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The term "malicious software," which is commonly referred to as malware, describes malicious software 

that affects or harms computers, servers, or networks. While the numbers and complexity of malware have 

rapidly increased, developing a malware detection system is required to detect malware in the world of 

cybersecurity and test the behavior of its new features. While traditional techniques provide less efficiency 

in detecting new malware, machine learning techniques are used to achieve rapid malware detection in 

an intelligent way to improve detection performance, as malware and its application in the industry are 

constantly increasing. In this study, we developed a malware detection model by detecting malware using 

machine learning classifiers, after passing a new feature selection technique using genetic programming. 

We also compared the performance of all classifiers using the most recent feature selection techniques. 

Results show that Random Forest, Random Forest (4), and Random Tree give the best value in all 

experiments, while Hoeffding Tree and Decision Stump give lower values for F1-score and accuracy in 

all experiments. The feature selection method that proposed GPMP gives a better value than Filter-based 

with little differences. The accuracy and F1-score have the values of 0.881066 and 0.867546 for GPMP, 

and the values of 0.877624 and 0.862894 for Filter-based, respectively. The experimental results reveal 

that GPMP used fewer features than Filter-based, and this affected the computation and complexity of the 

model.  

Povzetek: Analizirane so bile metode strojnega učenja za povečanje uspešnosti odkrivanja zlonamerne 

programske opreme. 

 

1 Introduction
Nowadays, the problem of cybersecurity is growing due to 

the fact that all electronic devices are connected to the 

Internet. In addition, cybersecurity affects our daily life 

and the infrastructure of all fields because of the high 

connectivity between millions of hosts over the Internet.  

Malware is considered eligible to modify the target 

device or application in order to gain full control of the 

unauthorized access, and the device can have access to 

other vulnerable devices to steal data.  

The main reason of cyber-attack is malware. 

Accordingly, a malware detection technology must be 

developed to improve the legacy technology of the 

industrial security software used for detection. According 

to Kaspersky's research done in 2020, detecting new 

malicious files is increased by a rate of 5.2% every day 

[1]. 

Therefore, distinguishing between benign and 

malicious files is the most cybersecurity challenging task, 

which is used to detect suspicious files with higher 

accuracy and less time and cost. There are no highly 

efficient detection methods applied in the traditional 

methods because malware spreads very quickly on the 

network. Accordingly, most researchers try to use 

machine learning to get the best detection accuracy and 

reflect it in the new technologies or tools designed for 

malware detection and network Intrusion [2] [3] [4]. 

In this paper, we propose a new model using feature 

selection method and genetic programming that are used 

in a set of parallel classifiers for a more accurate model to 

detect malware at the lowest cost. The model is run using 

five methods of selecting features across ten classifiers, 

then they will be compared to show the best result at the 

lowest cost. 

2 Related studies 
Recently, much attention has been given to finding and 

developing new methods of malware detection, compared 

to existing methods, to cover the gap of malware detection 

challenges that arise by the increase of malware over time 

[5].  

Malware detection and analysis help the analyst 

learning the type, category, and target of malware. 

Malware detection can be classified into two categories, 

mainly: static and dynamic analysis. Static analysis is the 

primary category that analyzes malware and collects data 

from a file without executing it. Dynamic analysis is the 

opposite as it executes the suspicious file in an isolated 

and controlled environment [6]. 

mailto:mshridah@ju.edu.jo
mailto:ssharaeh@ju.edu.jo


518 Informatica 45 (2021) 517–529 H. A.-Harahsheh et al. 

 

There are many research papers done to develop 

malware detection methods. In [7], for example, a 

detection system using effective low-dimensional features 

has been proposed. This system used ensemble algorithms 

for analysis to get better performance. The model applies 

detection technology to a large number of malwares with 

faster detection time. 

Another research [8] studies two categories of 

classification in one model. Alotaibi proposed Multi-

Level Malware detection using Triad Scale (MLMTS) 

model that work in multi stages. The first two levels of his 

proposed method perform static analysis and the third 

level performs dynamic analysis. The linear regression in 

machine learning was used in this model as an input of 

each level. Using MLMTS method in research 

experiments increases the accuracy and decreases false 

alarming, compared to other recent models. 

The study done by [9] focuses on improving an 

effective and efficient approach for malware detection by 

using the behavior of malware families. The authors 

proposed this methodology because they knew that the 

attacker could modify API call features with no change in 

overall behavior. So, they worked on three steps: studying 

API calls to object operation by analyzing the malware, 

generating a dependency graph based on the information 

of these operations, and finally defining the family 

dependency graph for each malware. The evaluation 

results of the proposed approach showed that the approach 

can help some anti-virus companies to detect malware 

from a zero-day attack. 

Multiple anti-virus scanners detection systems were 

proposed for enhancement selection performance in the 

work done by [10]. They proposed multiple anti-virus 

scanners that attempt to check if increasing the number of 

scanners affect detection results and how these scanners 

are able to maximize the accuracy. The experiment shows 

that there is a small effect of the number of scanners on 

accuracy, and if the number was increasing, the overall 

accuracy will be lowered rather than improved. Moreover, 

the final ranking of the scanners depends on the accuracy 

and gives the best chance to select the best combination of 

scanners. 

The malware detection model in this study uses a 

specific feature selection method that is used in several 

classifiers to compare the scores in order to show the effect 

of contemporary feature selection on reducing the cost of 

training time in balanced and unbalanced datasets. The 

experimental results were obtained by comparing 

Precision, Recall, Accuracy, and F1-scare in all classifiers 

and by comparing the commuting time as well.  

The following Table 1 provides a summary of the 

related work done on this field of study. 

Table 1: Summary of the Related Work. 

Paper 
Classifiers 

Algorithms 
Features 

Feature 

Selection 

Method 

Result Objective Limitations 

[6] Chi-square APIs/System 

calls 

- Detecting 

accuracy up 

to 96.56% 

Proposing a model 

for recognizing and 

detecting the 

malware from 

benign. 

The limitations of this 

model are related to 

malware that have an 

evasion detection 

technique, and it was 

used to detect 5 classes 

of malware only. 

[11] Evolutionary 

Algorithm 

Malware 

OpCodes 

- Detecting 

accuracy for 

all datasets 

between 

85.80% and 

87.67% 

Using Evolutionary 

Algorithm to 

generate graph and 

compare the similar 

graph to detect the 

suspicious files. It 

was used for 

categorizing 

malware and 

detecting it. 

The study shows that 

the detection approach 

was used to categorize 

the malware and detect 

it, but it does not show 

if it can detect and 

cover all classes of 

malware. 

[12] Hidden Markov 

Model (HMM), 

Support Vector 

Machine (SVM), 

Decision Tree 

(J48), and 

Random Forest 

(RF) 

API-call, 

operations, 

and usage 

system library 

Used term 

and inverse 

term 

frequency 

(TF-IDF) 

Logarithm 

for feature 

extraction 

Random 

Forest 

classifier 

gives the best 

results, while 

HMM has 

the lowest 

performance 

Evaluating 

classification 

approaches in terms 

of distinctive 

dynamic features 

and finding the best 

dynamic features. 

Malware detection 

approaches were used 

to obtain the family 

classification and 

malware detection. 

[7] AdaBoost, 

random forest, 

XGBoost, 

rotation trees, 

and 

extra trees. 

2-gram, 

2-gramM, 

API-DLL, 

API, and 

WEM 

frequency 

analysis and 

Expert 

knowledge 

to select a 

relevant 

feature 

XGBoost 

reaches the 

highest rank 

in AUC-PRC 

and accuracy 

Developing a novel 

technique to reduce 

feature 

dimensionality. 

The study does not 

represent the time used 

to extract features by 

frequency analysis and 

expert knowledge. 
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3 Datasets information 
This section presents all datasets used in our experiments 

conducted for this study. Our approach needed several 

datasets to study how they affect malware detection 

performance. All datasets used are available online. 

We used two types of balanced and imbalanced 

datasets for malware detection domains. They were also 

categorized into two groups: malicious or benign 

software, each with a different number of instances and 

features.  

Table 2 shows in detail all information regarding each 

dataset used in this study in terms of the number of 

features, the number of classes, the number of instances, 

characteristics of data, and the type of distribution datasets 

whether they were balanced or imbalanced. 

3.1 PE section headers  

The "PE-section" header is a balanced dataset that was 

developed by Angelo Oliveira to extract dataset features 

from the "PE-section" portion of a group of PE malware 

and PE goodware files that appeared in Cuckoo Sandbox 

reports. This dataset was created for malware detection 

and classification purposes [14]. 

3.2 Malware analysis datasets top1000 PE 

imports 

Angelo Oliveira generated “TOP-1000 PE Imports” which 

is imbalanced dataset that was created from ‘pe_imports' 

part of Cuckoo Sandbox reports for a group of PE malware 

and PE goodware files [15]. 

3.3 API call sequence 

The imbalanced “API Call Sequence” dataset contains 

42,797 malware and 1,079 goodware of API call 

sequences gathered by the extracted “calls” part of 

Cuckoo Sandbox reports [16]. 

3.4 Malware detection data 

This imbalanced dataset was created by Takbiri in June 

2019 as a result of his study done on detecting malware 

using Low-level Architectural Features of malware [17]. 

3.5 BIG malware dataset from Microsoft 

Microsoft team created a balanced dataset from their 

competition for Malware Classification Challenge which 

is called “BIG 2015” [18]. 

[8] Proposed a model 

with multi-level 

linear regression 

(MLAPAM and 

MDMLA) 

Call 

sequences, 

fallouts, 

and arguments 

MLMTS 

method 

used to 

generate a 

feature set 

The proposed 

method 

(MLMTS) 

gives the 

maximal 

accuracy and 

minimum 

false positive, 

compared to 

other 

methods 

Building a model in 

a Multi-Level for 

Malware detection 

using Triad Scale 

(MLMTS) based on 

a regression 

coefficient. 

The experiment study 

was performed using 

one benchmark 

malware dataset. 

[9] Comparing the 

object operation 

of feature 

dependency graph 

and family 

dependency graph 

API call - The proposed 

model gives 

highly 

efficient and 

effective 

results. 

Building a malware 

detection system 

based on behavior of 

the malware family. 

The justification of 

using the behavior-

based features and the 

graphs is time 

consuming. 

[10] Comparing a 

multi-scanner 

as a black box 

Features 

extracted from 

the malware 

were not 

considered. 

Only the rates 

from the 

scanners were 

- Combining 

multi anti-

virus 

scanners with 

achieving 

high 

accuracy, and 

the result is 

having the 

best 

combination 

of scanners 

Proposing three 

models to achieve 

the best accuracy of 

multi-scanner 

detection system and 

minimize the 

scanning cost. 

The internal 

mechanism is not clear, 

and it needs more 

details about the 

features and classifiers 

used in all scanners. 

[13] Gradient 

Boosting 

Algorithm 

Malware 

OpCodes 

Deep 

learning-

based 

feature 

extraction 

method, 

word2vec 

Detecting 

accuracy up 

to 96%. 

Developing a model 

to represent malware 

that mainly uses the 

malware opcodes. 

The work conducted 

was on a short range of 

malware classes. The 

paper covered 8 

different malware 

classes. 
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3.6 ClaMP (Classification of Malware with 

PE headers) 

The CLaMP balanced dataset is built from portable, 

executable files in header field values and from a 

combination of malware and benign samples to be used in 

the detection system  [19]. 

3.7 Malware executable detection 

Rumao created a dataset containing a set of features 

extracted from malware and goodware for Windows 

executable files. It blends two features of Windows 

executables: binary hexadecimal system calls feature, and 

DLL calls as hybrid features, in order to create this dataset. 

This imbalanced dataset contains 301 malicious programs, 

while the goodware contains 72 cases [20]. 

3.8 Windows Malware Detection 

(REWEMA) 

Windows Malware Detection Dataset (REWEMA), as a 

balanced dataset, contains 3136 malicious programs and 

3135 benign executable files. Features were extracted 

from disassembling executable files and selecting a set of 

useful file attributes [21]. 

3.9 Malware classification 

Malware classification dataset uploaded to Kaggle 

website by Paul. Which is Imbalanced dataset, it contains 

75503 malware and 140849 goodware features [22]. 

3.10 Malware goodware dataset 

This dataset was uploaded to Kaggle in February 2021. 

This Imbalanced dataset contains 50210 instances features 

for malware and goodware files [23]. 

4 Method 

4.1 Methodology design 

The malware datasets described in Section 3 were 

collected to test the proposed method for the detection 

system. All ten datasets were classified and categorized 

into two categories of malware and benign software. In 

addition, these datasets have been further categorized into 

two other types: balanced and imbalanced datasets, and 

this categorization is based on the disproportion of the 

malware and benign category in each dataset. 

Five feature selection techniques, which are described 

below in Section 4.2, were used in this study, and passed 

through fourteen machine learning classifiers in parallel. 

This objective model computes detection performance at 

the lowest cost. In our approach, we divided the ten 

datasets into a training and test set with percentages of 

70% and 30%, respectively. 

In this work, the model is designed and evaluated by 

making the following main steps: [1] Data cleaning was 

performed for all datasets before they are split for training 

and testing to fix all problems in the datasets (missing 

value, removing outliers, and resolving discrepancies, 

among others), and [2] five feature selection methods were 

used (Chi-Square, Filter-based, Wrapper-based, GPM, 

and GPMP). Then, [3] The number of features was 

selected for each feature selection method to compare 

performance, then it was calculated based on the number 

of features used in each method to test the performance 

based on how this method extract relevant features that 

reflect the effect in the overall performance of the 

discovery model. After that, [4] excessive oversampling 

SMOTE technique was applied in imbalanced datasets. [5] 

The release of new datasets was then introduced after 

applying feature selection and SMOTE methods in the 

classification model (14 classifiers) to measure 

Table 2: List of Used Datasets. 

Dataset 
Alias 

Name 

# of 

Feature 

# of 

Instances 

Used 

# of 

Classes 

Features 

Characteristics 

Dataset 

Class Distribution 

PE Section Headers BS1 5 43293 2 Integer, Float, Text Balanced 

TOP-1000 PE Imports DS2 1001 47580 2 Integer, Float, Text Imbalanced 

API Call Sequence DS3 101 43876 2 Integer, Float, Text Imbalanced 

Malware Detection Data DS4 16 70 2 Integer, Float, Text Imbalanced 

BIG Malware Dataset 

from Microsoft 
DS5 69 5210 2 Integer, Float, Text Balanced 

ClaMP (Classification of 

Malware with PE 

headers) 

DS6 55 5184 2 Integer, Float, Text Balanced 

Malware Executable 

Detection 
DS7 531 373 2 Integer, Text Imbalanced 

Windows Malware 

Detection (REWEMA ) 
DS8 631 6271 2 Integer, Text Balanced 

Malware Classification DS9 56 216352 2 Integer, Text Imbalanced 

Malware Goodware 

Dataset 
DS10 27 50210 2 Integer, Float, Text Imbalanced 
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predictions. [6] The performance evaluation scale for this 

detection model was accuracy, F1, accuracy, and recall. 

[7] The rating scale was finally compared for all datasets 

in all feature selection methods and all classifiers as well. 

The result of the model focuses on the performance to 

obtain the results of balanced and imbalanced datasets. All 

these steps were performed for the ten datasets (whether 

balanced or unbalanced) to study whether our proposed 

approach will obtain good performance in all datasets with 

different characteristics. 

4.2 Feature selection. 

In this work, two main steps were applied in datasets 

before running the feature selection technique. 

4.3 Data cleaning  

In this study, we applied a data cleaning for all datasets. It 

is about preparing raw data to start working on feature 

selection by drop outliers, cleaning missing values, 

encoding (text, integer, date, and float, among others), and 

scaling data [24]. 

4.3.1 Using data augmentation technique 

Synthetic Minority Over-sampling Technique (SMOTE) 

algorithm is one of the well-known augmentation 

techniques that are used in imbalanced datasets to solve 

minority class problems. In the imbalanced dataset, there 

are too few instances of minority classes that affect model 

decisions [25]. 

In this study, we used the SMOTE over-sampling 

technique to balance the number of classes in the datasets 

by adding new synthesized instances of the minority class. 

We also tested another SMOTE technology that is under-

sampling by removing the random instances of the 

majority class, so that it is balanced against the minority 

class. However, the detection efficacy decreased because 

some datasets have too few minority classes which results 

in decreasing the dataset, and this will affect the training 

and testing phase. Therefore, the main augmentation 

technique that we used in this study for all imbalanced 

datasets is the SMOTE over-sampling technique [26]. 

4.3.2 Feature selection techniques  

In this part of our study, we used five methods for feature 

selection, where three of them were commonly used in 

machine learning, and they are: Chi-Square, filter-based, 

and wrapper-based. The remaining methods are Genetic 

Programming Mean (GPM) and Genetic Programming 

Mean Plus (GPMP). They were developed in our study 

using genetic programming (GP) algorithm using the 

open-source frame-work HeuristicLab (Heuristic and 

Evolutionary Algorithms Laboratory) [27]. 

The GP method was used to create a weight for all 

features in hidden computations and to release the feature 

at relatively close values. We added two thresholds to the 

output result of the GP algorithm to find the most 

important and most relevant feature, in order to get more 

accuracy in perdition. In the first threshold used in GPM, 

the mean of all features values was computed, and all 

features were greater than the threshold.  

In GPMP, we changed the threshold by adding a 

chance for the remaining features whose values are below 

the mean, and that was done by creating another interim 

threshold which was added to the original threshold value 

to add a change for the features where their values are near 

the original threshold. See equation (1) that defines Chi- 

Square, where O is the observed value and E is the 

expected value for all values.  

Equation (2) represents the calculation of GPM 

method, WFk is the weight for the feature, and the integer 

number K represents all features y=1, 2, ..., K.  

Equation (3) is similar to equation (2), but it subtracts 

the mean of all weights of features under the total mean as 

an interim threshold is used to increase the chance for 

other features that have a value less than the original 

threshold. 

The main difference between these methods is that 

when we apply them in our approach, we find that a 

number of some specific features affect the computational 

cost and model detection performance. Each method 

evaluated feature values and compared them to the target 

value to find the strongest relationship between the target 

values depending on method statistical measures.  

Table 3 shows the five feature selection methods used 

in this study and their alias used in the charts. 

We found that each method has its own set of features 

that are identified to be used in the detection model. The 

difference in the number of features and the identified 

features themselves will be certainly reflected in the final 

Table 3: Five Feature Selection Methods. 

# Feature Selection Method Alias name 

1 Chi-Square Chi 

2 
Genetic programing Mean 

(GPM) 
GPM 

3 
Genetic programing 

Mean Plus (GPMP) 
GPMP 

4 Filter-based Filter 

5 Wrapper-based Wrapper 

 

𝑋2  = ∑ (
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

)

𝑛

𝑖

                                                             , 𝑖 =  1,2, . . , 𝑛                                                     (1) 

𝐺𝑃𝑀 = ∑(𝑊𝐹𝑘)/𝑘

𝑘

𝑖

                                                                 , 𝑖 =  1,2, … , 𝑘                                                     (2) 

𝐺𝑃𝑀𝑃 = (∑(𝑊𝐹𝑘)/𝑘) − (∑(𝑊𝐹𝑘−𝑙𝑜𝑤)/𝑧)                     , 𝑦 = 1,2, … 𝑘  | 𝑜 = 1,2, … , 𝑧                          (3)

𝑧

𝑜

𝑘

𝑦
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results of the detection model. Table 4 shows the 

differences between the number of features identified in 

each method. 

4.4 Evaluation metrics 

To evaluate our proposed detection model approach, we 

used the common evaluation metrics. These metrics are 

accuracy, precision, and recall, and we added F1-score 

because we tested two types of balanced datasets that can 

be measured using accuracy. In another hand, imbalanced 

datasets need to be measured using F1-score and accuracy. 

Equations from (4) to (7) show how these metrics are 

calculated [28]. 

F1-score mainly considers the values of both 

Precision and Recall, while Accuracy represents the 

percentage of the number of correct predictions in the 

model to the total number of inputs. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ precision ∗  recall

precision +  recall
                 (4) 

 

𝐴𝑐𝑐𝑢𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                         (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                             (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                    (7) 

5 Experimental results 
In this section, we present the results of our experiment to 

evaluate the findings of detection over ten datasets.  

Based on all experiments, we evaluated the detection 

model and summarized the results of the study in the 

conclusion section. 

Table 5 shows 14 classifiers that were used in the 

proposed detection model after applying five feature 

selection methods in ten labeled malware datasets. 

Based on the literature review examining the 

performance of classifiers, we used 14 classifiers shown 

in Table 5. We selected these classifiers depending on the 

efficiency of the literature review. We chose them based 

on 1) the most common classifier, 2) the least efficient 

classifier to test our approach, and 3) the most efficient 

classifier. The diversity of this chosen standardization 

helps us studying the proposed detection system. In our 

study, we applied our approach to build our model using 

four main steps: pre-processing for data cleaning, using 

augmentation technique for imbalanced datasets, using 

five-feature selection methods, and applying the data on 

Table 4: Number of features used for all feature selection methods.  

  Number of Features used Percentage of Features used  

Dataset 
Chi-

Square 
GPM GPMP 

Filter-

based 

Wrapper-

based 

Total 

Feature 

NO 

Chi-

Square 
GPM GPMP 

Filter-

based 

Wrapper-

based 

DB1 3 2 4 3 3 5 60% 40% 80% 60% 60% 

DB2 948 802 829 113 518 1001 95% 80% 83% 11% 52% 

DB3 100 20 33 99 29 101 99% 20% 33% 98% 29% 

DB4 15 7 15 14 15 16 94% 44% 94% 88% 94% 

DB5 55 12 20 50 61 69 80% 17% 29% 72% 88% 

DB6 43 13 16 29 37 55 78% 24% 29% 53% 67% 

DB7 483 70 70 133 201 531 91% 13% 13% 25% 38% 

DB8 151 59 48 563 611 631 24% 9% 8% 89% 97% 

DB9 54 15 18 34 46 56 96% 27% 32% 61% 82% 

DB10 19 7 9 20 25 27 70% 26% 33% 74% 93% 

Total   79% 30% 43% 63% 70% 

 

Table 5: Classifiers used in proposed model. 

NO. Classifiers 
Alias name used  

in charts 

1 Ada Boost.M1 AdaBM1 

2 Ada Boost.M1 (4) AdaBM1(4) 

3 AdaBoost AdaB 

4 CatBoost CatBoost 

5 Decision Stump DStump 

6 Hoeffding Tree HTree 

7 k Nearest Neighbors KNN 

8 Naive Bayes NB 

9 Random Committee RComm 

10 Random Committee (4) RComm4 

11 Random Forest RF 

12 Random Forest4 RF4 

13 Random Tree RT 

14 Support vector Machines  SVM 
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the model using 14 classifiers.The main objectives of this 

study focus on: 

First: knowing if the new proposed feature selection 

methods affect the overall performance of the detection 

model. 

Second: Knowing if the proposed methods give good 

performance of detection in balanced and imbalanced 

datasets. 

Third: Determining which classifiers performs better 

using new FS methods and comparing them to other state-

of-the-art performance methods. 

Figure 1 shows the total number of features in all 

datasets compared to the number of features used in all FS 

methods in this study. As a Figure 1 appears almost in all 

datasets, chi-square and wrapper-based used many 

features in all datasets according to their calculation. 

The proposed methods (GPM and GPMP) have a 

close result to the number of the used features, compared 

to filter-based. GPM and GPMP used fewer features than 

filter-based features in seven datasets. Table 4 shows the 

percentage of features used in ten datasets. GPM and 

GPMP have the minimum percentage of features used, 

with a value of 30% and 43%, respectively. 

The highest number of features are used in Wrapper-

based, in DS8 the percentage of features used are 97% that 

mean almost all the features are kept and used. 

The highest number of features are used in Wrapper-

based, and in DS8, the percentage of the used features are 

97%. This means that almost all features are kept and used. 

Based on the percentages shown in Table 4, and by 

applying FS on 14 classifiers, it can be noted, after 

conducting the initial analysis of the results, that the best 

results of F1-score and accuracy were found after applying 

the features that were selected by GPMP and Filter-based, 

with a little difference in values. 

The first output of our results shows that the 

comparison between GPMP and Filter-based must be 

studied, while GPM gives less performance than these two 

FS methods. 

This finding guided us to check if accuracy and F1-

score were affected by these percentages. As shown in 

figures (3) to (12), the results of the experiment conducted 

for ten datasets show that we must study if these FS 

methods give the same performance in balanced and 

imbalanced datasets. Furthermore, we studied the overall 

behavior of the performance in all datasets, and we 

compared the values that were found in balanced and 

imbalanced datasets after applying SMOTE oversampling 

technique. 

We noted, once we applied SMOTE augmentation 

technique, that prediction model is able to obtain the best 

performance based on F1-score and accuracy in the 14 

classifiers that were used. 

SMOTE is a common oversampling technique that is 

mainly used to handle the imbalanced datasets, but it may 

cause the model to need extra time for training and over-

fitting. However, in this study, oversampling technique 

 

Figure 1: The number of features is used in all Datasets based on the FS methods. 

 

Figure 2: Average accuracy and F1-score summary for ten DS using 14 classifiers. 
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helps the model to give better performance when 

compared to balanced datasets. 

Figures (3) to (12) illustrate the performance of all of 

our study objectives. In general, we can see that the 

balanced and imbalanced datasets are illustrated in similar 

shapes with little detailed differences occurred after 

applying SMOTE technique. This means that FS methods 

have a good result in all datasets regardless of whether 

they are balanced or imbalanced. 

In the final step of our study, we tried to determine 

which classifier gives better detection performance using 

the five FS features over ten datasets (balanced and 

imbalanced).  

After applying our approach on ten datasets, results 

were summarized by computing the average values for F1-

score and accuracy for all experiments, as shown in Table 

6 and Figure 2. The average of the highest calculated 

values of F1-score and accuracy shows that it is significant 

to rank the classifiers based on the efficiency. 

We found that there were three datasets that held the 

best ranks in the average of all conducted experiments. 

Random Forest, Random Forest (4), and Random Tree are 

in the lead in accuracy and F1-score values. They are then 

followed by the other three classifiers, classified as group 

B of performance, namely: AdaBoost, AdaBoost.M1, and 

KNN. Additionally, both Hoeffding Tree and Decision 

Stump give the lowest values of F1-score and accuracy in 

all experiment. The remaining classifiers are categorized 

in the middle of giving good performance results scales. 

Figure 2 summarizes the average values of accuracy 

and F1-score for ten DS using 14 classifiers. The average 

values for all experiments help us concluding our study by 

saying that GPMP and Filter-based give the best results in 

all experiments with the average of f1-score values that 

reach 0.867546 and 0.862894, respectively.  

This finding leads us to examine the differences 

between FS methods. Figure 1 shows the number of 

features used in all datasets based on FS methods. The 

Table 6: Average of accuracy and F1-score for ten DS using 14 classifiers and five FS methods. 

 
GPM Filter-based GPMP Chi-squared Wrapper-based 

Avg F1-

score 
Accuracy F1_score Accuracy F1_score Accuracy F1_score Accuracy F1_score Accuracy F1_score 

AdaBoost Avg 0.897007 0.892153 0.950888 0.950875 0.912717 0.909771 0.913025 0.912015 0.905135 0.910262 0.915015 

AdaBoost.M1 Avg 0.877519 0.875979 0.931936 0.931577 0.933636 0.933926 0.897579 0.897521 0.911156 0.910161 0.909833 

AdaBoost.M1(4) Avg 0.889907 0.887123 0.920886 0.920435 0.917216 0.920035 0.870939 0.868993 0.902101 0.901588 0.899635 

CatBoost Avg 0.844995 0.854525 0.855918 0.855751 0.885714 0.885961 0.898815 0.898688 0.857265 0.857820 0.870549 

Decision Stump Avg 0.797667 0.790254 0.793439 0.775139 0.819049 0.812602 0.752604 0.732342 0.771943 0.756560 0.773379 

Hoeffding Tree Avg 0.519706 0.381524 0.587115 0.442341 0.548830 0.396545 0.526053 0.386072 0.623355 0.525731 0.426442 

KNN Avg 0.904014 0.901189 0.932180 0.932396 0.954862 0.953708 0.932422 0.934905 0.862516 0.852418 0.914923 

NB Avg 0.768505 0.736326 0.712549 0.670044 0.735392 0.705738 0.700059 0.648922 0.789419 0.769453 0.706096 

Random Committee Avg 0.882569 0.880216 0.908151 0.908101 0.906350 0.906522 0.884793 0.884288 0.825369 0.792877 0.874401 

Random Committee(4) Avg 0.877746 0.873598 0.870887 0.871200 0.871380 0.871454 0.887017 0.885551 0.861022 0.858908 0.872142 

Random Forest Avg 0.957570 0.955435 0.976959 0.976194 0.979496 0.979747 0.945723 0.944170 0.959321 0.962125 0.963534 

Random Forest(4) Avg 0.950536 0.947880 0.975251 0.975478 0.980718 0.979334 0.948085 0.944361 0.966235 0.966801 0.962771 

Random Tree Avg 0.948175 0.942662 0.972579 0.972934 0.976031 0.974188 0.939855 0.939396 0.965424 0.962871 0.958410 

SVM Avg 0.880227 0.872036 0.898003 0.898045 0.913536 0.916118 0.907813 0.907274 0.915233 0.919567 0.902608 

Avg 0.856867 0.842207 0.877624 0.862894 0.881066 0.867546 0.857484 0.841750 0.865392 0.853367  

 

 

Figure 3: Accuracy and F1-score for DS1. 
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Figure 4: Accuracy and F1-score for DS2. 

 

Figure 5: Accuracy and F1-score for DS3. 

 

Figure 6: Accuracy and F1-score for DS4. 

 

Figure 7: Accuracy and F1-score for DS5. 
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Figure 1 shows that in most of the datasets, the GPMP 

used fewer features than Filter-based. This means that the 

computation used in the model used less time in GPMP 

than on Filter-based. 

Figures (3) to (12) show the F1-score and accuracy of 

all datasets. The analysis of the figures values shows the 

same results summarized in Table 6. In all figures, 

Random Forest, Random Forest (4), and Random Tree are 

at the top of all experiments. The values of AdaBoost.M1, 

and KNN are approximately similar, but the values of the 

Hoeffding Tree and the decision stump are shown in all 

figures below. These findings can be generalized for all 

datasets, whether they are balanced or imbalanced, as 

previously discussed. 

To check the effectiveness of our study, we have 

implemented our model on ten datasets to get the big 

picture of our study and the reasons why the proposed 

model is more effective and efficient. 

It is difficult to compare the results of the proposed 

model with other models because most of the models use 

a limited number of malware detection features and 

because there are other limitations such as using a single 

dataset to make a comparison between the results. This 

study also covers both balanced and imbalanced datasets 

and applies the proposed model to them. Most of the 

 

Figure 8: Accuracy and F1-score for DS6. 

 

Figure 9: Accuracy and F1-score for DS7. 

 

Figure 10: Accuracy and F1-score for DS8. 
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related works measure accuracy as a performance 

measurement, but our study does the measures using 

accuracy and F1-score because we use an imbalanced 

dataset. However, the results of the proposed model can 

be evaluated along with other related works by checking 

the result of F1-score of 0.9635 while we use Random 

Forest in the average of ten datasets, and this is considered 

a good value for the detection rate. 

We have proposed a malware detection model using 

14 classifier algorithms and five feature selection 

methods, two of which are proposed. Our feature selection 

methods are compared to other recent methods by 

applying them to the same datasets to check the 

differences in accuracy. We found our proposed method 

to be very effective for distinguishing between benign and 

harmful programs in relation to their detection. 

6 Conclusion 
This paper presents a model for detecting malware to 

enhance the detection rate by using five feature selection 

methods in ten malware datasets and 14 classifiers.  

This study examines if this proposed detection 

method gives better detection value for balanced and 

imbalanced datasets. The experiments shown throughout 

the study have no difference in detection values while 

using balanced and imbalanced datasets after applying 

SMOTE overfitting technique in imbalanced datasets.  

The results of this experiment have confirmed that the 

proposed GPMP feature selection methods attained high 

detection values in accuracy and F1-score. 

The overall rankings of feature selection methods 

depending on accuracy and F1-score in this experiment 

are GPMP, Filter-based, Wrapper-based, and chi-square, 

respectively. 

Results show that GPMP methods used fewer features 

than other methods with a percentage of 43% in the 

average of ten datasets. Filter-based that compete GPMP 

in detection rate used 63% features in an average of ten 

datasets. This shows how Filter-based affects the 

complexity and computation in the detection model. The 

average values of detection rate summarize the 

performance when using FS methods by saying that 

GPMP and Filter-based give average F1-score values of 

0.867546 and 0.862894, respectively. 

The final findings in this study focus on performance 

ranks for 14 classifiers in an average of all experiments. 

Random Forest, Random Forest (4), and Random Tree 

have the highest experiment results in accuracy and F1-

score values. The values for these classifiers in F1-score 

are 0.963534, 0.962771, and 0.958410, respectively. 

These values are followed by the values of AdaBoost, 

AdaBoost.M1, and KNN, while Hoeffding Tree and 

Decision Stump in all experiments give lower values for 

F1-score and accuracy.  

We intend, in our future work, to apply this presented 

method in this model on android malware detection in 

order to study the features of the datasets and the 

performance of classifiers. 

 

Figure 11: Accuracy and F1-score for DS9. 

 

Figure 12: Accuracy and F1-score for DS10. 
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