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Classifying requirements in data-intensive systems based on their interactions can assist the requirements 

engineering process in becoming more systematic and transparent, resulting in higher requirement 

compliance and software project completion. However, understanding the requirements centred on 

interactions with the system is particularly tough due to the increased complexity of big data. In most 

cases, awareness of interaction-based requirements is critical in moving forward with prediction and 

decision-making. As a result, the classification of interactive requirements plays a critical role in 

removing the difficulties from unclear requirements. Various approaches to effective requirement 

classification are being devised. However, due to inadequate requirement management reflecting the fast-

changing organizational change, classification accuracy does not achieve its maximum potential. The best 

approach for reducing misclassification rate and retrieving interactive requirements for data-intensive 

systems would be to use Word Embedding and Random Forest Classifier retrieval mechanism, as none of 

the studies to date have emphasized it. It also assessed the impact by comparing the results to metrics 

derived from the Random Forest classifier's training on word count characteristics. The data set used to 

experiment with the classification, particularly for interaction-based needs, is unique to our work and has 

not been covered by any other studies to date. The researchers will benefit from this study as they will 

better understand the requirement classification process. With an F1 score of 0.91, precision of 0.89, and 

recall of 0.93, statistical analysis showed that Word Embedding followed by Random Forest Classifier 

produced a relatively high classification result to differentiate interactive requirements for data-intensive 

systems. 

Povzetek: Z uporabo algoritma naključnih gozdov je izboljšana klasifikacija interaktivnih zahtev v 

podatkovno intenzivnih aplikacijah.

1 Introduction 
Generally, Big Data is described as a massive chunk of 

unstructured and structured data making it difficult to 

process using traditional methods [1]. Data-Intensive 

Applications (DIA) help business organizations to drive 

predictive and informative decisions by analyzing this 

massive chunk of data. Big data software requirements 

discover business values. Therefore, to elicit software 

requirements for the DIA, it is necessary to outline the 

implication of the projects at an earlier stage [2]. 

Requirement Engineering (RE) assist in collaborating 

with various stakeholders and business analyst expertise 

in analytical thinking to perceive and comply with the 

value and priority of each requirement. According to 

statistics, RE was the source of 60% of software 

development faults. As a result, soliciting relevant 

requirements minimizes the risk of software-intensive 

projects and consequently improves quality [3].  
Requirements are also iterative, dynamic, interactive, and 

never complete [4]. As most of the requirements written 

are in natural language, developers, analysts, and software  

 

 

 

architects always find it difficult to classify the 

requirements as it is time-consuming and error-prone  

manually. These tasks require expertise, training, 

experience, and domain knowledge [5]. By utilizing 

Natural Language Processing (NLP), developers can 

organize and structure the requirements to perform feature 

extraction, classification, speech recognition, etc. 

Appropriate classification of requirements from Software 

Requirement Specification (SRS) improves the quality of 

software-intensive products [6]. Nevertheless, the 

requirements engineering process for traditional and big 

data business intelligence systems share many 

commonalities, and it also differs in many aspects. A very 

clear sympathetic is necessary to understand and classify 

the interactive requirements for end-user applications [7].  

In DIA, interactive requirements must be processed 

separately and classified accurately to improve the quality 

of requirements and reduce budget over-run. Techniques 

for automatically classifying the elicited interactive-based 

requirements into different classes are required [8]. 

According to Manal et al. [9], Machine Learning (ML) 

approaches for classifying requirements in requirement 

documents have produced better results than traditional 
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natural language processing approaches. However, the 

systematic level of understanding is still lacking. 

Similarly, various approaches are used to classify 

functional and non -functional requirements [10]. 

However, there was no automated tool to support the 

analysis and management of interactive-based 

requirements, leading to various consequences like 

budget overrun, quality and security issues, and customer 

dissatisfaction in DIA. Furthermore, as the vast amount of 

data generated is increasing significantly on the internet, 

it is formidable for the developers to categorize and 

extract meaningful information especially textual 

requirements from the SRS, due to their complex 

semantic meaning. A supervised machine learning 

technique is used for the classification of requirements. 

Based on the acquired knowledge from training, it is 

possible to categorize analogous documents into various 

classes. Nevertheless, it is a more challenging task when 

designing DIA as the corpus to be classified increases to 

million petabytes every day on the internet. As mentioned 

earlier, word embedding and an improved random forest 

algorithm help catalogue the interactive requirements 

from the SRS.  

In the proposed framework, requirement feature 

extraction and requirement document classification are 

the two significant steps. In the first step, text features 

extracted are from the SRS documents using pre-

processing. The extracted text features are represented as 

real-valued feature vectors in a predefined vector space 

using word embedding. In the next phase of classification, 

the converted feature vectors are categorized into four 

types, namely Input Requirement (IReq), Output 

Requirement (OReq), Transaction Requirement (TSReq), 

and Transformation Requirement (TFReq). IReq is the set 

of requirements from the environment required to produce 

a given level of outputs, OReq is the set requirements 

provisioned for the environment, TSReq is the set of 

requirements that are stable and filtered out. TFReq is the 

computation performed based on the requirement. Then, 

a query set is created with the help of keywords seen in 

the SRS. Non Metric Space Library (NMSLIB) creates 

indexing and retrieves the most similar documents 

according to the query set with a similarity score. Also, 

the performance is measured by training the corpus using 

the improved random forest classifier algorithm.  

The remainder of the paper is structured as follows. 

Section 2 and 3 consist of related work and motivation. 

Section 4 explains the design and implementation of our 

retrieval of IREq, OReq, TFReq, and TSReq using 

similarity search and some background work associated 

with it, and Section 5 presents results. Finally, Section 6 

consists of some conclusions along with the future scope. 

2 Related work 
RE is one of the essential aspects of research in the field 

of software engineering. Studies proclaim that failure to 

understand and classify requirements are the root cause 

for  

 

exceeding the allocated budget and time, leading to 

software system failure. They were manually classifying 

the requirements accordingly as FR and NFRs are 

difficult. Several researchers have stated that the 

requirements can be extracted and classified as FR and 

NFRs automatically from the natural language documents 

using various machine learning approaches and fuzzy 

techniques. Many techniques, especially for the 

classification of NFRs, have been devised and applied to 

various applications. Nevertheless, none of the methods 

addressed the classification of interaction-based 

requirements for data-intensive applications like banking, 

e-commerce, etc. This section outlines the various 

methods involved classification of requirements 

generally. 

A software system's success depends significantly 

upon adherence to non-functional requirements because 

when it is being missed or ignored, significant issues 

arise. To address this issue, Slank et al. [13] proposed a 

tool-based approach, namely the NFR locator. This tool 

classifies and extracts the sentences in natural language 

texts into their respective NFR categories. Though the 

NFR locator helps the analyst effectively extract NFRs in 

available natural language documents through automated 

NLP, it works well only with texts. It cannot process 

images and tables in the unconstrained document present. 

Similarly, security-related issues must be considered with 

caution for completing software that meets the customer's 

needs. Text mining techniques and prediction models 

have been used to classify the security requirements [14].  

In 2017, Liang et al. [15, 16] combined feature 

extraction and machine learning algorithms to classify 

user review requirements automatically and concluded 

that AUR -BoW with Bagging provides the best 

classification results. Requirements can also be classified 

as FR and NFRs accurately using semi-supervised and 

unsupervised machine learning algorithms.  

A semi-Supervised classification technique can also 

be used to extract the FR and NFRs from the SRS 

automatically. Compared to supervised techniques, Semi-

Supervised techniques provide better results because, in 

the latter one, only a minor amount of data needs to be 

labelled. In the former one, all the data set need to be 

labelled for classification. One such example is the app 

store, where the requirements present in the review from 

the app store are classified as functional and non-

functional requirements using a self-labelling algorithm 

which is a part of the semi-supervised classification 

technique [17]. Semi-supervised classification methods 

help in classifying the requirements accordingly. Also, it 

will be enhanced with unsupervised learning techniques 

in the future. 

2.1 Requirement pre-processing 

SRS consists of incredibly massive data of all sorts, and 

they are heterogeneous by nature with inconsistent values. 

Pre-processing is a very crucial task that must be 

completed before the data is used for model training. 

Authors of [47, 49] alleged the main pre-processing stages 

as tokenization, stop words removal, error correction, 
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normalization, and vectorization. Uysal et al. [48] 

evaluated the combination of pre-processing methods on 

two domains, namely e-mail and news, in two different 

languages. Results showed that choosing appropriate 

combinations of pre-processing tasks significantly 

improves classification accuracy depending on the 

domain and language studied. It is evident that pre-

processing leads to better data sets that are clean and more 

manageable and must for any business organization to get 

meaningful insights.  

2.2 Feature extraction  

An SRS, modelled after business requirement 

specification, consists of all the requirements categorized 

into four types: IReq, OReq, TSReq, and TFReq.  It is 

represented in vectors after pre-processing so that the 

machine learning algorithms train the corpus and classify 

it accordingly. The feature extraction process extracts the 

text features from the SRS documents using NLP pre-

processing techniques by converting text into feature 

vectors.  

Feature Extraction improves the accuracy of the learning 

algorithm as well as shortens the time. Selecting features 

from some effective ways like the vector space model 

reduces feature space dimensions [18]. Feature extraction 

algorithms like Term Frequency – Inverse Document 

Frequency (TF-IDF), Bag of Words (BoW), and 

Word2Vec calculate the weights of the words in the text 

by initiating a feature vector of the text using a predefined 

keyword set [19]. This section includes various feature 

extraction techniques used to extract the features and their 

limitations. 

One hot encoding is the first count-based embedding 

technique that converts the text into a vector by 

constructing a vocabulary. However, it cannot capture any 

contextual information due to its inefficient memory 

requirement [28].  

BoW is one of the most common and effective features 

extraction techniques because of its simplicity and 

performance. In BoW, assuming words are independent 

of each other, texts are represented as a bag of words by 

recording the number of occurrences of each instance or 

word in a bag irrespective of their order or grammar. 

However, it leads to a high sparse and dimensional feature 

vector due to its non-zero dimensions and large 

vocabulary size [21][22]. Using Bow, all the features will 

have a value, and it gives equal weightage to all the 

features in the documents. Additionally, recurrently 

appearing features direct the model rather than the 

importance of the features in the document which TFIDF 

is solving.  

Qaisier et al. [23] say that TFIDF is calculated by 

multiplying both the term frequency and Inverse 

document frequencies. Terms with high TF-IDF weight 

are considered to be more important rather than terms 

with lesser TFIDF scores. 

However, TF-IDF is the most well-known and used 

formula to produce a vectors descriptor that developed to 

have several normalized forms it has certain limitations. 

TFIDF does not care about the position of a term in the 

text, its semantics and co-occurrences with other texts in 

the documents. In 2019, an extended form of Fuzzy based 

TF-IDF (FTF-IDF) is introduced to overcome the 

limitations of TF-IDF. FTF-IDF is a vector 

representation, where the components of the TF-IDF are 

presented as inputs to the Fuzzy Inference System (FIS). 

Weight terms are generated as crisp outputs after the 

defuzzification step. FTF-IDF provides semantic 

meanings to the words in the documents [24]. It does not 

look into the co-occurrences of other texts in the 

documents. 

Later on in the same year, Lakshmi et al. [25] proposed 

term weighting schemes to represent text documents 

using Term Frequency - Ranking of Term Frequency (TF-

RTF) and Term Frequency - Ranking of fuzzy logic with 

the semantic relationship of terms (TF-RFST). It provides 

better clustering performance in terms of accuracy, recall, 

and F1 measure compared to word count, Term 

Frequency-Inverse Document Frequency (TF-IDF), Term 

Frequency-Inverse Corpus Frequency (TF- ICF), Multi-

Aspect TF (MATF), BM25, and BM25F. Yet, it does not 

focus on the syntactic of the sentences in the documents.  

Also, Ricardo et al. [20] initiated YAKE depending only 

on statistical text features and not on a trained large 

corpus. It is adapted to different languages and scalable to 

documents of any length. However, it cannot tackle 

manually assigned keywords when not found in the text. 

Okapi BM25 is a ranking function used to estimate the 

relevance of documents to a given search query regardless 

of their proximity within the document. The authors of 

[27] made a comparative analysis using the Twitter data 

set and proved that TF-IDF is the best feature extraction 

technique compared to BM25 with an F1 measure of 

89.77. BM25 is not suitable for large corpus. 

The authors of [26] state that the selection of the 

weighting technique is not essential because the 

weighting process is just a linear transformation of feature 

vectors. Therefore, researchers can use any one of the text 

feature extraction techniques or the combination of 

various techniques based on their project requirement, as 

every method has its pros and cons.  

2.3 Requirement classification 

Requirements need to be defined, organized, and 

clearly understood by the stakeholders and the project 

members involved in developing the system. Classifying 

the requirements helps us define and organize the work 

because sometimes, compared to functional requirements, 

designing a system concerning non-functional 

requirements should be focused on a lot. It takes up large 

portions of the schedule and is filled with knotty 

problems. A part of requirement engineering, i.e., 

classification of requirements appropriately, is essential 

because it is the base for any software to be developed. 

Requirement classification done manually is a time-

consuming task, and it is error-prone. Henceforth, an 

automatic classification of requirements must minimize 

rework and make the software easier to use and 

understand. This section consists of various classification 
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techniques suggested by the researchers to classify the 

requirements automatically. 

In 2019, Rahman et al. [30] extracted NFR from the SRS 

document using various machine learning techniques to 

meet customer expectations completely. Based on the 

statistical analysis, it is revealed that the SVM classifier 

achieves the best results with a precision of 0.66, recall of 

0.61, and accuracy of 0.76. The experiments were 

conducted with the well-known PROMISE dataset, which 

has the characteristics of being unbalanced in FRs and 

NFRs. Lima et al. [31] expanded the PROMISE dataset, 

forming the PROMISE_exp repository. 

Again, Edna et al. [29] showed a comparative analysis of 

various machine learning algorithms like Support Vector 

Machine (SVM), KNN (K Nearest Neighbour), Decision 

Tree, Multinomial Naive Bayes (MNB), and Logistic 

Regression (LR) to determine which algorithm fits better 

to classify the requirements automatically using 

PROMISE_exp. The results reveal that the combination 

of TF-IDF and LR has the best performance measures 

with an F-measure of 91% on the binary classification, 

74% in 11 granularity classification, and 78% on the 12-

granularity classification. 

Before conducting any experimental analysis, researchers 

must verify whether the dataset being used is balanced or 

unbalanced. Studies have shown that an unbalanced 

dataset leads to poor automatic classification of 

requirements.  

Fuzzy Rough Set (FRS) is a powerful mathematical tool 

to deal with uncertain data. So, Behera et al. [33] proposed 

a Fuzzy Rough Set based on Robust Nearest Neighbor 

(FRS-RNN) to document classification. A modified CNN 

is used to extract the features from the documents, and 

later on, using FRS-RNN, documents are classified. It 

outperforms all the classification models like SVM, Naive 

Bayes, DNN, and CNN. However, the hyperparameter 

tuning of FRS-RNN consumes more time than 

conventional machine learning algorithms. 

An NFR sentence can be classified into more than one 

class. In 2019, Fuzzy Similarity KNN (FSKNN) was 

suggested for multi-label classification of requirements 

based on ISO/lEe 25010. In this paper, the fuzzy 

similarity measure approach is used to calculate the 

similarity between the terms, documents and a training 

pattern is obtained. The search set obtained from the 

training data is used to find the K nearest neighbor. A test 

document will be labelled into a specific category using a 

maximum a posteriori (MAP) estimate [35]. 

Similarly, to classify the FR and NFR contained in the 

reviews within the APP store, a semi-supervised 

classification technique was used. The self-labelling 

algorithm appropriately assigns labels to the collected 

unlabelled data and also classifies unseen future reviews.  

However, the results are not empirically evaluated [36]. 

Semantic information plays a significant role in the area 

of RE. Software developers use effective requirement 

classification techniques to produce semantic-based SRS 

of higher quality. A Requirement Classification Ontology 

(RCO) is initiated for sharing and describing the different 

classifications of requirements. It is used as a tool to 

confirm the RE process's semantic correctness, thereby 

ensuring consistency between the requirements [38].  

Various studies [32][34][37] reveal that machine learning 

techniques play a significant role in classifying the 

requirements as FRs, NFRs, quality requirements, 

security requirements, legal requirements, etc., compared 

to fuzzy rule mechanisms.  

However, from the related work, it is evident that no 

research has been carried out to address the challenges 

faced in extracting the interaction-based requirements nor 

sets the standards for categorizing the requirements based 

on their interactions for designing DIAs.   

3 Motivation 
It is inferred that categorizing the requirements according 

to their type of interactions will create transparency in the 

RE process, thereby promoting requirement fulfilment 

and completing software-intensive projects based on the 

study carried out. Considering the usefulness of the 

technology in software requirement classification, a new 

framework is designed to classify the interactive-based 

requirements. Limiting the requirements to interactions, 

in particular, can focus on what the DIA developers care 

about while allowing the engineers to bring all their 

knowledge and creativity to bear on the means for 

achieving it. Distinguishing interactive requirements from 

other requirements is very important because there are 

usually much more difficult challenges to design and test 

DIAs. Manuel et al. [46] conducted a survey in 2020, 

which reveals that the most recurrent classification 

algorithms featured on the identified studies are Naive 

Bayes, K Nearest Neighbor, J48, and Natural Language 

Processing algorithms. Also, the most used training 

datasets are academic databases and collected user 

reviews. Finally, it was concluded that most of the studies 

focus on classifying FRs and NFRs. None of the studies 

revealed the interest in classifying interactive 

requirements, especially for software-intensive projects.  

4 Proposed methodology 
Given the extraction of interactive requirements as a 

prime focus, the framework is designed with the 

following phases, 

➢ Requirement Elicitation 

➢ Requirements (Text) Pre-Processing 

➢ Features Extraction 

➢ Requirement Discovery 

➢ Requirement Classification 
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Figure 1: Framework for extracting interactive 

requirements 

 

4.1 Requirement elicitation 

In the RE phase, requirement elicitation discovers the 

requirements for developing software-intensive projects 

from the users, customers, and other stakeholders. The 

requirements of DIAs should be discovered in the initial 

stage of the software life cycle itself. Conventional RE 

processes are incapable of fulfilling the needs of the 

organization mainly for two reasons. Firstly, it focuses 

primarily on generic user requirements, and it does not 

provide any meaningful insights about the features 

generated from big data's leading to a better business 

intelligence solution. Secondly, the vast amount of data 

generated daily by various systems leads to increased 

demand for consumption at various levels.  Therefore, in 

the process of requirement elicitation in DIAs, even 

business analysts are also involved in the discussion to 

provide business intelligence solutions to the 

organizations.  

In the first phase of the framework, a form has been 

designed to gather the requirements from various 

stakeholders. The dataset created for this paper is based 

on the banking application. The stakeholders of the 

banking domain are customers, bankers, investors, 

regulators, RBI, etc. Requirements are gathered from the 

stakeholders and documented initially. The stakeholder 

form created for gathering the requirements is shown in 

figure 2. The form includes various details of a 

requirement like the name of the stakeholder, the role of 

the stakeholder (i.e., customer, staff, BoD, Investors, 

Regulators, etc.), purpose, data required for the particular 

requirement, the status of the stakeholder, either primary 

or secondary stakeholder, mode of interaction when 

entering the requirement, locality and the description of 

the requirement. 

 

 
 

Figure 2: Stakeholder form 
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Figure 3: Stakeholder data 

 

 

Requirement Analyst analyses the difference between 

what the customers need, validates, and documents the 

need of the project stakeholders. During the analysis 

phase, the analyst identifies the gathered requirements 

type documented using stakeholder form as either stable 

or volatile requirement concerning their priority and 

feasibility. Requirement types can be divided into two 

type’s stable and volatile requirements [39]. 

Stable Requirement – otherwise called enduring 

requirements are the requirements derived from the 

organization's core activity and directly related to the 

system's domain. Here, in the banking domain, 

requirements concerned with customers, bankers who do 

not change on time are considered. For example, 'The 

system shall have provision for the customers to deposit 

amount in the account', 'The system shall have provision 

for the staff to get the customer details when opening an 

account.’ 

Volatile Requirements – requirements that are likely to 

change after the system becomes operational are 

considered volatile requirements. Requirements related to 

policies framed by the Board of Directors, Investors, RBI 

are included in it. Such type of requirements falls into four 

categories as follows. 

Mutable – change in requirements concerning changes 

triggered in the organization's environment is included in 

it. E.g., 'The system shall have provision for the staffs to 

initiate the customers to set transaction limit for the 

transactions’. 

Emergent – requirements that emerge when the system is 

being developed and implemented are included in it. For 

example, 'The system shall have the staff's provision to 

collect the debt loan from the customers when it is not 

being repaid after giving prior notice'. 

 

 

Consequential – requirements that result from the 

introduction of the computer system are known as 

consequential. For example, 'The system shall have 

provision for the staff to link the customers' account 

details with aadhar card'. 

Compatibility – requirements that depend on other 

equipment or processes are included in it. E.g., 'The bank 

will have many ATMs, and the new software shall provide 

all the ATMs’ functionality’. 

 
 

Figure 4: Requirement types 

 

A separate keyword list is created and catalogued, as 

shown in Table 1. The Interaction Type column represents 

the four interaction types as Input, Output, 

Transformation, and Transaction. Various keywords 

related to the interaction types are listed in the Keywords 

column. Keywords present in the description column of 

the stakeholder data depicted in Figure 3 are matched with 

the Interactive Requirement Keyword Catalogue. The 

requirements are classified as Input, Output, Transaction, 

and Transformation automatically concerning their 

requirement type, priority, and feasibility. Any specific 

requirements needed for the corresponding requirements 

are also recorded and finally documented, as depicted in 

figure 6. 
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Table 1: Interactive requirement keyword catalogue 

 
S. No Interaction 

Type 

Keywords Total 

No of 

Keywo

rds 

1 Input (IReq) Get, Login, set 

transaction limit, check, 

Request, Raise, Write, 

Complete, set, enter, 

receive, open, verify, 

ensure, submit, 

evaluate, select, 

monitor, maintain, 

maintain Debt 

 

20 

2 Output 

(OReq) 

view, display, print, 

provide, canvassing, 

conduct, sanction, 

respond, issue, appoint, 

take, review, limit, 

observe, obtain 

 

15 

3 Transformati

on (TFReq) 

Deposit, invest, pay, 

recharge, withdraw, 

transfer, add, accept, 

update, exchange, set 

policy, set priorities, 

link account 

 

13 

4 Transaction 

(TSReq) 

Calculate EMI, 

Packaging and rolling, 

quarterly, Filter, year, 

lock, authorization, 

evaluate 

 

8 

 

 
 

Figure 5: Distribution of interactive requirement 

type keywords catalogue 

 

Table 1 and Figure 5 show the distribution of keywords 

concerning their interaction types.  Out of 56 keywords, 

Input consists of 20, the output consists of 15, 

Transformation consists of 13, and transaction consists of 

8 keywords. 

 
 

Figure 7: Distribution of requirements per category 

 

The corpus created consists of 2812 requirement instances 

finally after the approval of the requirement analyst. The 

distribution of the requirement instances is shown in 

figure 7. IReq consists of 747 instances, OReq consists of 

860 instances, TFReq consists of 647 instances, and 

TSReq consists of 558 instances. 

 

4.2 Requirement pre-processing 

Requirement Pre-Processing is the second stage of the 

classification process. It directly improves the model's 

performance by removing the noise or unclear data 

extracted from different sources. Series of steps are 

followed to standardize textual data into a form that would 

be taken up as an input to analytics systems and 

applications. To categorize the requirement documents, 

there are various pre-processing techniques like stop 

words removal, tokenization, stemming, lemmatization, 

etc. Text from the SRS is broken into meaningful tokens. 

After converting into meaningful tokens, predefined stop 

words are removed. Occasionally, even the stop words 

can be user-defined based on their respective applications. 

Removing such words from the corpus reduces the 

dimensionality of the term space, thereby increasing the 

model's performance. Later on, stemming is done to 

identify the root of a token in the corpus. This process 

removes the various suffixes, reducing the corpus tokens 

even more to save time and memory space. Finally, 

lemmatization considers the morphological analysis of the 

tokens or words, thereby decreasing the noise and 

speeding up the user's task [40, 41].  
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Table 2: Corpus before pre-processing 

 

RID Description Interaction Type 

1 The system shall have 

provision for the users to 

login with authentication 

Input 

2 The system shall have 

provision to accept the 

deposit money of the 

customers 

Transformation 

3 The system shall have 

provision to request 

customers to maintain 

sufficient balance 

Input 

4 The system shall have 

provision to open an account 

for the customers 

Transformation 

5 The system shall have 

provision to submit 

customers KYC forms 

Input 

6 The system shall have 

provision to submit income 

statement of the customers 

Input 

7 The system shall have 

provision to set transaction 

limit for the transactions by 

the customers 

Input 

8 The system shall have 

provision for the customers 

to invest shares 

Transformation 

9 The system shall have 

provision for the users to pay 

automated bill payments 

Transformation 

10 The system shall have 

provision for the users to pay 

taxes 

Transformation 

11 The system shall have 

provision for the users to 

recharge the data card  

Transformation 

12 The system shall have 

provision for the customers 

to pay for travel through UPI 

Transformation 

13 The system shall have 

provision for the users to pay 

due (loan) 

Transformation 

14 The system shall have 

provision for the users to pay 

service charges 

Transformation 

15 The system shall have 

provision to for the users to 

set the ATM, Mobile Pin, 

Net Banking transaction pin 

Input 

16 The system shall have 

provision for the customers 

to calculate EMI for loan 

Transaction 

17 The system shall have 

provision for the customers 

to check the account balance 

of their account 

Input 

RID Description Interaction Type 

18 The system shall have 

provision for the users to 

withdraw the amount from 

their account 

Transformation 

19 The system shall have 

provision for the customers 

to view their weekly, 

monthly transaction details 

Output 

20 The system shall have 

provision for the customers 

to submit their personal 

details 

Input 

 

All requirements in the corpus have gone through a pre-

processing step. Table 2 shows the requirements in the 

corpus before the pre-processing steps. In this paper, 

Spacy, a free, open-source library for NLP is being used 

to process and understand large volume of text. It 

performs the pre-processing steps and provides the fastest 

and more accurate syntactic analysis of any NLP released 

to date [42]. For example, Table 2 RID 1: "The system 

shall have provision for the users to login with 

authentication" has been changed to "['user', 'login', 

'authentication']" as shown in RID 1 of Table 3.  

 

Table 3: Corpus after Text pre-processing 

 

RI

D 

Description Interaction 

Type 

Tokens 

1 The system shall 

have provision 

for the users to 

login with 

authentication 

Input ['user', 

'login', 

'authenticatio

n'] 

2 The system shall 

have provision 

to accept the 

deposit money 

of the customers 

Transformat

ion 

['accept', 

'deposit', 

'money', 

'customer'] 

3 The system shall 

have provision 

to request 

customers to 

maintain 

sufficient 

balance 

Input ['request', 

'customer', 

'maintain', 

'sufficient', 

'balance'] 

4 The system shall 

have provision 

to open an 

account for the 

customers 

Transformat

ion 

['open', 

'account', 

'customer'] 

5 The system shall 

have provision 

to submit 

customers KYC 

forms 

Input ['submit', 

'customer', 

'kyc', 'form'] 

6 The system shall 

have provision 

to submit 

Input ['submit', 

'income', 
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RI

D 

Description Interaction 

Type 

Tokens 

income 

statement of the 

customers 

'statement', 

'customer'] 

7 The system shall 

have provision 

to set transaction 

limit for the 

transactions by 

the customers 

Input ['set', 

'transaction', 

'limit', 

'transaction', 

'customer'] 

8 The system shall 

have provision 

for the 

customers to 

invest shares 

Transformat

ion 

['customer', 

'invest', 

'share'] 

9 The system shall 

have provision 

for the users to 

pay automated 

bill payments 

Transformat

ion 

['user', 'pay', 

'automated', 

'bill', 

'payment'] 

10 The system shall 

have provision 

for the users to 

pay taxes 

Transformat

ion 

['user', 'pay', 

'tax'] 

11 The system shall 

have provision 

for the users to 

recharge the data 

card  

Transformat

ion 

['user', 

'recharge', 

'data', 'card'] 

12 The system shall 

have provision 

for the 

customers to pay 

for travel 

through UPI 

Transformat

ion 

['customer', 

'pay', 'travel', 

'upi'] 

13 The system shall 

have provision 

for the users to 

pay due (loan) 

Transformat

ion 

['user', 'pay', 

'due', 'loan'] 

14 The system shall 

have provision 

for the users to 

pay service 

charges 

Transformat

ion 

['user', 'pay', 

'service', 

'charge'] 

15 The system shall 

have provision 

to for the users 

to set the ATM, 

Mobile Pin, Net 

Banking 

transaction pin 

Input ['user', 'set', 

'atm', 

'mobile', 

'pin', 'net', 

'banking', 

'transaction', 

'pin'] 

16 The system shall 

have provision 

for the 

customers to 

calculate EMI 

for loan 

Transaction ['customer', 

'calculate', 

'emi', 'loan'] 

17 The system shall 

have provision 

Input ['customer', 

'check', 

RI

D 

Description Interaction 

Type 

Tokens 

for the 

customers to 

check the 

account balance 

of their account 

'account', 

'balance', 

'account'] 

18 The system shall 

have provision 

for the users to 

withdraw the 

amount from 

their account 

Transformat

ion 

['user', 

'withdraw', 

'amount', 

'account'] 

19 The system shall 

have provision 

for the 

customers to 

view their 

weekly, monthly 

transaction 

details 

Output ['customer', 

'view', 

'weekly', 

'monthly', 

'transaction', 

'detail'] 

20 The system shall 

have provision 

for the 

customers to 

submit their 

personal details 

Input ['customer', 

'submit', 

'personal', 

'detail'] 

 

The above table shows the corpus after wrangling, 

cleaning up, and standardizing the textual requirements 

into a form (i.e., tokens) taken up as an input for the 

feature extraction process. 

4.3 Feature extraction  

In this stage, the pre-processed corpus is converted into 

numerical features representing the information contained 

in the requirements usable for machine learning. As the 

actual text is highly dimensional and unstructured, every 

unique word or token is seen as a separate dimension, 

making it challenging to apply classification algorithms. 

Word2Vec [43], developed by Tomas et al., takes as its 

input a large corpus of tokens obtained from the 

normalization process producing a vector space for 

unique tokens. Words in the vector space that share 

familiar contexts in the corpus are located close to one 

another in the space. The word vectors obtained for the 

corpus is shown in figure 8. 
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Figure 8: Sample word vectors created using Spacy 

toolkit. 

 

In the above figure, Spacy [42] parses entire blocks of text 

and seamlessly assigns word vectors from the loaded 

models. Word2vec improves the quality of features by 

considering contextual semantics of words in a text, hence 

improving machine learning and requirement 

classification accuracy. 

4.4 Requirement discovery 

Requirement discovery is the process of identifying the 

interactive requirements IReq, OReq, TFReq, and TSReq 

needed to design software-intensive projects respectively 

based on the query set created. It is the understanding of 

how such interactive requirements are formed internally 

and externally. Query set created consisting of keywords 

as shown in Figure 9 should be meaningful to the humans, 

and it should provide enough diverse results in retrieving 

the documents. These keywords generalize the features of 

the corresponding requirements, and many diverse 

compositions can be found by retrieving them.  

 

 

 

 

 

  
Figure 9: Word Cloud of the query set (keywords) 

 

Features extracted from the Word2Vec are also passed as 

an input to the requirement discovery phase. A similarity 

measure is a metric used to measure the similarity 

between the features present in the corpus, irrespective of 

their sizes. This paper considers metric spaces and non-

metric spaces because the non-metric similarity provides 

robustness, locality, and comfort in modelling. A non-

metric is a function that does not satisfy some or all the 

properties of a metric. It includes context-dependent 

similarity functions and dynamic similarity functions as 

well. The non-Metric Space Library (NSMLIB) [44] is an 

efficient and extendable cross-platform similarity search 

library and a toolkit to evaluate similarity search methods. 

It is a library for fast similarity K Nearest Neighbour (k-

NN) search. In this phase of extraction of interactive 

requirements based on the keywords present in the query 

set, NMSLIB is used as it is the first tool to support non-

metric space searching. The principal concern is to 

provide a solution to a query by retrieving a subset of 

requirements from the corpus sufficiently similar to the 

query q.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Top 10 similar requirements retrieved for the query 'set transaction limit.'  
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Figure 11: Retrieval of transformation requirements based on the query set 

 

For example, the above figure shows that the top (k =10) 

nearest neighbours with a similarity score is displayed for 

the query' Set Transaction Limit'. NMSLIB uses the k-

Nearest Neighbors (k-NN) algorithm for performing 

similarity search as it is prevalent, and the elements in the 

corpus are represented as vectors. With the help of 

NMSLIB, k-NN enables high scale, low latency nearest 

neighbor search on billions of documents across 

thousands of dimensions with the same ease. 

The above figure illustrates the retrieval of interactive 

requirements, especially transformation requirements 

based on the query with a similarity score. A high degree 

of similarity score implies a high probability of retrieving 

the documents concerning the query accurately.  

Therefore, requirements concerning their interactions are 

retrieved accurately and efficiently with the help of a fast 

similarity search (k-NN) NMSLIB. 

 

 

Table 4: Sample of requirements retrieved for specific 

queries 

 

S. No Query 

Keyword 

Total 

Requirements 

Retrieved 

1  Get 15 

2  Deposit 25 

3  Update 18 

4  Check 30 

5  Display 8 
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Figure 12: Sample of requirements retrieved 

concerning specific keywords 

 

Table 4 and figure 12 depicts the sample of requirements 

retrieved with respect to specific keywords.  

4.5 Requirement classification 

Word embedding produced using Word2Vec is used to 

train the machine learning and classification algorithm to 

improve the interactive requirement classification 

accuracy based on the context and semantic relationship 

between words. Our approach uses a Random Forest as 

the training set fed into the algorithm entails labels. It 

contains several decision trees on various subsets of the 

given dataset and takes the majority votes to improve the 

predictive accuracy of that dataset [45]. The experimental 

analysis in section V reveals that it requires less training 

time than other algorithms and produces a high accuracy 

output even for the large data sets efficiently. Most 

industries consider the usage of Random Forest as it 

combines multiple classifiers to solve a complex problem, 

thereby maintaining accuracy even when the dataset is 

imbalanced. The corpus is split into a training dataset and 

testing data set in the ratio of 70:30. 70 % of the dataset 

goes into the training set, and the remaining 30% goes into 

the testing dataset. After splitting, the training set is 

trained using the RF model, and predictions are performed 

on the testing set. First, N random records with features 

from the training set are chosen, and secondly, a decision 

tree is build based on the N records. The parameter 

n_estimators decide the number of trees the RF needs, and 

the steps are repeated. A Decision Tree (DT) has low bias 

and high variance, prone to many errors when new test 

data arrives. Therefore, RF uses multiple DTs and row 

sampling and feature sampling concerning majority votes 

in the DTs. This way, high variance gets converted into 

low variance because using row sampling and feature 

sampling records to DT gets well trained concerning 

specific records. Evaluation metrics like precision, recall, 

and F1 measures are used to evaluate the classifier's 

performance.   

4.6 Proposed algorithm for extraction of 

interactive requirements 

The flow of the proposed methodology is as follows. 

Algorithm: Extraction of Interactive Requirements 

Input: let f represent the stakeholder form, SRS be the 

Software Requirement Specification, i be the ith 

requirement in SRS 

Output: let IReq, OReq, TFReq, and TSReq represent 

the Input Requirement, Output Requirement, 

Transformation Requirement, Transaction Requirement, 

respectively. 

Data: Testing set (x)  

Begin 

Generate a stakeholder form f  

foreach f in the sequence do 

Get the requirements ri from s € S where S= 

{Primary Stakeholder, Secondary Stakeholder}  

Requirement Analyst Form  Save ri 

RID  Assign ri   // RID stands for Requirement 

ID 

if ri is feasible and approved 

add ri to SRS 

else 

revert back to stakeholders 

 endif 

endfor 

Function Preprocessing (SRS, Feature Vectors) 

Parse all the input requirements ri where i = 

1,2,3…..n 

foreach requirement ri do 

 Tokenize  ri 

 Store the Tokens as array 

 Create a customized stopword list 

 foreach T from ri 

 compare T and customized stopword list 

  if T = customized stopword list 

   remove T from ri 

  else 

   store the Tokens 

 Remove suffixes from the tokens 

 Si Store tokens 

 endfor 

endfor 

 Function FeatureExtraction (Si, SimS) 

Let Si be the tokens in corpus 

word2vec model() 

Set the parameters size =300, window = 2, min_count 

= 20, negative = 20, alpha = 0.03 

foreach Si in the corpus do  

 Build the vocabulary table 

 Train the model 

 Find the similarity score (SimS) for si 

 Return SimS for the vectors Si in the corpus 

endfor 

Function Query Processing (QS, ExD) 

Let QSi,be the Query Set where i = 1, 2…n, RD 

represent the requirement documents from SRS, ExD 

represent the extracted requirement documents 

Create Query_Set (QS) 

if QSi = Si in Corpus 

 Retrieve the documents (RDi) with SimS 

else 

 Return no match 

Assign ExD   RDi 
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Function Classification 

To generate k classifiers 

Split the ExD in the ratio of 80:20 as 80 % training 

data and 20% testing data 

foreach i= 1 to k do 

 Sample the training data ExD  

 ExDi  ExD 

 Create a root node RNi containing ExDi 

 BuildTree (RNi) 

endfor 

BuildTree (RN) 

if RN consists of only one instance, then 

 Return 

else 

Select the features F randomly in RN 

Select F with the highest information gain to split 

on 

Create f child nodes of RN,  

for i=1 to f do 

Set RNi to Di, where Di € RN 

Di = fi 

BuildTree(RNi) 

endfor 

elseif 

end 

 

5 Experimental results 
The experiments have been carried out on intel core i5, 

32GB RAM, and Windows 10. Pandas, NumPy, nltk, 

sklearn, matplotlib packages, spacy, NMSLIB were used 

for loading the data pre-processing and results in the 

evaluation. The most popular PROMISE and 

PROMISE_exp software requirement datasets are not 

suitable for our research. 

It is small in size, consisting of only 625 requirement 

instances, and the class distribution is also imbalanced. A 

novel dataset has been created regarding banking 

applications comprising 2812 requirement instances 

focusing on IReq, OReq, TFReq, and TSReq categories. 

The sample of requirement instances is illustrated in 

Figure 3 and 6 correspondingly. The prepared dataset is 

pre-processed, features extracted, requirements 

discovered, and classified using a python programming 

language. Spacy, a free, open-source library for NLP and 

NMSLIB, an efficient similarity search library, and a 

toolkit for evaluating search methods, which is the first 

principled support for non-metric space searching, is a 

significant part of programming. The performance of the 

Random Forest algorithm is compared with other 

supervised machine learning algorithms like Naïve Bayes, 

Support Vector Machine, Logistic Regression, KNN, etc. 

The evaluation metrics like Precision, Recall and F1 

scores of 0.89, 0.93, and 0.91 respectively proves that RF 

is the best classification algorithm. 

Evaluation metrics are primarily used to evaluate the 

performance of a classifier by comparing the predictions 

obtained by a model with the actual values in the corpus. 

The essential components for the metrics are True 

Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN). According to Hitesh et al. [45],  

Precision = TP/TP+FP 

Recall = TP/TP+FN 

F1 Score = 2(Recall Precision) / (Recall + Precision) 

 

 
Figure 13: Comparison of various algorithms with 

respect to metrics 

 

Figure 13 shows the comparison of various supervised 

algorithms, out of which Random Forest records a higher 

value of precision with 0.89, recall of 0.93 and f1 measure 

of 0.91. Table 5 shows the performance results of each 

retrieved interactive type requirement. 

 

Table 5: Results of random forest classification 

using word2vec 

Random Forest Classification using 

Word2Vec 

Requirement 

Type 

Precision Recall F1 

measure 

IReq 0.91 0.96 0.95 

OReq 0.9 0.94 0.92 

TFReq 0.89 0.91 0.9 

TSReq 0.86 0.9 0.88 

6 Conclusion 
Based on the research results, it can be concluded that the 

appropriate identification of interactive requirements is 

vital for the successful development of software-intensive 

projects. The paper's novelty is the retrieval of interactive 

requirements, especially for DIAs. The retrieval of 

pertinent data will provide meaningful insights into 

business intelligence problems. Vectorizing the 

requirements documents with word embedding’s using 

spacy is done to explore the documents with semantic 

features. As a result, it retrieved the interactive 

requirements separately as IReq, OReq, TFReq, and 

TSReq using a fast similarity (k -NN) search and 

NMSLIB. Also, it measured the impact of the extracted 

documents by comparing the performance with metrics 
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acquired from training the Random Forest classifier on 

word count features. The result of precision, recall, and 

F1 are 0.89, 0.93, and 0.91, respectively. Therefore, 

retrieval of interactive requirements like IReq, OReq, 

TFReq, and TSReq help the developers to document their 

projects more effectively by minimizing the rework. 

However, studies have shown that in an unbalanced data 

set, automatic classification performs worse when the size 

of requirements of some labels is smaller. As future work, 

we plan to increase the requirements dataset and look for 

ways to mitigate the unbalance of the base, being able to 

improve the classification with little training data. 
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