
https://doi.org/10.31449/inf.v46i1.3875 Informatica 46 (2022) 13–17 13

Improving Modeling of Stochastic Processes by Smart Denoising

Jakob Jelenčič and Dunja Mladenić
E-mail: jakob.jelencic@ijs.si, dunja.mladenic@ijs.si
Jozef Stefan Institute, Ljubljana, Slovenia
Jozef Stefan International Postgraduate School, Ljubljana, Slovenia

Keywords: de-noising, deep learning, stochastic process

Received: December 16, 2021

This paper proposes a novel method for modeling stochastic processes, which are known to be notoriously
hard to predict accurately. State of the art methods quickly overfit and create big differences between
train and test datasets. We present a method based on smart noise addition to the data obtained from
unknown stochastic process, which is capable of reducing data overfitting. The proposed method works
as an addition to the current state of the art methods in both supervised and unsupervised setting. We
evaluate the method on equities and cryptocurrency datasets, specifically chosen for their chaotic and
unpredictable nature. We show that with our method we significantly reduce overfitting and increase
performance, compared to several commonly used machine learning algorithms: Random forest, General
linear model and LSTM deep learning model.

Povzetek: V tem članku je predstavljena metoda, s katero se lahko omeji preprileganje nevronskih mrež na
časovnih vrstah.

1 Introduction

Time series prediction has always been an interesting chal-
lenge. Deep learning structures that are designed for time
series are prone to overfitting. Especially if the underly-
ing time series is stochastic by nature. Every young re-
searcher’s first attempt when dealing with time series, was
trying to learn a time series model that will predict future
prices; whether in equities, commodities, forex or cryp-
tocurrencies. Unfortunately it is not that simple. One can
easily build a near perfect model on the train dataset just to
find it is completely useless on the test dataset.

Overfitting is a difficult problem, especially in deep
learning models with many variables, where optimizers
based on gradient descent are prone to it. There are many
ways to limit it, like regularizes in loss functions that pun-
ish high values in variables, or random masking of training
data and adding noise it. However most efficient way to
prevent overfit is to obtain more data. Unfortunately some-
times this is not easily done or even possible.

We have proposed a novel method that is capable of
effectively combatting the overfitting [5], especially this
proves to be a difficult task when one is dealing with a
problem directly applicable in practical situations. In this
work we expand on the denoising part of our method and
provide additional parameter analysis. The main idea is to
add noise from the same distribution as the training data,
which is applicable for both supervised and unsupervised
problems. The longer the training goes, the lower is the
amplitude of noise and the less focus is on the denoising
process.

We have evaluated the proposed method on an equities

dataset and a cryptocurrency dataset, in both cases achiev-
ing extraordinary results on the test dataset. We have also
shown the importance of noise distribution and how the de-
noising fails if the distributions of the data and noise do not
align.

The rest of the paper is organised as follows. Section 2
describes the data we were using. In section 3 we introduce
the proposed method. In section 4 we present empirical
results. In section 5 we conclude by pointing out the main
results and defining guidance for the future work.

2 Data

The proposed method works well for stochastic processes.
Equities are supposed to follow some form of stochastic
process [10], either the Black-Scholes one or some more
complex process with unknown formulation. In order to
evaluate our method, we have collected daily data of more
than 5000 equities listed on NASDAQ from 2007 on. The
data is freely available on the Yahoo Finance website [2].
We transformed the data using technical analysis [11] and
for test set took every instance that happened after 2019.
We calculated moving average using 10 days closing price
then tried to predict the direction of the change of this
trendline. As a second experiment we tried to predict
change of the equity in the following day.

The smoothed equity data turned out to be a little bit
timid, not chaotic enough to demonstrate the full ability of
the proposed method in the unsupervised part of the exper-
iment. This is why we also collected minute data of cryp-
tocurrencies Ethereum and Bitcoin and used the method



14 Informatica 46 (2022) 13–17 J. Jelenčič et al.

on them as well. Data is available on the crypto exchange
Kraken [1]. We used the same transformation as for the eq-
uities, but with a bit quicker trend. For the test set we took
every instance that has time stamp after December 2020.

The reader should note that the end goal is not to accu-
rately predict future equity price, since that is next to im-
possible. As soon there is a pattern, someone will profit
from it and then the pattern will change. By predicting the
future trend line, one can obtain a significant confidence in-
terval and estimates of where the price could be, and then
design for example a derivative strategy that searches for
favourable risk versus rewards trades.

3 Proposed method
We propose the method designed for prediction of stochas-
tic processes. The method achieves significant results im-
proving the metrics and loss functions on unseen data,
where standard deep learning is prone to over-fit. The main
advantage is reducing the gap between training data and
testing data, sometimes to a degree where one sacrifices a
little bit on the train side to actually have the model outper-
forming it on test data. This is very important in time series,
where a prediction model is usually just one part of a bigger
strategy and where the train over-fit is the biggest issue. For
example, designing a trading strategy on over-fitted predic-
tions, that kind of mistake can lead to huge capital losses.

The proposed method can be broken down into 2 impor-
tant parts: normalization and noise addition. Each part can
be easily integrated into an already existing pipeline of both
supervised or unsupervised settings.

3.1 Empirical normalization
Normalization plays an important role in deep learning
models. It was shown that normalization significantly
speeds up the gradient descent, almost independently of
where normalization takes place. It can be weight normal-
ization [12] during the actual optimization, or it can be the
batch normalization [9], or just normalization of the whole
input data [8].

In the proposed method it is important that the 3 dimen-
sional input data comes from the same distribution as the
generated noise. Since it is fairly straightforward to sample
data from a 3 dimensional normal distribution, we normal-
ize input data using an empirical cumulative distribution
function [13] and empirical copula [4] [6]. We align all
central moments of the unknown distribution to the ones
from centered and standardised normal distribution. The
normalization takes place before the data is reshaped to 3
dimensional tensor.

3.2 Noise addition
Introduction of the noise is not new in unsupervised learn-
ing and it was shown that it has a positive effect [15].
Adding noise to input data and then forcing the model to

learn how to ignore it has a lot of success in generative
adversarial networks [3], where convergence can be very
tricky to achieve. We transformed that idea and embedded
it into supervised learning procedure. The noise addition is
described in Algorithm 1.

In Algorithm 1 we will use the following abbreviations.

– X = [bs, ts, np] stands for the input tensor with 3
dimensions; batch size, time steps and number of fea-
tures used for predictions.

– α, β are parameters that control how fast noise will
decrease during the training procedure. They should
be between 0 and 1, where lower value correspond to
a faster decrease in the amplitude of the added noise.

– mvn stands for function sampling from a two dimen-
sional correlated Gaussian distribution, where Σ is the
covariance. matmul stands for matrix multiplication.

Algorithm 1 Noise definition

1: Inputs: X , α, β, epoch
2: Y = [ts, ts, np] . Array for holding Cholesky

decompositions of time correlation matrices.
3: for t ∈ {1, . . . , np} do
4: Σt = cov(X[, , t])
5: Y [, , t] = chol(Σt) .

In practice the closest positive definite matrix of Σt is
computed before the Cholesky decomposition.

6: end for
7: Z = [bs, ts, np] . Array for holding noise samples.
8: for i ∈ {1, . . . , ts} do
9: Σi = cov(X[, i, ])

10: Z[, i, ] = mvn(bs,Σi)
11: end for
12: for j ∈ {1, . . . , np} do
13: Z[, , j] = matmul(Z[, , j], Y [, , j]) . Correct-

ing initially independent noise samples with respect to
time.

14: end for
15: for w ∈ {1, . . . , ts} do
16: Z[, w, ] = Z[, w, ] ∗ ((βts−w · αepoch) · sd) .

Decrease the noise during the training procedure.
17: end for
18: R = X + Z
19: Return R.

The most common issue with deep learning optimization
is falling into a local optimum and being unable to move
past it [14]. We expect that the addition of noise will force
the model to learn how to ignore the noise that we added
and the noise that is already in the data by nature of the
stochastic process [16] and with that escaped some of the
local optimum and converged deeper. It is important to tune
the noise amplitude by fine tuning the α parameter. We
optimized the model using the Adam optimizer [7].



Improving Modeling of Stochastic Processes by. . . Informatica 46 (2022) 13–17 15

4 Results
We have divided the results section into 3 parts: unsuper-
vised, supervised and parameter analysis. In the first we
demonstrate why the noise distribution is important. For
the unsupervised part, due to hardware constraints, we have
only used the cryptocurrency dataset since we deemed it
more demanding than the equity one. In the second, we
demonstrate how the our method increases test metric on
both datasets and provide some additional parameter anal-
ysis. In the third we focus on how the method parameters
affect method’s performance.

4.1 Unsupervised learning results
In order to test the efficiency of distributed noise versus just
random noise, we created 3 models. The baseline model
was a deep learning model with 3 stacked LSTM layers,
encoded layer, then again 3 stacked LSTM for decoded out-
put. We have used Adam as optimizer. As loss function we
used mean-squared error. We have stopped the learning
after there was no improvement for 25 epochs on the val-
idation set. The validation set was randomly taken out of
the train set. Parameters α and β were both set to 0.99 and
sd was initially set to 1.25. The noise decreases with learn-
ing procedure. Interestingly keeping noise constant did not
achieve any results.

Figure 1: Test loss of autoencoder model with random
noise (green) versus no noise (blue).

Initially we have tested baseline model versus de-noising
model but with uncorrelated noise. In the Figure 1 is plot-
ted the de-noising test loss function in green colour and the
baseline test loss function in blue. Training was stopped
relatively early compared to Figure 2 and it is also obvi-
ous that de-noising test loss is even worse than that of the
classic autoencoder.

In the second example we switched from uncorrelated
noise to the noise with same distribution as input data. As
is apparent on Figure 2, where again we have de-noising
test loss plotted with green and classic test loss with blue,
the de-noising autoencoder achieved lower test loss than
the classic one.

What we expected is that then the train and validation
losses will be worse than with the classic autoencoder. Sur-
prisingly, that was not the case. With the de-noising au-
toencoder using noise with the same distribution as the in-
put data, both train and validation losses were better than

Figure 2: Test loss of autoencoder model with correlated
noise (green) versus no noise (blue).

with classic one. This result is definitely worth further in-
vestigation and experimentation.

4.2 Supervised learning results
In the previous section we have shown that the distribution
of the noise matters in the unsupervised setting. In this sec-
tion we will show that the addition of the noise significantly
improves metrics on unseen data. Each model has been ran
10 times, and in the tables below we present the average
results. Since we operate under the stochastic assumption,
this was done to eliminate any doubt that the presented re-
sults are good due to luck. We believe 10 runs is enough
and more was simply not possibly due to hardware and time
constraints. Similarly as before, α and β were both set to
0.99 and sd was initially set to 1.25 when comparing pro-
posed method to existing state of the art structures.

Since we now operate in a supervised environment, we
can compare our models to the majority class. But to really
demonstrate the effectiveness of the method, we chose to
compare the following models:

– Majority class, which serves as a sanity check.

– Random Forest with 500 trees.

– Generalized linear model.

– Deep learning model with 3 stacked LSTM layers.

– Deep learning model with 3 stacked LSTM layers and
correlated noise addition.

The two deep learning models are identical, both are op-
timized with Adam and categorical cross entropy was used
as a loss function. Initially we have only tested the models
on equities data, but it turned out that the equities were not
chaotic enough. By that we mean that especially with deep
learning models the difference between train and test loss
was not so big that it would be problematic. From previous
work experience we know that overfit is a big issue in cryp-
tocurrency dataset, so then we decided to test that dataset
in a supervised setting as well.

In Table 1 we show the results from the equity dataset.
Our method managed to improve test accuracy (from 0.672
to 0.677) without decreasing train accuracy (0.679). Main-
taining test accuracy and keeping it comparable to test one



16 Informatica 46 (2022) 13–17 J. Jelenčič et al.

is important if one needs to build additional strategy upon
predictions.

Table 1: Supervised results on equity dataset.

Method Train Acc. Test Acc.
Majority 0.513 0.537

Random Forest 0.651 0.653
GLM 0.664 0.655
LSTM 0.679 0.672

noise LSTM 0.679 0.677

In Table 2 we show results from the cryptocurrency
dataset. Similar as on the equity dataset, our method be-
haves as intended on the cryptocurrency dataset as well.
We can see reduced overfitting that is apparent in the nor-
mal LSTM model. With those results we can conclude that
the proof of concept works, but for additional claims we
will need more testing and deeper parameter analysis.

Table 2: Supervised results on cryptocurrency dataset.

Method Train Acc. Test Acc.
Majority 0.512 0.556

Random Forest 0.692 0.690
GLM 0.682 0.695
LSTM 0.749 0.693

noise LSTM 0.702 0.706

4.3 Parameter analysis

So far we have demonstrated that the noise addition in-
creases test metric and reduces overfitting. But we have
demonstrated that with fixed α = 0.99 and with fixed
sd = 1.25. For now we will leave β fixed and focus on
analysis of noise amplitude and its decrease over the learn-
ing process. We have chosen a combination of α, sd and
noise correlation to show how the method behaves with re-
spect to those parameters. For this experiment we have
used equity dataset, where the target variable was change
of the corresponding equity in the next day. So we have
created extremely difficult problems, very likely to overfit
in order to really test the method.

We did this only on one deep learning structure, where
we evaluate each parameter setting 25 times, and display
the average result in the table 3. To further demonstrate the
necessity of the noise structure, we have evaluated example
where the added noise were random and constant trough
out the learning process.

The results in Table 3 confirm the assumptions we draw
earlier. It is clear that some combination of noise and its de-
crease reduces overfitting compared to model without noise
or the model without the amplitude decrease.

Table 3: Parameter analysis on raw equity dataset.

SD Alpha Train Acc. Test Acc.
0.5 0.9 0.576 0.527
0.75 0.9 0.577 0.526
1.25 0.9 0.578 0.525
1 0.99 0.577 0.524
1 0 0.577 0.524
1.25 0 0.578 0.524
1.25 0.99 0.578 0.523
0 0 0.579 0.521

5 Conclusions and future work
In this work we have introduced and demonstrated how the
addition of noise reduces overfitting on time series data. In
the unsupervised case we have shown that the distribution
of the noise matters and the input data must align to achieve
maximum effect from the noise addition.

In the future work we have to estimate the effect of the
newly introduced parameters on method’s convergence. At
the same time we need to explore how the method behaves
when embedded into larger models, transformers for exam-
ple. We also need to evaluate the method in datasets that are
by nature stochastic but do not come from the financial do-
main. Finally, we need to evaluate our method on a dataset
that is not stochastic.

6 Acknowledgments
This work was supported by the Slovenian Research
Agency. We also wish to thank prof. dr. Ljupčo Todor-
ovski for his help, especially with unsupervised results.

References
[1] Kraken exchange. https://www.kraken.

com/.

[2] Yahoo Finance. https://finance.yahoo.
com/.

[3] A. Creswell, T. White, V. Dumoulin, K. Arulku-
maran, B. Sengupta, and A. A. Bharath. Generative
adversarial networks: An overview. IEEE Signal Pro-
cessing Magazine, 35(1):53–65, 2018.

[4] P. Jaworski, F. Durante, W. K. Hardle, and T. Rych-
lik. Copula theory and its applications, volume 198.
Springer, 2010.

[5] J. Jelencic and D. Mladenic. Modeling stochastic pro-
cesses by simultaneous optimization of latent repre-
sentation and target variable. 2020.

[6] H. Joe. Dependence Modeling with Copulas. CRC
Press, 2014.



Improving Modeling of Stochastic Processes by. . . Informatica 46 (2022) 13–17 17

[7] D. Kingma and J. Ba. Adam: A Method for Stochas-
tic Optimization. 2014. https://arxiv.org/
abs/1412.6980.

[8] K. Y. Levy. The power of normalization:
Faster evasion of saddle points. arXiv preprint
arXiv:1611.04831, 2016.

[9] M. Liu, W. Wu, Z. Gu, Z. Yu, F. Qi, and Y. Li. Deep
learning based on batch normalization for p300 signal
detection. Neurocomputing, 275:288–297, 2018.

[10] R. C. Merton. Option pricing when underlying stock
returns are discontinuous. Journal of financial eco-
nomics, 3(1-2):125–144, 1976.

[11] J. J. Murphy. Technical Analysis of the Financial
Markets: A Comprehensive Guide to Trading Meth-
ods and Applications. New York Institute of Finance
Series. New York Institute of Finance, 1999.

[12] T. Salimans and D. P. Kingma. Weight normalization:
A simple reparameterization to accelerate training of
deep neural networks. Advances in neural informa-
tion processing systems, 29:901–909, 2016.

[13] B. W. Turnbull. The empirical distribution function
with arbitrarily grouped, censored and truncated data.
Journal of the Royal Statistical Society: Series B
(Methodological), 38(3):290–295, 1976.

[14] R. Vidal, J. Bruna, R. Giryes, and S. Soatto.
Mathematics of deep learning. arXiv preprint
arXiv:1712.04741, 2017.

[15] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Man-
zagol. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages
1096–1103, 2008.

[16] N. Wax. Selected papers on noise and stochastic pro-
cesses. Courier Dover Publications, 1954.



18 Informatica 46 (2022) 13–17 J. Jelenčič et al.


