
Informatica 36 (2012) 37–45 37

An RTSP Proxy for Implementing the IPTV Media Function Using a
Streaming Server

Zelalem S. Shibeshi, Alfredo Terzoli and Karen Bradshaw
Department of Computer Science
Rhodes University, P.O. Box 94, Grahamstown 6140
Tel: +27 46 6038247, Fax: +27 46 6361915
E-mail: zelalems@rucus.ru.ac.za; {A.Terzoli, K.Bradshaw}@ru.ac.za

Keywords: IPTV, RTSP Proxy, IPTV media function, IPTV services

Received: October 15, 2011

Multimedia content delivery in IMS, including IPTV, is handled by a separate unit, the Media Function
(MF), made up of media control and media delivery units, which in the case of IPTV are the Media
Control Function (MCF) and Media Delivery Function (MDF), respectively. According to the different
specifications of an IMS based IPTV architecture, the User Equipment (UE) is expected to use the RTSP
protocol as a media control protocol to interact with the MCF, and obtains delivery of media from the
MDF using the RTP protocol. This also means that the streaming session needs to be initiated from the
media controller on behalf of the user but the delivery of media is sent to the UE from the media
deliverer (media server). Due both to the lack of free and open source Media Servers and the
availability of free and open source Streaming Servers, the ideal choice for the delivery of multimedia
services, including IPTV, by the research community is Streaming Servers. Nevertheless, because of
denial of service attacks and other issues, most streaming servers do not allow a different location for
the session setup request and the delivery of media in the streaming session. In other words, most
streaming servers are not designed to be controlled by some other entity other than the RTSP client that
consumes the media. This makes it difficult to have a separate media control unit for IPTV service in
IMS if one wanted to use a streaming server as an MDF unit. So, while waiting for streaming servers to
work in this manner, it is better to find a work around in order to use streaming servers to develop and
test IPTV services in IMS environments. For this purpose we propose another component (an RTSP
proxy and relay unit) as part of the IPTV MF and to mediate between the MCF and MDF. This unit
correctly relays media control commands from the MCF to the MDF and RTP packets from the MDF to
the UE. It also helps in the implementation of other streaming functionalities that are required for IPTV
service delivery, but which are not implemented in the current open source streaming servers.
Additional services can also be easily implemented with the help of this unit. This will facilitate the
development of an IPTV service using readily available open source streaming servers and help
researchers to evaluate their proposals on new services they would like to develop. In this paper we
show how this RTSP proxy unit can be integrated into the Media Function of the IPTV architecture to
ease the media delivery process of an IMS based IPTV service.

Povzetek: Članek predstavi posredniški strežnik za televizijo IP, ki uporablja standard RTSP.

1 Introduction
The popularity of YouTube and other Internet based
video services shows the potential of these services in the
telecom world1. Companies involved in video service
delivery are reaping the benefits of this huge demand.
According to [2], the growth of on-line video spending
surpassed $2.12 billion in 2008, up 36% from 2007 and
has been forecast to continue double-digit increases
through the years to come. A recent report on “The
Mobile TV Market” from the ABI Research Group also
revealed that the mobile TV market has tremendous
long-term promise as a next-generation infotainment

1

This work is being carried out in the Distributed
Multimedia Centre of Excellence at Rhodes University,
with financial support from Telkom, Stortech, Tellabs,
Amatole Telecom Services, Bright Ideas 39, and THRIP.

experience and will grow to a value of more than $50
billion by 2013 [3]. On the other hand, users are moving
beyond viewing short, low-quality clips of user-
generated content on YouTube and increasingly seeking
out TV shows, films, and other professionally created,
high-quality video content. Nevertheless, because of the
inherent characteristics of the Internet, quality of service
(QoS) cannot be guaranteed with Internet based services,
and here lies the advantage for Telecos to engage
themselves in the delivery of video oriented services. As
video is one service that requires large bandwidth, users
will be even keener if they can obtain the service with the
required quality of service. IMS (IP Multimedia System),
as an implementation of NGN (Next Generation
Networks), provides the required QoS for users and is the
right environment in which to deliver the IPTV service.

38 Informatica 36 (2012) 37–45 Z.S. Shibeshi et al.

Apart from granting users the ability to access their
services using different devices and access technologies,
the major goal of IMS is the delivery of multimedia
services, like IPTV. There are different proposals of
implementation standards for IMS by different standard
bodies, each with particular emphasis on a specific
service type. The major ones include: the 3rd Generation
Partnership Project (3GPP) [4], European
Telecommunications Standards Institute (ETSI)
Telecommunications and Internet Converged Services
and Protocols for Advanced Networking European
Telecommunications Standards Institute (TISPAN) [5],
and the Telecommunication Standardization Sector of
International Telecommunications Union (ITU-T) [6].
Similarly, there are also different specifications for the
delivery of IPTV, again from different bodies. However,
the specification that has received the greatest interest
from the research community for the development and
testing of IPTV services is the one proposed by ETSI-
TISPAN [7]. As such, we have adopted their standard in
this paper.

Multimedia session delivery involves the use of a
session control protocol to control the session and a
media control protocol to control the media delivery. The
media delivery in a standard IMS architecture, for
example, is carried out by what is known as the Media
Resource Function (MRF), consisting of two distinct
parts, namely the MRFC (MRF Controller) and MRFP
(MRF Processor). The IPTV specification also has a
similar component for media delivery and control, which
is called IPTV Media Function (MF). The control unit of
the IPTV MF is the Media Control Function (MCF) and
the delivery unit is the Media Delivery Function (MDF).
The media delivery unit, MDF, is supposed to be
implemented by a fully-fledged Media Sever. However,
because of the lack of free and open source media
servers, researchers mostly use open source streaming
servers to develop and test media services.

In addition to the media delivery and control units,
IMS services, like IPTV, are controlled by a service
controller unit, which in the case of IPTV is the IPTV
Service Control Function (SCF). Basically, this unit is a
SIP application server (AS). So, if a user knows the
service description of a given IPTV service, s/he contacts
the SCF to obtain the desired service. The SCF, in turn,
will contact the MCF to initiate the delivery of media.
The MCF then initiates the media delivery by instructing
the MDF to send the requested stream directly to the
user. In general, the MCF initiates the media request on
behalf of the user and the media server, MDF, delivers
the stream to the user (not to the initiator of the session).
As all media requests pass through the MCF, this means
that if one were to follow the specification directly, all
media requests including session initiation should pass
through MCF.

As mentioned above, open source streaming servers
are being used for the delivery of streaming media by
IPTV researchers. However, most streaming servers do
not allow the delivery of media to a destination that is not
the client that initiated the streaming session. For this
reason, researchers tend to combine the MCF and MDF

units into one unit (the streaming server) and initiate the
media delivery and control from the UE, instead of from
the MCF. The most popular open source IPTV
application server used by the research community is the
one developed by researchers at the University of Cape
Town (UCT) [8]. Because of the problems with the
current open source streaming servers mentioned above,
the application server has been developed in such a way
that the UE sends media requests directly to the
streaming server without any involvement by the MCF
(which is contrary to the specification). The UCT IPTV
AS has become the de facto standard for developing
IPTV services by the research community. Nevertheless,
because the UE directly contacts the streaming server,
neither the AS nor the MCF has control over the session
and thus, it would be difficult to develop services that
involve media session control. The Convergence
Research Group at Rhodes University also makes use of
the UCT IMS client [8] to test IPTV services and has
followed this approach all along. This, however, is not in
accordance with the specification of the IPTV service.
Actually, not only does it contradict the specification, but
it also does not allow the control of media to be done by
a controlling unit because the MCF is not involved in the
media setup process. A recent article by researchers from
UCT [25] referred to the development of a media server
that can work with the MCF, but it is currently not
available to the research community. As a result, a work
around is required if streaming servers are to be used for
media delivery.

In this paper, we describe in detail how including the
new lightweight component introduced in [1], that is, the
Streaming Server Proxy and Relay (SSPR) unit, in the
IPTV MF can help a service developer to use streaming
servers and also assist the development of advanced
IPTV services. The paper also introduces new
functionalities such as “media switching” and
“bookmarking” that are included in the proxy. This new
unit is integrated into the MF to overcome the problem
mentioned above. The remainder of this paper is
organized as follows. Section 2 gives background
information. Section 3 describes related works, while
Section 4 explains the new proposed architecture of an
IPTV service. Section 5 presents implementation and
discussion, and finally, Section 6 gives our conclusions
and future work.

2 Background
As mentioned in the Introduction, the IPTV architecture
proposed by ETSI-TISPAN is the one followed by many
researchers. We also use this architecture to present and
discuss our proposal. The major components of this
architecture are: Service Discovery and Selection
Functions (SDF and SSF, respectively), Service
Controller Function, and Media Control and Delivery
Functions. Figure 1 shows these functional units of the
IMS-based IPTV architecture as proposed by the ETSI-
TISPAN standards body.

USING RTSP PROXY TO IMPLEMENT… Informatica 36 (2012) 37–45 39

Figure 1: Functional Architecture of IPTV.

Table 1 gives the protocols used by the different
reference points or interfaces.
The specification also makes it clear that the UE uses
RTSP commands to communicate with the MCF for the
purpose of media control. With regard to setting up
media for an IPTV service, the specification specifies
two methods for media initiation, referred to as Method 1
and Method 2. The distinction relates to where the RTSP
session setup commands (specifically DESCRIBE and
SETUP) are initiated from. In the Method 1 session setup
technique, the session is initiated and the setup originates
from the MCF. However, in Method 2, it is initiated by
the UE, but the UE sends all RTSP commands (including
session initiation and setup) to the MCF and not to the
MDF. So even with the media initiation of Method 2, the
media initiation request should be sent to the MCF.

Interface Protocol used
ISC SIP/SDP
Xd RTP/RTCP
Xa HTTP/DVBSTP or Flute
sh, Cx Diameter
Xc RTSP
Ut HTTP
Xp not defined

Table 1: Protocols used on reference points (adapted
from ETSI TS 183063 V3.5.2).

In the following, we describe the steps taken by the UE
to access an IPTV service using Method 2:
- The UE, like any IMS client, has to register with the

IMS core before it attempts to request any service.
After registration, the first step in accessing the
IPTV service is the identification and selection of
the service that the user desires. This is done by
contacting the Service Discovery and Selection
Function (SDF and SSF, respectively) units.

- Service discovery, also called service attachment, is
accomplished by contacting the SDF, which
provides information about the user's IPTV services
and where the user can select the services. Basically,

this is information about the address of the service
server or portal that will provide the user with a
description of the available service. In general the
service attachment information consists of SSF
addresses in the form of URIs and/or IP addresses.

- Once the UE obtains the service description, it
contacts the SSF to retrieve relevant information
about the IPTV service, like the URL of the media
(content identifier), to initiate the IPTV session.

- After a service has been selected, the relevant
content identifier is inserted in the SIP session
initiation message sent to the IPTV Service Control
Function (SCF) that provides access to this service.
The UE does this by sending an INVITE request to
the IMS core.

- The IMS core then forwards the request to the SCF
that is responsible for controlling the service.

- The SCF then performs service authorization and
credit control, selects the relevant IPTV media
function, and forwards the request to the MCF that is
responsible for controlling the media for this
particular user.

- The MCF is responsible for initiating the media
session by contacting the MDF that is supposed to
serve the particular user. Once the media is set up
correctly, the MCF notifies the UE of the status of
the media session and the UE can send the RTSP
PLAY media control command to start the media
session.

- The delivery of media then starts from the MDF to
the UE.

All media control commands from the UE are sent to the
MCF, which then forwards the request to the MDF using
the media control protocol. The media control protocol
that the MCF uses to control the MDF is not specified in
the specification and it is up to the implementers to
choose an appropriate protocol.

As mentioned before, both media initiation (SETUP)
and other media control commands are handled by the
MCF, but the media is sent directly to the UE through the
Xd reference point (see Fig. 1). For the MDF all media
initiation requests come from the MCF. This also implies
that the MDF should be able to handle media requests
from a different location other than the UE and deliver
the media to the UE.

The RTSP protocol [9] specifies a “destination”
parameter that needs to be used in the transport section of
a SETUP request to set up the destination of the media.
The different versions of RTSP specification refer to this
parameter by different names. Version 1.0, for example,
specifies it as “destination”, while version 2.0 of the
RTSP protocol specification, which is an Internet draft,
specifies it as dest_addr [10]. This parameter (field)
needs to be included in the transport section of each
SETUP request for which a different destination is
needed. If the server supports this feature, it then sends
the media to the specified destination when the media
delivery begins, but continues to send the RTSP
responses to the location that initiated the RTSP session.
This could have been used by the MCF to initiate an

40 Informatica 36 (2012) 37–45 Z.S. Shibeshi et al.

RTSP session from streaming servers on behalf of the
user; however, based on our investigation of the available
open source streaming servers, VLC [11], Darwin
Streaming Server (DSS) [12], and the Mobicents
Streaming Server [13] do not support the use of this
parameter. Darwin returns an “Invalid Code” error code,
while VLC and the Mobicents Streaming Server just
ignore it and continue sending the media to the media
session initiator. Live555 [14], on the other hand, allows
the use of this parameter (using the name “destination”)
by modifying the RTSPServer.cpp file. Because of the
possibility of denial of service attacks, this feature is
disabled by default but can be enabled by inserting a
“#define
RTSP_ALLOW_CLIENT_DESTINATION_SETTING
1” statement at the beginning of the above mentioned
file. Nevertheless, Live555 only plays video files that are
encoded with the MPEG video codec, which is not
supported by most UEs because it is not the default
codec suggested by the IPTV specification.
Consequently, we cannot make use of this media server
either and the only option left to enable the use of a
streaming server as the MDF is to include an RTSP
proxy. The work presented in this paper aims to solve
this problem.

The problem with open source streaming servers is
not only related to the support for “destination”
parameter, but also there are other features that IPTV
services require, but the current open source streaming
servers do not support. A bookmarking service, for
example, requires that the current position of the media
that is being played be recorded and kept together with
detailed media information. As a result, the application
server needs to request the media server to obtain this
information in order to store bookmark information of
the media that is being played. The RTSP protocol has a
command that can be used for this purpose. The
specification defines a get_parameter command for the
purpose of querying a streaming server to obtain media
related information including the current play time.
Specifically one can use this command together with a
range parameter to obtain the current media position. In
fact, the Open IPTV Forum (OIPF) also suggests the use
of this parameter for the purpose of bookmarking.
However, both VLC and DSS do not support this. DSS
responds with a 500 error code, while VLC again merely
ignores it. Consequently, we have implemented this
functionality in the proxy, with the details given in the
Implementation section.

3 Related Work
Various researches have been carried out on the media
processing aspects of IPTV, particularly with regard to
the type of media control protocol to be used for IPTV.
In this regard, an evaluation of SIP for the use of
streaming control instead of the RTSP protocol has been
presented in different IETF Internet drafts [15][16][17].
Taking this idea a bit further, various researchers have
also reported their experiences with regard to
implementing SIP as a media control protocol. The

authors in [18] showed how a new SIP header (called
SIP-MEX) and new SIP bodies (an XML document in
the SIP INFO message) can be used to send media
control commands to the MCF. On the other hand, other
researchers have also suggested the integration of SIP
and RTSP to create a comprehensive media control
protocol [19]. However, as mentioned in [20], to avoid
the IMS signaling procedures causing extra delays, it is
always necessary to define a clear separation between
service/session control performed at IMS level and media
flow control handled end-to-end between user equipment
and the content service. Actually, this could be one of
the reasons that ETSI-TISPAN proposed a different
media control protocol other than SIP in the standard
specification. In general, those who have proposed SIP as
a media control protocol have tried to justify their
proposal from the point of view of media control
requirements that cannot be handled by RTSP and also
for the purpose of handling bandwidth reservation
requests and responses. Nevertheless, as to the support of
bandwidth negotiation, the IETF has developed
extensions to SDP [21] and it should no longer be a
problem to use RTSP. In general, both approaches have
their own strengths and weaknesses, but these are not
considered in detail here, as this is beyond the scope of
this paper. However, the advantage of using RTSP as a
media control protocol is that the MCF is not required to
translate media control commands received from the UE
when it forwards them to the MDF.

On the other hand, with regard to having a separate
MCF and MDF, some researchers have also proposed the
integration of the service selection function with the
media function. In [22], for example, the authors
proposed a comprehensive service function, called the
Multimedia Service Control Function (MSCF). The
MSCF combines the functionality of the SDF, SSF and
MF functions of the IMS based IPTV units. The authors
also proposed a Media Distribution Function consisting
of three components, namely, Interconnection (similar to
the IPTV MDF), Serving (IPTV MDF), and Primary
(IPTV MDF), abbreviated as I-IMDF, S-IMDF, and P-
IMDF, respectively. According to the authors, the
function of the P-IMDF is to serve as the primary contact
point, and also to handle the streaming function.

The concept of an RTSP gateway is also presented in
[23], where the authors proposed a gateway that converts
RTSP messages to SIP messages and vice versa. On the
other hand, the use of an RTSP proxy for the delivery of
streaming service for UEs without RTP support is
presented in [24].

As mentioned before, researchers tend to use
streaming servers for media delivery in IPTV services.
However, with regard to the implementation of a proper
IPTV media function, Ref. [25] discusses an initiative for
the development of the UCT IPTV testbed and mentions
the current work on the MCF and MDF. The authors
have not, however, clearly specified what media control
protocol they used, nor explained how the MDF is
implemented. The UCT IPTV client and AS are very
popular open source IMS components in the research
community, but this particular project was new and not

USING RTSP PROXY TO IMPLEMENT… Informatica 36 (2012) 37–45 41

available at the time of conducting the research presented
in this paper. As a result, until the issue of the media
control protocol settles down, and an open source IPTV
MF is commonly available to the research community,
we hope that our proposal will be helpful to researchers
wishing to develop an IPTV service using streaming
servers particularly as it conforms to the specification. In
fact, the proxy also implements new functionalities such
as easy media switching and bookmarking services for
use by service developers.

4 Proposed Architecture
The aim of this paper is to describe how streaming
servers can be used as an MDF unit by incorporating the
proxy explained below.

The proposed architecture is basically the same as
the TISPAN architecture presented in Fig. 1, except that
the SSPR unit is added within the MF. Thus, the focus of
this section is on the MF unit.

Figure 2: Block diagram of the modified Media Function.

As can be seen from Figure 2, which shows a block
diagram of the modified Media Function, the SSPR has
five main components or units: the proxy and relay,
server, and client units. The server and client units are
responsible for handling RTSP traffic. The proxy and
relay unit also has two distinct components: the RTSP
proxy and relay, and the RTP/RTCP proxy and relay
units. We have also RTPServer and RTPClient units
which are responsible for relaying RTP/RTCP packets
from the server to the client and also back to the server.
The following paragraphs briefly describe the function of
each of these units.

 The server unit handles all RTSP requests
coming from the MCF. Upon receipt of an
RTSP request, it forwards the request to the
proxy and relay unit, which is responsible for
forwarding the request to the client unit.

 The client unit acts like an RTSP client to the
streaming server and sends the request that it
receives from the proxy and relay unit to the
streaming server, and also forwards the response
it receives from the server back to the proxy and
relay unit.

 The RTPServer unit sends RTP/RTCP packets
to the client and also sends RTCP packets back
from the client to the server unit. It
communicates with the proxy and relay unit to
do this.

 The RTPClient unit relays RTP/RTCP packets
that come from the streaming server to the client
through the proxy and relay unit. It also
forwards RTCP packets that come from the
client to the server unit.

 The proxy and relay unit is responsible for
forwarding requests from the server units to the
client unit and also forwards responses from the
server unit to the client unit. It also relays
RTP/RTCP packets from the streaming server to
the client and vice versa. The proxy and relay
unit must change the request that comes from
the client (MCF) so that the streaming server
can return the responses and media delivery to
it. For this purpose, it records the address
information of the client and generates or uses
its own address before forwarding the request to
the client unit. It does the same thing when
forwarding responses that come from the
streaming server back to the client (MCF).

Basically, for the streaming server (MDF), the request
comes from the SSPR and the response is also sent back
to the SSPR. As a result, the problems mentioned in the
previous section do not arise in this scenario. The SSPR

Figure 3: IPTV service access in the proposed
architecture (using media access according to Method 1).

42 Informatica 36 (2012) 37–45 Z.S. Shibeshi et al.

is designed to manage streaming sessions and can also
handle the proper proxy and relay functions to process
stream control commands and deliver the stream. The
flow diagram in Fig. 3 shows the IPTV service initiation
and access using this architecture.

5 Implementation and Discussion

5.1 Implementation
The Open IMS Core testbed from the Fraunhofer
Institute FOKUS [26] is the most popular IMS testbed in
the research community. The Convergence Research
Group at Rhodes University has been using this testbed
to develop and test IPTV services. We also used this
testbed to test the functionality of the proxy. Regarding
an IMS user agent, we used the UCT IMS client,
described earlier. The client is designed to work with
Method 2 of the IPTV media access methods. As a result,
to avoid excessive work on the client side we used the
client with this setting. The client has the capability of
sending all RTSP commands.

Since there is no open source Service Discovery and
Selection component, we learn from others’ experiences
and used the technique provided in [27] to deliver the
URL of the media to the UE. As mentioned in the paper,
the AS upon receipt of an INVITE from UE, includes the
URL of the media in the SIP OK message that is sent to
the UE. Although we adopted this technique, in our case
we transferred this functionality to the MCF, instead of
the AS. As a result, as can be seen in Fig. 4, upon receipt
of an INVITE from the UE, the AS forwards the INVITE
to the MCF and the MCF then matches the requested
channel to a URL and sends it to the UE including the
URL in the SIP OK message. If there is no MCF, the
approach taken is that after establishing the SIP session
with the AS, the UE then sends the DESCRIBE and
SETUP commands to the streaming server to initiate and
set up an IPTV media session. However, this time
around, the client sends these commands to the MCF
instead of the streaming server. When the MCF gets the
RTSP command from the UE, it forwards the request to
the RTSP proxy. The MCF uses the destination
parameter of the RTSP protocol, discussed in an earlier
section, to pass on the destination of the media, i.e., the
address of the UE. This parameter is included in the
SETUP command of the request. The MCF obtains client
address information from the SDP payload of the SIP
INVITE command. Accordingly, the proxy forwards the
request to the streaming server and upon receipt of the
media, delivers it to the UE. The proxy also uses a
configuration file to obtain information about the
streaming server, such as its address and port.

The proxy has different handlers on the client and
server sides for both the RTSP and RTP/RTCP sessions.
On the client side, the RTSP session is created with the
MCF while the RTP/RTCP session is created with the
client (UE). On the streaming server side, both sessions
(RTSP and RTP/RTCP) are created with the streaming
server.

Session handling is one important aspect of media
servers. An RTSP session initiation request (for example,
DESCRIBE) may not necessarily end up in an RTSP
session. The client may not be able to play the media
(video) if it does not support the codec that the media is
encoded in. As a result, even though there is an I/O
(network) session between client and server, an RTSP
session is basically created when the client sends a
SETUP request to the server. This tells the server that the
client can play the media and the server generates and
sends a unique session ID within the response. Both the
client and server use this id to refer to the session in
subsequent communication. The proxy is also designed
in a similar manner. As is the case with any proxy
system, a session that is supposed to be established
between a client and a server is divided into two
sessions: one on the client side and another on the server
side. Similarly, if we consider the RTSP session, we have
two separate RTSP sessions (one on the client side –
MCF to proxy’s client side and another from the server
side – proxy’s server side to streaming server). Similar to
the RTSP principle of establishing an RTSP session
mentioned above, a proxy session object is created when
the client sends a SETUP request to the server. The
proxy then creates a unique random session ID for the
client side RTSP session and records it in the proxy
session object that it created for this particular session.
When a response comes from the server with the server’s
session ID, that session ID is also recorded in the proxy

Figure 4: IPTV service access in the proposed architecture
(using media access according to Method 2).

USING RTSP PROXY TO IMPLEMENT… Informatica 36 (2012) 37–45 43

session object. In other words, the proxy session contains
the client and server RTSP sessions. The proxy session
object also contains a track list.

Multimedia sessions may contain more than one
media (track). For this purpose we also defined an object
called a Track object that contains detailed information
about a track, including client address, server address,
client RTP/RTCP ports, server RTP/RTCP ports, and
client and server RTP/RTCP sessions, which are useful
for forwarding requests and responses from the client to
the server and vice versa. The track object has methods
to forward requests to the server and responses to the
client. The track class contains a hash map of the
different track objects related to different sessions. As a
result, a particular track object is identified using the
session id of a request or response.

In a similar way to RTSP sessions, RTP sessions are
also identified by unique ids called the SSRC
(Synchronization Source) identifier. As a result, the
proxy also creates a “proxy SSRC” id to identify the
RTP/RTCP session between the proxy and the client
(MCF). The server sends its own SSRC id when it starts
sending RTP packets. The RTPClient unit is responsible
for handling the RTP/RTCP packets that come from the
server and forwards them to the client (MCF) through the
proxy and relay unit. Similarly the RTCPServer unit
handles the relay of RTP and RTCP packets to the MCF.
The proxy modifies the SSRC id before forwarding the
RTP/RTCP packets to the MCF. For the client (MCF),
the RTP/RTCP packets come from the proxy.

The ProxySession class also has a hash table to
match client and server RTP/RTCP sessions together
with the proxy object mentioned before. In general,
RTSP sessions are identified using the “Session ID” and
RTP/RTCP sessions are identified using the “SSRC id”.

Advantages of media sessions being handled by the
proxy can be seen in the creation of session related
services. For example, if a media switch is requested, an
efficient way of doing this would be to use the existing
connection on the client side and create a new connection
on the server side. One advantage could be to continue
feeding media to the user until the new media setup is
ready on the server side. Another advantage is the
reduction of processing time because there is no session
setup on the client side. In addition to this, interesting
services like “Switch with Pause” can be developed with
this type of approach. Switch with Pause involves
pausing the current media and switching to the new
media. Once the new media finishes, the proxy can
resume playing the previous media. In general, using this
technique the proxy creates different RTSP and
RTP/RTCP sessions for the new media on the server side
by sending and receiving the RTSP requests/responses
itself automatically until the media setup is ready. When
the new media setup has been completed, it uses the
same session on the client side to deliver the media. In
other words, a new connection is only created on the
server side (from the proxy to the streaming server.)

Figure 5 shows a proxy session containing both
active and paused sessions. The “media switch”
command is defined and sent to the proxy using the

RTSP OPTION command. This command is extended by
defining a field named “switch” that can take parameters
like “immediately” or “number of seconds” after which
the switch is sought. The URL of the media to be
switched is also included in the RTSP OPTION
command.

We have also implemented a bookmarking feature in
the proxy. The RTP protocol includes a feature whereby
each packet contains a timestamp of the packet being
delivered. The timestamp is the sampling frequency of
the packet being delivered relative to a running clock. As
a result, the timeframe of the first packet does not start
from zero and it is always good to record the first
timestamp as a reference point to obtain the relative
position of future packets. So, having recorded the start
time, we obtain the final time (when bookmarking is
requested) and subtract the two to get the difference. We
divide this by the clock rate of the media, which is
included in the SDP of the media. This information is
recorded in the Track class discussed in a previous
section.

Figure 5: Proxy session handling.

As mentioned above, the RTSP proxy and relay
component can be easily extended to include a variety of
functions required by IPTV developers.

The RTSP proxy and relay is implemented using the
Java programming language, and particularly the Apache
MINA framework [28]. The MCF unit is implemented
as a SIP AS and the RTSP proxy and relay is included as
a separate class within the MCF and initiated from within
the MCF.

5.2 Discussion
We tested the proxy on a dual Core Intel 2.66 GHz PC
with 2 GB RAM. The machine also ran the streaming
server. We used the Java System API (the nanoTime()
method) to record the delay introduced by the proxy. The
time was recorded when the proxy received a request and
also when the same request left the proxy to the
streaming server. The difference was calculated to
determine the delay through the proxy. The same
approach was used for the responses. The average delay
introduced by the proxy was found to be negligible (close
to 40 nano seconds). As a result, we believe that the
proxy can be considered a good solution for those who
wish to use a streaming server for media delivery in IMS
based IPTV services, as it does not introduce much delay
into the whole system.

44 Informatica 36 (2012) 37–45 Z.S. Shibeshi et al.

As mentioned previously, among the many
advantages of having a separate RTSP proxy in place is
the ability to change media within an existing session
(e.g., inserting an advert), which can be done easily
without the involvement of the UE. This is important
functionality because the UE does not require a different
connection to obtain the new stream as the proxy can
handle that itself. The AS can initiate the modification of
media within an existing session based on different sets
of rules and the proxy can deliver the modified stream
without involving the UE. We believe this will help
researchers to implement new and innovative services
that can be implemented by any standard UE. Because of
the nature of the RTSP protocol, in the event that the
media source disappears for whatever reason, there is no
way that the MCF can know about the situation. On the
other hand, if we use a proxy, because the proxy also
handles RTP packets, it knows if the session is alive or
dead and can take the appropriate action immediately
when a problem arises.

The proxy can also be easily extended to include
other features. For example, a transcoder unit can be
integrated into the proxy and it can used to carry out
transcoding based on the capabilities of the UE, if such
functionality is required.

6 Conclusion and Future Work
The IPTV research community mainly uses streaming
servers for the delivery of media for IPTV services. On
the other hand, the IMS-based IPTV specification
specifies that a streaming session is initiated by the MCF
on behalf of the user. Nevertheless, most open source
streaming servers do not allow the initiation of a
streaming session by a different client to the RTSP client
intending to consume the stream. To overcome this
limitation, a proxy as described in this paper, can be used
as a work around thereby enabling researchers to use the
available streaming servers while adhering to the
standard. The RTSP proxy can be integrated into the
MCF or be deployed as a separate entity. According to
timing experiments conducted, the proxy does not
introduce a significant delay to the service delivery
process and as such the authors believe it to be a good
solution. In addition to allowing the use of streaming
servers as MDF units for the delivery of IPTV services,
the paper also presented some of the additional benefits
arising from use of the proxy.

As a future work we plan to include a transcoding
capability in the proxy so that the stream can be
transcoded or transrated on the fly based on devices’
capabilities.

We also intend extending this work to include load
balancing functionality in the proxy, so that the proxy
can choose different streaming servers based on their
status. The proxy will also be packaged as an API by
abstracting the streaming servers and providing
interfaces that service developers can use.

References
[1] Z. S. Shibeshi, A Terzoli, K Bradshaw (2010).

Using an RTSP Proxy to implement the IPTV
Media Function via a streaming server. In
ICUMT'10: Proceedings of the International
Congress on Ultra Modern Telecommunications and
Control Systems. Moscow, Russia, 18 to 20 October
2010

[2] Accustream media research. Online Video Spend
Tops $2.12B in 2008. http://www.marketingcharts.
com/interactive/online-video-spend-tops-212b-in-
2008-225-growth-forecast-in-2009-7955/.
Accessed: July 1, 2010.

[3] ABI Research – Technology Research Market.
http://www.abiresearch.com/home.jsp. Accessed on
July 1, 2010.

[4] The 3rd Generation Partnership Project.
http://www.3gpp.org/

[5] ETSI Telecommunications and Internet converged
Services and Protocols for Advanced Networking
(ETSI- TISPAN). http://www.etsi.org/tispan/

[6] The Telecommunication Standardization Sector of
ITU (ITU-T). http://www.itu.int/ITU-T/

[7] ETSI TS 182 027: IPTV Architecture;IPTV
functions supported by the IMS subsystem, March
2011.

[8] The UCT IMS Client.
http://uctimsclient.berlios.de/. Accessed November
15, 2011.

[9] H. Schulzrinne, A. Rao, and R. Lanphier (1998).
Real Time Streaming Protocol (RTSP).
http://tools.ietf.org/html/rfc2326

[10] Internet draft Real Time Streaming Protocol 2.0
(RTSP). .http://tools.ietf.org/html/draft-ietf-
mmusic-rfcrfc2326bis-28. . Expires: April 30, 2012.

[11] VLC. VideoLAN, Free streaming and multimedia
solutions for all OS. http://www.videolan.org/.
Accessed: November 15, 2011.

[12] Darwin, “Open Source Streaming Server,”
http://developer.apple.com/opensource/

[13] Mobicents-Public. http://groups.google.com/group/
mobicents-public/web

[14] Live555. Internet Streaming Media, Wireless, and
Multicast technology, services, & standards.
http://www.live555.com/

[15] Internet draft. Framework of media control for
IPTV services draft-siva-iptv-media-01.txt.
http://tools.ietf.org/html/draft-siva-iptv-media-01. .
Expires: September 2010.

[16] Internet draft. An Evaluation of Session Initiation
Protocol (SIP) for use in Streaming Media
Applications draft-whitehead-sip-for-streaming-
media-00.txt. http:// tools.ietf.org/html/draft-
whitehead-sip-for-streaming-media-00. Expires:
April, 2006.

[17] Internet draft. Media Playback Control Protocol
Requirements draft-whitehead-mmusic-sip-for-
streaming-media-03. http://tools.ietf.org/html/draft-
whitehead-mmusic-sip-for-streaming-media-03.
Expires: August 2008.

USING RTSP PROXY TO IMPLEMENT… Informatica 36 (2012) 37–45 45

[18] S. Sivasothy, G. M. Myoung, and N. Crespi (2009).
A unified session control protocol for IPTV
services. In Proceedings of the 11th International
Conference on Advanced Communication
Technology. pp. 961-965, February 15-18, 2009,
Gangwon-Do, South Korea.

[19] R. G. Shiroor (2007). IPTV and VoD services in the
context of IMS. In International Conference on IP
Multimedia Subsystem Architecture and
Applications, pp. 1-5, December 6-8, 2007.

[20] B. Chatras, M. Saïd. Delivering Quadruple Play
with IPTV over IMS.
www.icin.biz/files/programmes/Session8A-1.pdf.
Accessed: July 1, 2010.

[21] Internet draft. SDP media capabilities Negotiation
draft-ietf-mmusic-sdp-media-capabilities-09.
http://tools.ietf.org/html/draft-ietf-mmusic-sdp-
media-capabilities-09. Expires: August 2010.

[22] E. Mikoczy. IMS based IPTV services: architecture
and implementation. In Proceedings of the 3rd
International Conference on Mobile Multimedia
Communications. pp. 1-7. 2007. Brussels, Belgium.

[23] C. Riede, A. Al-Hezmi and T. Magedanz (2008).
Session and media signaling for IPTV via IMS. In
Proceedings of the 1st International Conference on
Mobile Wireless Middleware, Operating Systems,
and Applications. February 13 - 15, 2008. Brussels,
Belgium.

[24] Z. Shibeshi, A. Terzoli, and K. Bradshaw (2010).
Streaming Session Transfer between Registered
User Agents. In SATNAC'10: Proceedings of the
13th Southern African Telecommunications
Networks and Applications Conference. Spier
Estate, Stellenbosch, South Africa, 5 to 8 September
2010.

[25] R. Spiers, R. Marston, R Good and N. Ventura
(2009). The UCT IMS IPTV Initiative. In
Proceedings of the 2009 Third International
Conference on Next Generation Mobile
Applications, Services and Technologies. pp. 503-
508. 2009.

[26] The Open Source IMS Project.
http://www.openimscore.org/

[27] P. R. Wilson and N. Ventura (2009). A Direct
Marketing Platform for IMS-Based IPTV. In
SATNAC'09: Proceedings of the 12th Southern
African Telecommunications Networks and
Applications Conference. Ezulwini, Swaziland, 30
August to 2 September 2009.

[28] The Apache Mina Software Foundation.
http://mina.apache.org/

Mr. Zelalem S. Shibeshi holds an MSc in Information
Science, Diploma in Computer Science, and BSc in
Physics, all from Addis Ababa University, Ethiopia, and
is currently working towards his PhD in the Computer
Science Department at Rhodes University.

Alfredo Terzoli is a Professor of Computer Science at
Rhodes University, where he heads the Telkom Centre of
Excellence in Distributed Multimedia. He is also
Research Director of the Telkom Centre of Excellence in
ICT for Development at the University of Fort Hare. His
main areas of academic interest are converged
telecommunication networks and ICT for development.

Dr. Karen Bradshaw is a Senior Lecturer in the Computer
Science Department at Rhodes University. Her research
interests lie in Distributed Systems and Parallel
Programming.

46 Informatica 36 (2012) 37–45 Z.S. Shibeshi et al.

