One hot encoding is the first count-based embedding

technique that converts the text into a vector by

constructing a vocabulary. However, it cannot capture any

contextual information due to its inefficient memory

requirement [28].

BoW is one of the most common and effective features

extraction techniques because of its simplicity and

performance. In BoW, assuming words are independent

of each other, texts are represented as a bag of words by

recording the number of occurrences of each instance or

word in a bag irrespective of their order or grammar.

However, it leads to a high sparse and dimensional feature

vector due to its non-zero dimensions and large

vocabulary size [21][22]. Using Bow, all the features will

have a value, and it gives equal weightage to all the

features in the documents. Additionally, recurrently

appearing features direct the model rather than the

importance of the features in the document which TFIDF

is solving.

Qaisier et al. [23] say that TFIDF is calculated by

multiplying both the term frequency and Inverse

document frequencies. Terms with high TF-IDF weight

are considered to be more important rather than terms

with lesser TFIDF scores.

However, TF-IDF is the most well-known and used

formula to produce a vectors descriptor that developed to

have several normalized forms it has certain limitations.

TFIDF does not care about the position of a term in the

text, its semantics and co-occurrences with other texts in

the documents. In 2019, an extended form of Fuzzy based

TF-IDF (FTF-IDF) is introduced to overcome the

limitations of TF-IDF. FTF-IDF is a vector

representation, where the components of the TF-IDF are

presented as inputs to the Fuzzy Inference System (FIS).

Weight terms are generated as crisp outputs after the

defuzzification step. FTF-IDF provides semantic

meanings to the words in the documents [24]. It does not

look into the co-occurrences of other texts in the

documents.

Later on in the same year, Lakshmi et al. [25] proposed

term weighting schemes to represent text documents

using Term Frequency - Ranking of Term Frequency (TF-

RTF) and Term Frequency - Ranking of fuzzy logic with

the semantic relationship of terms (TF-RFST). It provides

better clustering performance in terms of accuracy, recall,

and F1 measure compared to word count, Term

Frequency-Inverse Document Frequency (TF-IDF), Term

Frequency-Inverse Corpus Frequency (TF- ICF), Multi-

Aspect TF (MATF), BM25, and BM25F. Yet, it does not

focus on the syntactic of the sentences in the documents.

Also, Ricardo et al. [20] initiated YAKE depending only

on statistical text features and not on a trained large

corpus. It is adapted to different languages and scalable to

documents of any length. However, it cannot tackle

manually assigned keywords when not found in the text.

Okapi BM25 is a ranking function used to estimate the

relevance of documents to a given search query regardless

of their proximity within the document. The authors of

[27] made a comparative analysis using the Twitter data

set and proved that TF-IDF is the best feature extraction

technique compared to BM25 with an F1 measure of

89.77. BM25 is not suitable for large corpus.

The authors of [26] state that the selection of the

weighting technique is not essential because the

weighting process is just a linear transformation of feature

vectors. Therefore, researchers can use any one of the text

feature extraction techniques or the combination of

various techniques based on their project requirement, as

every method has its pros and cons.

2.3 Requirement classification

Requirements need to be defined, organized, and

clearly understood by the stakeholders and the project

members involved in developing the system. Classifying

the requirements helps us define and organize the work

because sometimes, compared to functional requirements,

designing a system concerning non-functional

requirements should be focused on a lot. It takes up large

portions of the schedule and is filled with knotty

problems. A part of requirement engineering, i.e.,

classification of requirements appropriately, is essential

because it is the base for any software to be developed.

Requirement classification done manually is a time-

consuming task, and it is error-prone. Henceforth, an

automatic classification of requirements must minimize

rework and make the software easier to use and

understand. This section consists of various classification

38 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

techniques suggested by the researchers to classify the

requirements automatically.

In 2019, Rahman et al. [30] extracted NFR from the SRS

document using various machine learning techniques to

meet customer expectations completely. Based on the

statistical analysis, it is revealed that the SVM classifier

achieves the best results with a precision of 0.66, recall of

0.61, and accuracy of 0.76. The experiments were

conducted with the well-known PROMISE dataset, which

has the characteristics of being unbalanced in FRs and

NFRs. Lima et al. [31] expanded the PROMISE dataset,

forming the PROMISE_exp repository.

Again, Edna et al. [29] showed a comparative analysis of

various machine learning algorithms like Support Vector

Machine (SVM), KNN (K Nearest Neighbour), Decision

Tree, Multinomial Naive Bayes (MNB), and Logistic

Regression (LR) to determine which algorithm fits better

to classify the requirements automatically using

PROMISE_exp. The results reveal that the combination

of TF-IDF and LR has the best performance measures

with an F-measure of 91% on the binary classification,

74% in 11 granularity classification, and 78% on the 12-

granularity classification.

Before conducting any experimental analysis, researchers

must verify whether the dataset being used is balanced or

unbalanced. Studies have shown that an unbalanced

dataset leads to poor automatic classification of

requirements.

Fuzzy Rough Set (FRS) is a powerful mathematical tool

to deal with uncertain data. So, Behera et al. [33] proposed

a Fuzzy Rough Set based on Robust Nearest Neighbor

(FRS-RNN) to document classification. A modified CNN

is used to extract the features from the documents, and

later on, using FRS-RNN, documents are classified. It

outperforms all the classification models like SVM, Naive

Bayes, DNN, and CNN. However, the hyperparameter

tuning of FRS-RNN consumes more time than

conventional machine learning algorithms.

An NFR sentence can be classified into more than one

class. In 2019, Fuzzy Similarity KNN (FSKNN) was

suggested for multi-label classification of requirements

based on ISO/lEe 25010. In this paper, the fuzzy

similarity measure approach is used to calculate the

similarity between the terms, documents and a training

pattern is obtained. The search set obtained from the

training data is used to find the K nearest neighbor. A test

document will be labelled into a specific category using a

maximum a posteriori (MAP) estimate [35].

Similarly, to classify the FR and NFR contained in the

reviews within the APP store, a semi-supervised

classification technique was used. The self-labelling

algorithm appropriately assigns labels to the collected

unlabelled data and also classifies unseen future reviews.

However, the results are not empirically evaluated [36].

Semantic information plays a significant role in the area

of RE. Software developers use effective requirement

classification techniques to produce semantic-based SRS

of higher quality. A Requirement Classification Ontology

(RCO) is initiated for sharing and describing the different

classifications of requirements. It is used as a tool to

confirm the RE process's semantic correctness, thereby

ensuring consistency between the requirements [38].

Various studies [32][34][37] reveal that machine learning

techniques play a significant role in classifying the

requirements as FRs, NFRs, quality requirements,

security requirements, legal requirements, etc., compared

to fuzzy rule mechanisms.

However, from the related work, it is evident that no

research has been carried out to address the challenges

faced in extracting the interaction-based requirements nor

sets the standards for categorizing the requirements based

on their interactions for designing DIAs.

3 Motivation
It is inferred that categorizing the requirements according

to their type of interactions will create transparency in the

RE process, thereby promoting requirement fulfilment

and completing software-intensive projects based on the

study carried out. Considering the usefulness of the

technology in software requirement classification, a new

framework is designed to classify the interactive-based

requirements. Limiting the requirements to interactions,

in particular, can focus on what the DIA developers care

about while allowing the engineers to bring all their

knowledge and creativity to bear on the means for

achieving it. Distinguishing interactive requirements from

other requirements is very important because there are

usually much more difficult challenges to design and test

DIAs. Manuel et al. [46] conducted a survey in 2020,

which reveals that the most recurrent classification

algorithms featured on the identified studies are Naive

Bayes, K Nearest Neighbor, J48, and Natural Language

Processing algorithms. Also, the most used training

datasets are academic databases and collected user

reviews. Finally, it was concluded that most of the studies

focus on classifying FRs and NFRs. None of the studies

revealed the interest in classifying interactive

requirements, especially for software-intensive projects.

4 Proposed methodology
Given the extraction of interactive requirements as a

prime focus, the framework is designed with the

following phases,

➢ Requirement Elicitation

➢ Requirements (Text) Pre-Processing

➢ Features Extraction

➢ Requirement Discovery

➢ Requirement Classification

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 39

Figure 1: Framework for extracting interactive

requirements

4.1 Requirement elicitation

In the RE phase, requirement elicitation discovers the

requirements for developing software-intensive projects

from the users, customers, and other stakeholders. The

requirements of DIAs should be discovered in the initial

stage of the software life cycle itself. Conventional RE

processes are incapable of fulfilling the needs of the

organization mainly for two reasons. Firstly, it focuses

primarily on generic user requirements, and it does not

provide any meaningful insights about the features

generated from big data's leading to a better business

intelligence solution. Secondly, the vast amount of data

generated daily by various systems leads to increased

demand for consumption at various levels. Therefore, in

the process of requirement elicitation in DIAs, even

business analysts are also involved in the discussion to

provide business intelligence solutions to the

organizations.

In the first phase of the framework, a form has been

designed to gather the requirements from various

stakeholders. The dataset created for this paper is based

on the banking application. The stakeholders of the

banking domain are customers, bankers, investors,

regulators, RBI, etc. Requirements are gathered from the

stakeholders and documented initially. The stakeholder

form created for gathering the requirements is shown in

figure 2. The form includes various details of a

requirement like the name of the stakeholder, the role of

the stakeholder (i.e., customer, staff, BoD, Investors,

Regulators, etc.), purpose, data required for the particular

requirement, the status of the stakeholder, either primary

or secondary stakeholder, mode of interaction when

entering the requirement, locality and the description of

the requirement.

Figure 2: Stakeholder form

40 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

Figure 3: Stakeholder data

Requirement Analyst analyses the difference between

what the customers need, validates, and documents the

need of the project stakeholders. During the analysis

phase, the analyst identifies the gathered requirements

type documented using stakeholder form as either stable

or volatile requirement concerning their priority and

feasibility. Requirement types can be divided into two

type’s stable and volatile requirements [39].

Stable Requirement – otherwise called enduring

requirements are the requirements derived from the

organization's core activity and directly related to the

system's domain. Here, in the banking domain,

requirements concerned with customers, bankers who do

not change on time are considered. For example, 'The

system shall have provision for the customers to deposit

amount in the account', 'The system shall have provision

for the staff to get the customer details when opening an

account.’

Volatile Requirements – requirements that are likely to

change after the system becomes operational are

considered volatile requirements. Requirements related to

policies framed by the Board of Directors, Investors, RBI

are included in it. Such type of requirements falls into four

categories as follows.

Mutable – change in requirements concerning changes

triggered in the organization's environment is included in

it. E.g., 'The system shall have provision for the staffs to

initiate the customers to set transaction limit for the

transactions’.

Emergent – requirements that emerge when the system is

being developed and implemented are included in it. For

example, 'The system shall have the staff's provision to

collect the debt loan from the customers when it is not

being repaid after giving prior notice'.

Consequential – requirements that result from the

introduction of the computer system are known as

consequential. For example, 'The system shall have

provision for the staff to link the customers' account

details with aadhar card'.

Compatibility – requirements that depend on other

equipment or processes are included in it. E.g., 'The bank

will have many ATMs, and the new software shall provide

all the ATMs’ functionality’.

Figure 4: Requirement types

A separate keyword list is created and catalogued, as

shown in Table 1. The Interaction Type column represents

the four interaction types as Input, Output,

Transformation, and Transaction. Various keywords

related to the interaction types are listed in the Keywords

column. Keywords present in the description column of

the stakeholder data depicted in Figure 3 are matched with

the Interactive Requirement Keyword Catalogue. The

requirements are classified as Input, Output, Transaction,

and Transformation automatically concerning their

requirement type, priority, and feasibility. Any specific

requirements needed for the corresponding requirements

are also recorded and finally documented, as depicted in

figure 6.

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 41

Table 1: Interactive requirement keyword catalogue

S. No Interaction

Type

Keywords Total

No of

Keywo

rds

1 Input (IReq) Get, Login, set

transaction limit, check,

Request, Raise, Write,

Complete, set, enter,

receive, open, verify,

ensure, submit,

evaluate, select,

monitor, maintain,

maintain Debt

20

2 Output

(OReq)

view, display, print,

provide, canvassing,

conduct, sanction,

respond, issue, appoint,

take, review, limit,

observe, obtain

15

3 Transformati

on (TFReq)

Deposit, invest, pay,

recharge, withdraw,

transfer, add, accept,

update, exchange, set

policy, set priorities,

link account

13

4 Transaction

(TSReq)

Calculate EMI,

Packaging and rolling,

quarterly, Filter, year,

lock, authorization,

evaluate

8

Figure 5: Distribution of interactive requirement

type keywords catalogue

Table 1 and Figure 5 show the distribution of keywords

concerning their interaction types. Out of 56 keywords,

Input consists of 20, the output consists of 15,

Transformation consists of 13, and transaction consists of

8 keywords.

Figure 7: Distribution of requirements per category

The corpus created consists of 2812 requirement instances

finally after the approval of the requirement analyst. The

distribution of the requirement instances is shown in

figure 7. IReq consists of 747 instances, OReq consists of

860 instances, TFReq consists of 647 instances, and

TSReq consists of 558 instances.

4.2 Requirement pre-processing

Requirement Pre-Processing is the second stage of the

classification process. It directly improves the model's

performance by removing the noise or unclear data

extracted from different sources. Series of steps are

followed to standardize textual data into a form that would

be taken up as an input to analytics systems and

applications. To categorize the requirement documents,

there are various pre-processing techniques like stop

words removal, tokenization, stemming, lemmatization,

etc. Text from the SRS is broken into meaningful tokens.

After converting into meaningful tokens, predefined stop

words are removed. Occasionally, even the stop words

can be user-defined based on their respective applications.

Removing such words from the corpus reduces the

dimensionality of the term space, thereby increasing the

model's performance. Later on, stemming is done to

identify the root of a token in the corpus. This process

removes the various suffixes, reducing the corpus tokens

even more to save time and memory space. Finally,

lemmatization considers the morphological analysis of the

tokens or words, thereby decreasing the noise and

speeding up the user's task [40, 41].

42 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

Table 2: Corpus before pre-processing

RID Description Interaction Type

1 The system shall have

provision for the users to

login with authentication

Input

2 The system shall have

provision to accept the

deposit money of the

customers

Transformation

3 The system shall have

provision to request

customers to maintain

sufficient balance

Input

4 The system shall have

provision to open an account

for the customers

Transformation

5 The system shall have

provision to submit

customers KYC forms

Input

6 The system shall have

provision to submit income

statement of the customers

Input

7 The system shall have

provision to set transaction

limit for the transactions by

the customers

Input

8 The system shall have

provision for the customers

to invest shares

Transformation

9 The system shall have

provision for the users to pay

automated bill payments

Transformation

10 The system shall have

provision for the users to pay

taxes

Transformation

11 The system shall have

provision for the users to

recharge the data card

Transformation

12 The system shall have

provision for the customers

to pay for travel through UPI

Transformation

13 The system shall have

provision for the users to pay

due (loan)

Transformation

14 The system shall have

provision for the users to pay

service charges

Transformation

15 The system shall have

provision to for the users to

set the ATM, Mobile Pin,

Net Banking transaction pin

Input

16 The system shall have

provision for the customers

to calculate EMI for loan

Transaction

17 The system shall have

provision for the customers

to check the account balance

of their account

Input

RID Description Interaction Type

18 The system shall have

provision for the users to

withdraw the amount from

their account

Transformation

19 The system shall have

provision for the customers

to view their weekly,

monthly transaction details

Output

20 The system shall have

provision for the customers

to submit their personal

details

Input

All requirements in the corpus have gone through a pre-

processing step. Table 2 shows the requirements in the

corpus before the pre-processing steps. In this paper,

Spacy, a free, open-source library for NLP is being used

to process and understand large volume of text. It

performs the pre-processing steps and provides the fastest

and more accurate syntactic analysis of any NLP released

to date [42]. For example, Table 2 RID 1: "The system

shall have provision for the users to login with

authentication" has been changed to "['user', 'login',

'authentication']" as shown in RID 1 of Table 3.

Table 3: Corpus after Text pre-processing

RI

D

Description Interaction

Type

Tokens

1 The system shall

have provision

for the users to

login with

authentication

Input ['user',

'login',

'authenticatio

n']

2 The system shall

have provision

to accept the

deposit money

of the customers

Transformat

ion

['accept',

'deposit',

'money',

'customer']

3 The system shall

have provision

to request

customers to

maintain

sufficient

balance

Input ['request',

'customer',

'maintain',

'sufficient',

'balance']

4 The system shall

have provision

to open an

account for the

customers

Transformat

ion

['open',

'account',

'customer']

5 The system shall

have provision

to submit

customers KYC

forms

Input ['submit',

'customer',

'kyc', 'form']

6 The system shall

have provision

to submit

Input ['submit',

'income',

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 43

RI

D

Description Interaction

Type

Tokens

income

statement of the

customers

'statement',

'customer']

7 The system shall

have provision

to set transaction

limit for the

transactions by

the customers

Input ['set',

'transaction',

'limit',

'transaction',

'customer']

8 The system shall

have provision

for the

customers to

invest shares

Transformat

ion

['customer',

'invest',

'share']

9 The system shall

have provision

for the users to

pay automated

bill payments

Transformat

ion

['user', 'pay',

'automated',

'bill',

'payment']

10 The system shall

have provision

for the users to

pay taxes

Transformat

ion

['user', 'pay',

'tax']

11 The system shall

have provision

for the users to

recharge the data

card

Transformat

ion

['user',

'recharge',

'data', 'card']

12 The system shall

have provision

for the

customers to pay

for travel

through UPI

Transformat

ion

['customer',

'pay', 'travel',

'upi']

13 The system shall

have provision

for the users to

pay due (loan)

Transformat

ion

['user', 'pay',

'due', 'loan']

14 The system shall

have provision

for the users to

pay service

charges

Transformat

ion

['user', 'pay',

'service',

'charge']

15 The system shall

have provision

to for the users

to set the ATM,

Mobile Pin, Net

Banking

transaction pin

Input ['user', 'set',

'atm',

'mobile',

'pin', 'net',

'banking',

'transaction',

'pin']

16 The system shall

have provision

for the

customers to

calculate EMI

for loan

Transaction ['customer',

'calculate',

'emi', 'loan']

17 The system shall

have provision

Input ['customer',

'check',

RI

D

Description Interaction

Type

Tokens

for the

customers to

check the

account balance

of their account

'account',

'balance',

'account']

18 The system shall

have provision

for the users to

withdraw the

amount from

their account

Transformat

ion

['user',

'withdraw',

'amount',

'account']

19 The system shall

have provision

for the

customers to

view their

weekly, monthly

transaction

details

Output ['customer',

'view',

'weekly',

'monthly',

'transaction',

'detail']

20 The system shall

have provision

for the

customers to

submit their

personal details

Input ['customer',

'submit',

'personal',

'detail']

The above table shows the corpus after wrangling,

cleaning up, and standardizing the textual requirements

into a form (i.e., tokens) taken up as an input for the

feature extraction process.

4.3 Feature extraction

In this stage, the pre-processed corpus is converted into

numerical features representing the information contained

in the requirements usable for machine learning. As the

actual text is highly dimensional and unstructured, every

unique word or token is seen as a separate dimension,

making it challenging to apply classification algorithms.

Word2Vec [43], developed by Tomas et al., takes as its

input a large corpus of tokens obtained from the

normalization process producing a vector space for

unique tokens. Words in the vector space that share

familiar contexts in the corpus are located close to one

another in the space. The word vectors obtained for the

corpus is shown in figure 8.

44 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

Figure 8: Sample word vectors created using Spacy

toolkit.

In the above figure, Spacy [42] parses entire blocks of text

and seamlessly assigns word vectors from the loaded

models. Word2vec improves the quality of features by

considering contextual semantics of words in a text, hence

improving machine learning and requirement

classification accuracy.

4.4 Requirement discovery

Requirement discovery is the process of identifying the

interactive requirements IReq, OReq, TFReq, and TSReq

needed to design software-intensive projects respectively

based on the query set created. It is the understanding of

how such interactive requirements are formed internally

and externally. Query set created consisting of keywords

as shown in Figure 9 should be meaningful to the humans,

and it should provide enough diverse results in retrieving

the documents. These keywords generalize the features of

the corresponding requirements, and many diverse

compositions can be found by retrieving them.

Figure 9: Word Cloud of the query set (keywords)

Features extracted from the Word2Vec are also passed as

an input to the requirement discovery phase. A similarity

measure is a metric used to measure the similarity

between the features present in the corpus, irrespective of

their sizes. This paper considers metric spaces and non-

metric spaces because the non-metric similarity provides

robustness, locality, and comfort in modelling. A non-

metric is a function that does not satisfy some or all the

properties of a metric. It includes context-dependent

similarity functions and dynamic similarity functions as

well. The non-Metric Space Library (NSMLIB) [44] is an

efficient and extendable cross-platform similarity search

library and a toolkit to evaluate similarity search methods.

It is a library for fast similarity K Nearest Neighbour (k-

NN) search. In this phase of extraction of interactive

requirements based on the keywords present in the query

set, NMSLIB is used as it is the first tool to support non-

metric space searching. The principal concern is to

provide a solution to a query by retrieving a subset of

requirements from the corpus sufficiently similar to the

query q.

Figure 10: Top 10 similar requirements retrieved for the query 'set transaction limit.'

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 45

Figure 11: Retrieval of transformation requirements based on the query set

For example, the above figure shows that the top (k =10)

nearest neighbours with a similarity score is displayed for

the query' Set Transaction Limit'. NMSLIB uses the k-

Nearest Neighbors (k-NN) algorithm for performing

similarity search as it is prevalent, and the elements in the

corpus are represented as vectors. With the help of

NMSLIB, k-NN enables high scale, low latency nearest

neighbor search on billions of documents across

thousands of dimensions with the same ease.

The above figure illustrates the retrieval of interactive

requirements, especially transformation requirements

based on the query with a similarity score. A high degree

of similarity score implies a high probability of retrieving

the documents concerning the query accurately.

Therefore, requirements concerning their interactions are

retrieved accurately and efficiently with the help of a fast

similarity search (k-NN) NMSLIB.

Table 4: Sample of requirements retrieved for specific

queries

S. No Query

Keyword

Total

Requirements

Retrieved

1 Get 15

2 Deposit 25

3 Update 18

4 Check 30

5 Display 8

46 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

Figure 12: Sample of requirements retrieved

concerning specific keywords

Table 4 and figure 12 depicts the sample of requirements

retrieved with respect to specific keywords.

4.5 Requirement classification

Word embedding produced using Word2Vec is used to

train the machine learning and classification algorithm to

improve the interactive requirement classification

accuracy based on the context and semantic relationship

between words. Our approach uses a Random Forest as

the training set fed into the algorithm entails labels. It

contains several decision trees on various subsets of the

given dataset and takes the majority votes to improve the

predictive accuracy of that dataset [45]. The experimental

analysis in section V reveals that it requires less training

time than other algorithms and produces a high accuracy

output even for the large data sets efficiently. Most

industries consider the usage of Random Forest as it

combines multiple classifiers to solve a complex problem,

thereby maintaining accuracy even when the dataset is

imbalanced. The corpus is split into a training dataset and

testing data set in the ratio of 70:30. 70 % of the dataset

goes into the training set, and the remaining 30% goes into

the testing dataset. After splitting, the training set is

trained using the RF model, and predictions are performed

on the testing set. First, N random records with features

from the training set are chosen, and secondly, a decision

tree is build based on the N records. The parameter

n_estimators decide the number of trees the RF needs, and

the steps are repeated. A Decision Tree (DT) has low bias

and high variance, prone to many errors when new test

data arrives. Therefore, RF uses multiple DTs and row

sampling and feature sampling concerning majority votes

in the DTs. This way, high variance gets converted into

low variance because using row sampling and feature

sampling records to DT gets well trained concerning

specific records. Evaluation metrics like precision, recall,

and F1 measures are used to evaluate the classifier's

performance.

4.6 Proposed algorithm for extraction of

interactive requirements

The flow of the proposed methodology is as follows.

Algorithm: Extraction of Interactive Requirements

Input: let f represent the stakeholder form, SRS be the

Software Requirement Specification, i be the ith

requirement in SRS

Output: let IReq, OReq, TFReq, and TSReq represent

the Input Requirement, Output Requirement,

Transformation Requirement, Transaction Requirement,

respectively.

Data: Testing set (x)

Begin

Generate a stakeholder form f

foreach f in the sequence do

Get the requirements ri from s € S where S=

{Primary Stakeholder, Secondary Stakeholder}

Requirement Analyst Form Save ri

RID Assign ri // RID stands for Requirement

ID

if ri is feasible and approved

add ri to SRS

else

revert back to stakeholders

 endif

endfor

Function Preprocessing (SRS, Feature Vectors)

Parse all the input requirements ri where i =

1,2,3…..n

foreach requirement ri do

 Tokenize ri

 Store the Tokens as array

 Create a customized stopword list

 foreach T from ri

 compare T and customized stopword list

 if T = customized stopword list

 remove T from ri

 else

 store the Tokens

 Remove suffixes from the tokens

 Si Store tokens

 endfor

endfor

 Function FeatureExtraction (Si, SimS)

Let Si be the tokens in corpus

word2vec model()

Set the parameters size =300, window = 2, min_count

= 20, negative = 20, alpha = 0.03

foreach Si in the corpus do

 Build the vocabulary table

 Train the model

 Find the similarity score (SimS) for si

 Return SimS for the vectors Si in the corpus

endfor

Function Query Processing (QS, ExD)

Let QSi,be the Query Set where i = 1, 2…n, RD

represent the requirement documents from SRS, ExD

represent the extracted requirement documents

Create Query_Set (QS)

if QSi = Si in Corpus

 Retrieve the documents (RDi) with SimS

else

 Return no match

Assign ExD RDi

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 47

Function Classification

To generate k classifiers

Split the ExD in the ratio of 80:20 as 80 % training

data and 20% testing data

foreach i= 1 to k do

 Sample the training data ExD

 ExDi ExD

 Create a root node RNi containing ExDi

 BuildTree (RNi)

endfor

BuildTree (RN)

if RN consists of only one instance, then

 Return

else

Select the features F randomly in RN

Select F with the highest information gain to split

on

Create f child nodes of RN,

for i=1 to f do

Set RNi to Di, where Di € RN

Di = fi

BuildTree(RNi)

endfor

elseif

end

5 Experimental results
The experiments have been carried out on intel core i5,

32GB RAM, and Windows 10. Pandas, NumPy, nltk,

sklearn, matplotlib packages, spacy, NMSLIB were used

for loading the data pre-processing and results in the

evaluation. The most popular PROMISE and

PROMISE_exp software requirement datasets are not

suitable for our research.

It is small in size, consisting of only 625 requirement

instances, and the class distribution is also imbalanced. A

novel dataset has been created regarding banking

applications comprising 2812 requirement instances

focusing on IReq, OReq, TFReq, and TSReq categories.

The sample of requirement instances is illustrated in

Figure 3 and 6 correspondingly. The prepared dataset is

pre-processed, features extracted, requirements

discovered, and classified using a python programming

language. Spacy, a free, open-source library for NLP and

NMSLIB, an efficient similarity search library, and a

toolkit for evaluating search methods, which is the first

principled support for non-metric space searching, is a

significant part of programming. The performance of the

Random Forest algorithm is compared with other

supervised machine learning algorithms like Naïve Bayes,

Support Vector Machine, Logistic Regression, KNN, etc.

The evaluation metrics like Precision, Recall and F1

scores of 0.89, 0.93, and 0.91 respectively proves that RF

is the best classification algorithm.

Evaluation metrics are primarily used to evaluate the

performance of a classifier by comparing the predictions

obtained by a model with the actual values in the corpus.

The essential components for the metrics are True

Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN). According to Hitesh et al. [45],

Precision = TP/TP+FP

Recall = TP/TP+FN

F1 Score = 2(Recall Precision) / (Recall + Precision)

Figure 13: Comparison of various algorithms with

respect to metrics

Figure 13 shows the comparison of various supervised

algorithms, out of which Random Forest records a higher

value of precision with 0.89, recall of 0.93 and f1 measure

of 0.91. Table 5 shows the performance results of each

retrieved interactive type requirement.

Table 5: Results of random forest classification

using word2vec

Random Forest Classification using

Word2Vec

Requirement

Type

Precision Recall F1

measure

IReq 0.91 0.96 0.95

OReq 0.9 0.94 0.92

TFReq 0.89 0.91 0.9

TSReq 0.86 0.9 0.88

6 Conclusion
Based on the research results, it can be concluded that the

appropriate identification of interactive requirements is

vital for the successful development of software-intensive

projects. The paper's novelty is the retrieval of interactive

requirements, especially for DIAs. The retrieval of

pertinent data will provide meaningful insights into

business intelligence problems. Vectorizing the

requirements documents with word embedding’s using

spacy is done to explore the documents with semantic

features. As a result, it retrieved the interactive

requirements separately as IReq, OReq, TFReq, and

TSReq using a fast similarity (k -NN) search and

NMSLIB. Also, it measured the impact of the extracted

documents by comparing the performance with metrics

48 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

acquired from training the Random Forest classifier on

word count features. The result of precision, recall, and

F1 are 0.89, 0.93, and 0.91, respectively. Therefore,

retrieval of interactive requirements like IReq, OReq,

TFReq, and TSReq help the developers to document their

projects more effectively by minimizing the rework.

However, studies have shown that in an unbalanced data

set, automatic classification performs worse when the size

of requirements of some labels is smaller. As future work,

we plan to increase the requirements dataset and look for

ways to mitigate the unbalance of the base, being able to

improve the classification with little training data.

References
[1] P. Wang, K. Tao, C. Gao, X. Ning, S. Gu, and B.

Deng, “Eliciting big data requirement from big data

itself: A task-directed approach,” 2017 6th

International Workshop on Software Mining

(SoftwareMining), Nov. 2017. [Online]. Available:

10.1109/softwaremining.2017.8100849.

[2] C. Palomares, C. Quer, and X. Franch,

“Requirements reuse and requirement patterns: a

state of the practice survey,” Empirical Software

Engineering, vol. 22, no. 6, pp. 2719–2762, Dec.

2016. [Online]. Available: 10.1007/s10664-016-

9485-x.

[3] W. N. Robinson, S. D. Pawlowski, and V. Volkov,

“Requirements interaction management,” ACM

Computing Surveys, vol. 35, no. 2, pp. 132–190, Jun.

2003. [Online]. Available: 10.1145/857076.857079.

[4] H. Meth, M. Brhel, and A. Maedche, “The state of the

art in automated requirements elicitation,”

Information and Software Technology, vol. 55, no.

10, pp. 1695–1709, Oct. 2013. [Online]. Available:

10.1016/j.infsof.2013.03.008.

[5] Pohl K. Requirement’s engineering fundamentals: a

study guide for the certified professional for

requirements engineering exam-foundation level-

IREB compliant. Rocky Nook, Inc.; 2016 Apr 30.

[6] C. Li, L. Huang, J. Ge, B. Luo, and V. Ng,

“Automatically classifying user requests in

crowdsourcing requirements engineering,” Journal

of Systems and Software, vol. 138, pp. 108–123,

Apr. 2018. [Online]. Available:

10.1016/j.jss.2017.12.028.

[7] N. H. Madhavji, A. Miranskyy, and K.

Kontogiannis, “Big Picture of Big Data Software

Engineering: With Example Research Challenges,”

2015 IEEE/ACM 1st International Workshop on Big

Data Software Engineering, May 2015. [Online].

Available: 10.1109/bigdse.2015.10.

[8] E. Sodagari and M. Keyvanpour, “Challenges

Classification of Software Requirements Interaction

Management Using Search-Based Methods,” 2019

5th International Conference on Web Research

(ICWR), Apr. 2019. [Online]. Available:

10.1109/icwr.2019.8765253.

[9] M. Binkhonain and L. Zhao, “A review of machine

learning algorithms for identification and

classification of non-functional requirements,”

Expert Systems with Applications: X, vol. 1, p.

100001, Apr. 2019. [Online]. Available:

10.1016/j.eswax.2019.100001.

[10] R. R. R. Merugu and S. R. Chinnam, “Automated

cloud service based quality requirement

classification for software requirement

specification,” Evolutionary Intelligence, vol. 14,

no. 2, pp. 389–394, May 2019. [Online]. Available:

10.1007/s12065-019-00241-6.

[11] C. SenthilMurugan and S. Prakasam, “A Literal

Review of Software Quality Assurance,”

International Journal of Computer Applications, vol.

78, no. 8, pp. 25–30, Sep. 2013. [Online]. Available:

10.5120/13511-1279.

[12] W. A. Qader, M. M. Ameen, and B. I. Ahmed, “An

Overview of Bag of Words; Importance,

Implementation, Applications, and Challenges,”

2019 International Engineering Conference (IEC),

Jun. 2019. [Online]. Available:

10.1109/iec47844.2019.8950616.

[13] J. Slankas and L. Williams, “Automated extraction

of non-functional requirements in available

documentation,” 2013 1st International Workshop

on Natural Language Analysis in Software

Engineering (NaturaLiSE), May 2013. [Online].

Available: 10.1109/naturalise.2013.6611715.

[14] R. Jindal, R. Malhotra, and A. Jain, “Automated

classification of security requirements,” 2016

International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), Sep. 2016. [Online]. Available:

10.1109/icacci.2016.7732349.

[15] M. Lu and P. Liang, “Automatic Classification of

Non-Functional Requirements from Augmented

App User Reviews,” Proceedings of the 21st

International Conference on Evaluation and

Assessment in Software Engineering, Jun. 2017.

[Online]. Available: 10.1145/3084226.3084241.

[16] Z. Kurtanovic and W. Maalej, “Automatically

Classifying Functional and Non-functional

Requirements Using Supervised Machine

Learning,” 2017 IEEE 25th International

Requirements Engineering Conference (RE), Sep.

2017. [Online]. Available: 10.1109/re.2017.82.

[17] R. Deocadez, R. Harrison, and D. Rodriguez,

“Automatically Classifying Requirements from App

Stores: A Preliminary Study,” 2017 IEEE 25th

International Requirements Engineering Conference

Workshops (REW), Sep. 2017. [Online]. Available:

10.1109/rew.2017.58.

[18] H. Liang, X. Sun, Y. Sun, and Y. Gao, “Text feature

extraction based on deep learning: a review,”

EURASIP Journal on Wireless Communications and

Networking, vol. 2017, no. 1, Dec. 2017. [Online].

Available: 10.1186/s13638-017-0993-1.

[19] R. Dzisevic and D. Sesok, “Text Classification using

Different Feature Extraction Approaches,” 2019

Open Conference of Electrical, Electronic and

Information Sciences (eStream), Apr. 2019. [Online].

Available: 10.1109/estream.2019.8732167.

Retrieval of Interactive Requirements of Data Intensive Applications… Informatica 47 (2023) 35-50 49

[20] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge,

C. Nunes, and A. Jatowt, “YAKE! Keyword

extraction from single documents using multiple

local features,” Information Sciences, vol. 509, pp.

257–289, Jan. 2020. [Online]. Available:

10.1016/j.ins.2019.09.013.

[21] W. A. Qader, M. M. Ameen, and B. I. Ahmed, “An

Overview of Bag of Words; Importance,

Implementation, Applications, and Challenges,”

2019 International Engineering Conference (IEC),

Jun. 2019. [Online]. Available:

10.1109/iec47844.2019.8950616.

[22] M. Lu and P. Liang, “Automatic Classification of

Non-Functional Requirements from Augmented App

User Reviews,” Proceedings of the 21st International

Conference on Evaluation and Assessment in

Software Engineering, Jun. 2017. [Online].

Available: 10.1145/3084226.3084241.

[23] S. Qaiser and R. Ali, “Text Mining: Use of TF-IDF

to Examine the Relevance of Words to Documents,”

International Journal of Computer Applications, vol.

181, no. 1, pp. 25–29, Jul. 2018. [Online]. Available:

10.5120/ijca2018917395.

[24] M. Bounabi, K. El Moutaouakil, and K. Satori, “Text

classification using Fuzzy TF-IDF and Machine

Learning Models,” Proceedings of the 4th

International Conference on Big Data and Internet of

Things, Oct. 2019. [Online]. Available:

10.1145/3372938.3372956.

[25] R. Lakshmi and S. Baskar, “Novel term weighting

schemes for document representation based on

ranking of terms and Fuzzy logic with semantic

relationship of terms,” Expert Systems with

Applications, vol. 137, pp. 493–503, Dec. 2019.

[Online]. Available: 10.1016/j.eswa.2019.07.022.

[26] T. Walkowiak, S. Datko, and H. Maciejewski,

“Bag-of-Words, Bag-of-Topics and Word-to-Vec

Based Subject Classification of Text Documents in

Polish - A Comparative Study,” Advances in

Intelligent Systems and Computing, pp. 526–535,

May 2018. [Online]. Available: 10.1007/978-3-

319-91446-6_49.

[27] A. I. Kadhim, “Term Weighting for Feature

Extraction on Twitter: A Comparison Between

BM25 and TF-IDF,” 2019 International

Conference on Advanced Science and Engineering

(ICOASE), Apr. 2019. [Online]. Available:

10.1109/icoase.2019.8723825.

[28] K. S. Kalaivani, S. Uma, and C. S.

Kanimozhiselvi, “A Review on Feature Extraction

Techniques for Sentiment Classification,” 2020

Fourth International Conference on Computing

Methodologies and Communication (ICCMC),

Mar. 2020. [Online]. Available:

10.1109/iccmc48092.2020.iccmc-000126.

[29] E. Dias Canedo and B. Cordeiro Mendes,

“Software Requirements Classification Using

Machine Learning Algorithms,” Entropy, vol. 22,

no. 9, p. 1057, Sep. 2020. [Online]. Available:

10.3390/e22091057.

[30] Md. A. Haque, Md. Abdur Rahman, and M. S.

Siddik, “Non-Functional Requirements

Classification with Feature Extraction and

Machine Learning: An Empirical Study,” 2019 1st

International Conference on Advances in Science,

Engineering and Robotics Technology

(ICASERT), May 2019. [Online]. Available:

10.1109/icasert.2019.8934499.

[31] M. Lima, V. Valle, E. Costa, F. Lira, and B.

Gadelha, “Software Engineering Repositories,”

Proceedings of the XXXIII Brazilian Symposium

on Software Engineering, Sep. 2019. [Online].

Available: 10.1145/3350768.3350776.

[32] R. Deocadez, R. Harrison, and D. Rodriguez,

“Automatically Classifying Requirements from

App Stores: A Preliminary Study,” 2017 IEEE

25th International Requirements Engineering

Conference Workshops (REW), Sep. 2017.

[Online]. Available: 10.1109/rew.2017.58.

[33] B. Behera and G. Kumaravelan, “Text document

classification using fuzzy rough set based on

robust nearest neighbor (FRS-RNN),” Soft

Computing, vol. 25, no. 15, pp. 9915–9923, Nov.

2020. [Online]. Available: 10.1007/s00500-020-

05410-9.

[34] A. Sainani, P. R. Anish, V. Joshi, and S. Ghaisas,

“Extracting and Classifying Requirements from

Software Engineering Contracts,” 2020 IEEE 28th

International Requirements Engineering

Conference (RE), Aug. 2020. [Online]. Available:

10.1109/re48521.2020.00026.

[35] I. M. S. Raharja and D. O. Siahaan, “Classification

of Non-Functional Requirements Using Fuzzy

Similarity KNN Based on ISO / IEC 25010,” 2019

12th International Conference on Information

& Communication Technology and System

(ICTS), Jul. 2019. [Online]. Available:

10.1109/icts.2019.8850944.

[36] R. Deocadez, R. Harrison, and D. Rodriguez,

“Automatically Classifying Requirements from

App Stores: A Preliminary Study,” 2017 IEEE

25th International Requirements Engineering

Conference Workshops (REW), Sep. 2017.

[Online]. Available: 10.1109/rew.2017.58.

[37] R. Jindal, R. Malhotra, and A. Jain, “Automated

classification of security requirements,” 2016

International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), Sep. 2016. [Online]. Available:

10.1109/icacci.2016.7732349.

[38] H. Alrumaih, A. Mirza, and H. Alsalamah,

“Domain Ontology for Requirements

Classification in Requirements Engineering

Context,” IEEE Access, vol. 8, pp. 89899–89908,

2020. [Online]. Available:

10.1109/access.2020.2993838.

[39] S. L. Lim and A. Finkelstein, “Anticipating

Change in Requirements Engineering,” Relating

Software Requirements and Architectures, pp. 17–

34, 2011. [Online]. Available: 10.1007/978-3-642-

21001-3_3.

50 Informatica 47 (2023) 35-50 S.M. Anouncia et al.

[40] D. Virmani and S. Taneja, “A Text Preprocessing

Approach for Efficacious Information Retrieval,”

Advances in Intelligent Systems and Computing,

pp. 13–22, Jun. 2018. [Online]. Available:

10.1007/978-981-10-8968-8_2.

[41] D. Sarkar, “Text Analytics with Python,” 2016.

[Online]. Available: 10.1007/978-1-4842-2388-8.

[42] D. Sarkar, “Natural Language Processing Basics,”

Text Analytics with Python, pp. 1–68, 2019.

[Online]. Available: 10.1007/978-1-4842-4354-

1_1.

[43] M. Bokan, “Negative-Sampling Word-Embedding

Method,” Scientific Journal of Astana IT

University, vol. 10, pp. 15–21, Jun. 2022. [Online].

Available: 10.37943/elgd6408.

[44] L. Boytsov and B. Naidan, “Engineering Efficient

and Effective Non-metric Space Library,” Lecture

Notes in Computer Science, pp. 280–293, 2013.

[Online]. Available: 10.1007/978-3-642-41062-

8_28.

[45] M. Hitesh, V. Vaibhav, Y. J. A. Kalki, S. H.

Kamtam, and S. Kumari, “Real-Time Sentiment

Analysis of 2019 Election Tweets using Word2vec

and Random Forest Model,” 2019 2nd

International Conference on Intelligent

Communication and Computational Techniques

(ICCT), Sep. 2019. [Online]. Available:

10.1109/icct46177.2019.8969049.

[46] J. M. Perez-Verdejo, A. J. Sanchez-Garcia, and J.

O. Ocharan-Hernandez, “A Systematic Literature

Review on Machine Learning for Automated

Requirements Classification,” 2020 8th

International Conference in Software Engineering

Research and Innovation (CONISOFT), Nov.

2020. [Online]. Available:

10.1109/conisoft50191.2020.00014.

[47] M. Kashina, I. D. Lenivtceva, and G. D. Kopanitsa,

“Preprocessing of unstructured medical data: the

impact of each preprocessing stage on

classification,” Procedia Computer Science, vol.

178, pp. 284–290, 2020. [Online]. Available:

10.1016/j.procs.2020.11.030.

[48] A. K. Uysal and S. Gunal, “The impact of

preprocessing on text classification,” Information

Processing & Management, vol. 50, no. 1, pp.

104–112, Jan. 2014. [Online]. Available:

10.1016/j.ipm.2013.08.006.

[49] M. Anandarajan, C. Hill, and T. Nolan, “Planning

for Text Analytics,” Advances in Analytics and

Data Science, pp. 27–41, Oct. 2018. [Online].

Available: 10.1007/978-3-319-95663-3_3.

