
https://doi.org/10.31449/inf.v46i5.3897 Informatica 46 (2022) 29–37 29

Evolving and training of Neural Network to Play DAMA Board Game Using

NEAT Algorithm

Banaz Anwer Qader1, Kamal H. Jihad2 and Mohammed Rashad Baker3

E-mail: banaz_2017@uokirkuk.edu.iq, kamal.jihad@uokirkuk.edu.iq, mohammed.rashad@sadiq.edu.iq

1College of Computer Science and Information Technology, University of Kirkuk, Kirkuk, Iraq

2College of Science, University of Kirkuk, Kirkuk, Iraq

3Collage of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq

Keywords: dama game, NEAT algorithm, evolutionary algorithm, genetic algorithm, neuroevolution

Received: December 25, 2021

Neuroevolutionary algorithms, such as NeuroEvolution of Augmenting Topologies (NEAT) in Machine

Learning (ML) methods, are utilized for training and playing computer games due to increased research

in Artificial Intelligence (AI) field. NEAT is a genetic algorithm for the generation of evolving artificial

neural networks. In this paper, a new study is presented. A Dama board game is designed, and the NEAT

algorithm is implemented to develop and train the populations of neural networks for playing the game

efficiently. Different inputs and outputs for the network are used, and various network sizes are tried for

the game to reach or pass the human level. This paper aims to make a neural network that plays a Dama

game like humans or is close by training different neural networks for many generations. The experimental

results show that neural networks have been trained for several thousands of generations, and they have

played more than one million games. It is concluded that using more input to handle information is better

for the learning process. It is also found that a set of values for NEAT parameters is suitable for extensive

neural networks like those used in this paper.

Povzetek: je predstavljena nova študija. Zasnovana je tradicionalna igra, imenovana "Dama", in

implementiran je algoritem NEAT za razvoj in usposabljanje populacij nevronskih omrežij, da igrajo igro,

prvič, na način, ki presega človeške zmožnosti.

1 Introduction
Since the 1940s, digital computer evaluation has been

evident that computers can be programmed to execute

very convoluted jobs such as proofs discovery of

mathematical theories [1] and to play chess with excellent

skills. Artificial Intelligent (AI) is the technique that is

profusely used to apply and develop systems that deal with

the different mental processes of humans, such as the

ability to analyze and find the causes, generalize, discover

meaning, or learn from past experiences [2, 3].

Machine Learning (ML) is a subfield of AI. ML is

generally used to understand the data structure and fit that

data into models, which people can utilize and understand

[4]. Furthermore, ML algorithms allow the computers to

train data inputs and use statistical analysis to output

values that become within a specific range [5, 6].

Therefore, ML facilitates the processes of building models

by computers from data samples to assist in decision-

making processes relying on data inputs [4].

In the middle of the 20th century, there were attempts

to simulate the human brain that finally arrived at

something now known as the Artificial Neural Network

(ANN) [7]. ANN is a generalized decision-making

system, and it is a base for processing the brain’s essential

elements functions [8].

Simultaneously, some researchers were working to

evolve the learning of computers depending on essential

evolution keys in natural networks evolution. They arrived

at evolutionary programming or Genetic Algorithms

(GAs) [1, 9, 10].

At the beginning of the current century, there have

been attempts to combine Neural Networks with GA. One

of the successful attempts was Stanley’s algorithm

NeuroEvolution of Augmenting Topologies (NEAT) in

2002 [11, 12]. The NEAT algorithm works by creating the

neural network in its simplest possible structure and

letting it grow through evolving and recording its inherited

genes information [3, 11, 13]. One of the most superficial

neural networks is Feedforward Neural Network (FNN),

where the input data travels only in one direction. The data

passes through the input nodes and exits through the

output nodes [14]. FNN does not have a back-propagation

feature; therefore, there is no way to go back to the

beginning and correct itself in case of any error in the

output answer [15]. Since creating and developing ML, its

algorithms have been used and tested on games, especially

board games [6]. ML is a typical environment whose rules

are clear and simple to test a theory and offers critical

information to its algorithms or the neural networks [16].

In computer games, Neuro-Evolution is applied over a

wide area more than supervised ML algorithms, requiring

a correct tactic of input-output pairs [13].

mailto:banaz_2017@uokirkuk.edu.iq
mailto:kamal.jihad@uokirkuk.edu.iq

30 Informatica 46 (2022) 30–37 B.A. Qader et al.

Our contribution is to apply the NEAT algorithm on

the traditional Dama game for the first time to make a

neural network plays like a human or close to them by

training different neural networks for many generations.

In this paper, a neural network using the NEAT

algorithm was proposed to train and learn how to play the

traditional Dama game. The proposed algorithm uses

variables such as population, adding node chance, altering

connection’s weight, adding connection chance, other

variables set for speciation, and mutating new generations.

The remainder of this paper will be organized as

follows: section 2 will present related works, section 3 will

explain the methodology of game board design and

algorithm training, section 4 will discuss and display the

experimental results of implementing and playing the

game, and section 5 will present the conclusion and future

works.

2 Related works
In this section, we show research and projects done with

Checkers because there is almost no project that used

neural networks on the Dama board game, and Dama and

Checkers are similar games.

In 1999, a neural network was implemented on the

checker’s board game and was able to reach the human

skill of the game. Using a minimax search strategy, they

used Multilayer feed-forward neural networks to evaluate

alternative positions of the board and games played. The

additional information extraction required to play at this

level depends on the competency evolution process. The

best evolved neural network obtained after 250

generations was played against humans through 90 games

online; it could defeat two expert players and draw against

a master [17].

Neuroevolution was the best approach to general

video game playing in a 2014 research of 61 Atari games

that used four neuroevolution algorithms and three

alternative state representations. The NEAT algorithm is

used to play an available Atari 2600 game with indirect

network encoding (HyperNEAT) [3]. Also, in 2014 a

framework named Modular Multiobjective NEAT was

used for modular neural networks evolution to play Pac-

Man video games and treated the game as multiple tasks

that required various modes of behaviour to succeed. The

number of modules was learned by using mutation to

duplicate and evolve these existing modules [18]. Then in

2015, the deep convolutional neural networks were trained

to play the Go game by predicting the moves that the

expert players of it has made. As a result, the trained

networks were acquired improved performance and high

levels of skill. For example, it could achieve 41.1% and

44.4% of move prediction accuracies on two different

datasets of the Go game, passing other previous states of

the art [19].

In 2016, the researchers used the NEAT algorithm to

make a neural network to play the game 2048 and reach

well behaviour. Different board mappings were developed

trying to find the appropriate encoding for NEAT. All

mappings got similar scores. Altering training parameters

did not significantly impact the evolution, but recurrent

edges introduced looked better [20]. In 2019, a study

proposed a minimal training method to develop

independent virtual players utilizing the NEAT

evolutionary algorithm for evolving an agent to play the

Flappy Bird game. The fitness function is a weighted

average that relies on multiple scenarios with scenario-

specific components. The neural network almost achieved

perfect behaviour in the game, in which it took around 20

generations [21]. But in 2020, a new Statistical Forward

Planning (SFP) method was presented. Different versions

of Rolling Horizon NeuroEvolution of Augmenting

Topologies (rhNEAT) were explored in a collection of 20

GVGAI games. This method was compared with other

SFP methods and other results [22].

Table 1 summarises the examined publications in

applying existing models used in game-playing. We

highlighted our findings to focus on applied games

utilized models, benefits, limitations, and the authors'

accuracy of the applied proposed method.

3 Methodology of proposed method
This section will briefly discuss Dama game rules,

strategies, and game design methodologies.

3.1 Dama game rules and strategies

Dama game is shown in figure 1, consisting of 64 equal

areas squares. Each player has 16 coloured stones that

differ in colour from the opponent stones. It has several

rules: The role player moves the stone one square forward.

At the beginning of the game, he must choose to move it

from among the eight possible moves, then play continues,

one movement for each player, in turn, the direction of

playing one square forward. The order of eating the stone

is one square after eating, whether in front, right, or left.

The king plays in all directions and distances. The goal is

to draw a strategy on setting up a trap for the opponent to

eat the largest amount of stones and transfer at least one

stone to any square in the last row of the opponent squares

to turn this stone into a king.

Capture in the Dama game is obligatory, and it is not

possible to eat the minority and leave the majority,

whether it is taking a king or a pawn (stone). The stone

gets the title of king (Dama) when it reaches the end of the

last row of the competing team squares. The king

advantage in the Dama game is that he moves anywhere

vertically or horizontally. Therefore, he can eat more than

one opposite stone without specifying the distance;

Figure 1: Dama game after few moves.

Evolving and training of Neural Network to Play... Informatica 46 (2022) 29–37 31

considering the horizontal and vertical situation when the

stone reaches the title of king, the color of the stone

changes and becomes distinguished among the other

stones. Kish (Go away) in Dama is optional and done by

an opponent, then you can leave your stone in its current

square or take it away, and sometimes it is mandatory

when judged, for example (which stone will you leave?

king or pawn). The Kish: This is a warning given by a

stone or a king, and the player can use it defensively to

level the playing field or offensively to win. Equalize is

declared if the game ends between two players because

each has 15 stones or one king. The game ends if one of

the players wins the most stones or a king. If there are two

kings for the player and one king for the competitor, the

player who has two kings is considered the winner.

3.2 The proposed method

The proposed methodology contains three main phases:

design, implementation, and application and evaluation.

Figure 2 illustrates the methodology flowchart, which

consists of designing the Dama board, implementing the

algorithm on the game, training the algorithm, and testing

and evaluating the game application by playing with

trained generations of Neural Networks (NNs). The

application design explains how it operates and its

functionality in detail in the following subsections.

Study Game Model(s) used Characteristic Drawbacks Accuracy

Hausknecht,

et. al, (2014)

[3]

Atari 2600

video

game

Four neuro-

evolution

algorithms

(CNE, CMA-

ES, NEAT, and

(HyperNEAT)

An empirical

investigation of a

variety of

representations and

algorithms in this

domain.

The applied models

did not solve some

games complexity

like Pitfall.

NEAT highest

average z-scores

across the object

is 0.67 and noise

is 0.09, but the

Hyper NEAT

highest scaling of

pixels is -0.46

Chellapilla

and Fogel,

(1999) [17]

Checkers Multilayer feed-

forward neural

networks

The best ENN can

defeat expert-level

players and even

master.

The speed is limited

to 3500 board

positions per

second. And using

minimax to choose

the optimum move.

1901.98 average

wining rate at 90

games

Schrum and

Miikkulainen,

(2014) [18]

MS. Pac-

Man

MM-NEAT Modular networks

find the multimodal

activity more often

than single module

networks.

It is not rewarding

multiple players

module directly.

32,647

The average post-

learning score for

the FourMaze

game and 65,447

Average post-

learning score for

MPMvs game

Clark and

Storkey,

(2015) [19]

Go DCNN predicting the

moves made by

expert Go players.

The limitation of

network size

41.1% and 44.4%

on two different

Go datasets

Boris and

Goran, (2016)

[20]

2048 NEAT Neuroevolution

models can be used

to solve game

problems

Board mappings

produce similar

scores. Parameter

modifications had

less influence than

planned.

An average score

is below 600 till

5000Th

generations

Cordeiro,

Serafim and

Neto (2019)

[21]

Flappy

Bird

NEAT Using minimal

training to create

optimal scoring

agents

It was not applied

on simple platform

games

An average score

is below 2.0 with

100 generations

Liebana,

Alam, and

Gaina, (2020)

[22]

10 General

Video

Game

Playing

rhNEAT rhNEAT's ability to

adapt to changing

game elements has

helped it to set new

world records in

games where other

approaches have

struggled

Overall the results

are not better than

other Statistical

Forward Planning

methods

Overall winning

rate 36.5%

Table 1: The summary table of related works.

32 Informatica 46 (2022) 32–37 B.A. Qader et al.

3.2.1 Design phase

In this phase, a new board game Dama uses Windows

Presentation Foundation (WPF) for the first time. The

WPF is used for designing the application and the game

board. First, the application interface is designed using

XAML programming Language and built using C#

programming language. Then the structure of the game is

developed using XAML, where the board and Dama

pieces are dynamically added using OOP with C#.

3.2.2 Algorithm implementation phase

NeuroEvolution is the most successful technique to be

applied to the games. Evolutionary algorithms (EAs) are

robust tools used to design and train neural networks [23].

EAs consist of several evolutionary processes: selection,

mutation, and crossover (also known as recombination),

as well as encoding and speciation. Recently, Stanley

proposed the NEAT algorithm shown in figure 3, which

has solved a series of topology problems that the other

EAs could not solve, such as competing conventions [11].

The NEAT algorithm is built to evolve topologies and

connection weights of ANNs, which simultaneously

learns weight values and a suitable topology for a neural

network. It starts with the most superficial structure

networks in the initial population with less input, output

nodes, and a series of connection genes between them, but

with no hidden nodes. Thus, as time progresses, the

complexity of networks’ topology is developed, as

illustrated in figure 4, combined with the idea of speciation

if it is found necessary or valuable [24]. In addition, NEAT

uses a more complex direct encoding methodology than

other binary and simple graph encoding systems.

In NEAT, mutation can transform existing structures

or add new structures (nodes or connections) to a network.

Adding a new connection between a start and end node is

associated with a randomly assigned weight. But adding a

new node must be placed between two already-connected

nodes, leading to disabling the previous connection [24].

NEAT algorithm tackles the competing conventions,

which are one of the evolving issues of neural networks

topologies, by marking the historical number of the gene.

Competing conventions means blindly crossing over the

genotypes of two neural networks, resulting in horribly

and non-functional mutated [23]. Speciation is used to

support the tackling process. It divides the population into

several species (classes) depending on the topology and

connections similarity.

3.2.3 Application and evaluation phase

The NEAT algorithm was implemented using the C#

programming language. Then, a connection between the

Dama game code and the NEAT algorithm code is created

to train using the game. Finally, different encoding

systems are designed that encode an 8 by 8 game board

into a row of numbers to feed it into the neural network,

as shown in figure 5.

The NEAT algorithm must start from the simplest

neural network structure that consists of only input and

output nodes and be fully connected. It means that each

input node should be connected to each output node. In

this work, two neural network structures are tried to get

the best suitable NNs for the game training. The neural

network structure in the first attempt did not enhance

performance, leading to a second neural network structure

in the second attempt. The latest one gets enhancement in

comparison to the first one. The second structure was

defended as a basic structure in the NEAT algorithm to

generate populations of neural networks.

Figure 2: Flowchart of the proposed method.

Figure 3: NEAT algorithm structure.

Figure 4: Growing an AI agent with NEAT.

Evolving and training of Neural Network to Play... Informatica 46 (2022) 29–37 33

First Attempt

In the first structure, we used 64 input nodes. Each node

represents a block on the board that takes different input

values for each state on that block. Where, Input (0) for

empty block, input (1) for the regular piece, input (3) for

the king piece, input (-1) for the regular opponent piece,

and input (-3) for the opponent king piece.

Whereas, for the output, we used 256 output nodes

that represented as table 64 by 4. Each row represents the

piece that should move, and each of those 4 columns

represents a direction that the piece should move.

In this structure, there were 320 input-output nodes

and 16,384 connections. Unfortunately, after months of

training, it was found that the neural networks did not

improve and did not work well because the input nodes

were taking too much different information that caused

bad connection weights. As a result, the algorithm could

not get a good weight to work well with these inputs.

Therefore, it is moved to try another neural network

structure as a second attempt.

Second Attempt

To solve the previous problem in the first attempt, we

changed the structure of the networks to be better. The

output nodes were kept the same, but the input nodes were

changed. In this attempt, the 192 input nodes are used that

are represented as a table of 64 by 3. Each row represents

a block on the board, and the columns represent the state

of that block. Now the input nodes take values as a binary

number. Where, Input (0,0,0) is for empty block, Input

(1,0,0) is for the regular piece, Input (1,1,0) is for the king

piece, Input (0,0,1) is for the opponent regular piece, and

Input (0,1,1) is for the opponent king piece.

After months of training, this structure performs better

than the previous structure. There were 448 input-output

nodes and more than 49,000 connections in this structure.

Along with the training process, the training parameters

had to be changed many times to get better values for our

structure. Unfortunately, at the first attempt, the set of

parameters values was too low, making the neural

networks evolve too slowly, showing no progress.

The next time, the values of the parameters were

increased. The neural networks size grew very fast

because these values were too big for the neural network

structure. Also, the values of the big parameters were too

bad for the algorithm because it depends on real evaluation

of nature, and things evolve slowly. After many attempts,

we reached suitable parameters for the second structure

and balanced the neural network between evolving and

size growth.

The application is designed to execute two functions:

training the NNs and evaluating the trained NNs. The

training function includes selecting a path in the Personal

Computer (PC) to save the trained NN, then starting the

training process. The best-trained NNs are held, and the

others are aborted. The evaluation function is performed

by selecting one of the saved trained NNs, then playing

with it. The application’s main window shown in figure 6

is split into two parts. The first part on the left side of the

window is used to select the neural network and play with

it. In the second part on the right side, the parameters train

neural networks with the NEAT algorithm. First,

parameters are set to their default values. Then, select a

location path to save trained neural networks.

The parameters setting and controlling shown in

figure 6 are explained below:

- Population: it is the population (number) of neural

networks. It has some values to be chosen from the

drop-down list.

- Coefficients: The coefficients illustrated by equation

(1) are used to tell how much two neural networks are

compatible with each other. These coefficients control

how much we depend on Excess and Disjoint Genes

and their weight differences.

𝛿 =
𝑐1𝐸

𝑁
+

𝑐2𝐷

𝑁
+ 𝑐3 . �̅� (1)

- Compatibility Threshold determines the threshold we

set as a factor for neural network species.

- Survival Chance refers to the number of neural

networks that will remain and pass directly to the new

generation.

- Weight Mutation Chance: it will set the chance to

slightly mutate the value of the connections in the new

generation’s neural networks.

- Random Weight Chance: it will set the chance to

generate entirely new value to connections in the new

generation’s neural networks.

- Add Node Chance: it will set the chance to add a new

hidden node to the new generation’s neural network.

- Add Connection Chance: it will set the chance to add

a new connection between two nodes in the new

generation’s neural networks.

Figure 5: Designed Dama game board with neural

network.

34 Informatica 46 (2022) 34–37 B.A. Qader et al.

4 Experimental results and discussion

This section will discuss the experimental setup, the

results gained from the experimental, and related works.

4.1 Experimental setup

The PC used to implement the Dama game application has

8 GB RAM, 256 GB Hard Disk, Intel CORE i7 CPU @

2.40 GHz, Windows 8.1 operating system of type 64-bit

based processor. The WPF is used for the training process,

which is a GUI Application. But due to using a low-

performance PC that had to perform all the neural network

calculations and visualize the game simultaneously. So a

console application is used without visualizing the game

so that the used PC could focus more on neural network

calculations. The console application evolves NNs for

generations to play as human behaviour or better. This

approach is much better than training on WPF application

but still slow for training such big-sized neural networks.

After running console applications, training for months,

playing more than one million games, and approaching

more than 5000 generations, as shown in figure 7, the

neural network has become better. However, because of

the used low-performance PC and lack of training time,

the neural network could not be powerful enough to defeat

a professional human. The algorithm needs a few months

to get to the human level with this PC performance

available.

The training window of the game application is shown

in figure 8. The neural networks can be trained by clicking

the “Start Train” button. The neural networks are created

and attached to the AI agent to start the training process.

The training window shows live training with basic

information about the training process. It also shows every

match played by the neural networks and how they are

playing.

The application will not store all the trained neural

networks in the text files but only holds the best neural

network from each species in every generation. The saving

format for trained neural network data (nodes and

connections) depends on connection information to store

the whole neural network. As illustrated in figure 9, each

row represents a connection from left to right. The first

part of the row represents the input node to the connection,

storing a node type and node id. The second part

represents the output node from the connection. The third

part describes the connection weight. Where (i) is the input

node, (h) is a hidden node, and (o) is the output node.

In addition, the application will only store enabled

connections data and ignore those connections that are

disabled in the training process.

The left side of the main application window, shown

in figure 6, is used to play with the trained NNs and

evaluate the Dama game. First, a neural network file is

selected to play with, and press the “Play” button to start

play, as demonstrated in figure 10. Then, the Dama game

board window shown in figure 5 appears and will be ready

to play with humans. Human plays as Black, and the

neural network play as Red; when the game is started,

humans will have the first move to play. Also, he has to

take out all the pieces from his opponent to win.

4.2 Experimental Results

The result of playing many peoples with many selected,

trained neural networks is shown in table 2. As appeared

in the table, each person has played more than once with

five selected AI agents (stored trained neural networks) in

different generations: AI1, AI2, AI3, AI4, AI5. In the

beginning, the results proved that the winning rate of the

machine was little with spending much playing time

Figure 6: Application main window.

Figure 7: Training results on console application.

Figure 8: Training window of the game application.

Evolving and training of Neural Network to Play... Informatica 46 (2022) 29–37 35

reaches to a few minutes. But the winning rate started

increasing with decreasing the playing time by evolving

the ANNs and training for progressed generations from

AI1 towards AI5. The evaluation and playing results

showed that the winning rate of the AI1 agent is 31.25%,

spending much time, and it could not reach the human

skills. While AI2’s winning rate increased to 43.75% with

less playtime, AI3’s winning rate increased to 56.25 %,

similar to AI2. Also, it is found that the winning rate of

AI4 is 62.5%, with Lessing playtime being between less

than 2 minutes and 53s. Finally, there is an apparent

increase in AI5’s win rate, 81.25%, with less playtime

ranging from 1.5 minutes to several seconds. Increasing

epochs and generations and progressing in time

demonstrate the ability to reach AI5 to human levels and

beat them due to advancements in the training process.

4.3 Discussion of the result

Here we will not go into standard criteria for comparing

our work and other recent relevant studies that have used

direct and indirect neuroevolution algorithms due to the

apparent range of applicable games.

More than one million Dama games were played in

our study, and NNs were evolved using NEAT for more

than 5000 generations, yielding the top trained and grown

neural network AI5 with an 81.25 % winning rate.

However, the study [17] used 90 checkers games to

develop NNs over 250 generations, resulting in a mean

winning rate of 1901.98 for the best trained and evolved

neural network and a peak winning rate of 1975.8 for

game 74. The results demonstrate that the NEAT

algorithm is superior to multilayer feed-forward neural

networks when used in the gaming industry. HyperNEAT

was incapable of learning based on object representation

and noise representation when tested on a complete

collection of 61 Atari video games (see table 1). Direct

encoding also demonstrates the NEAT impairment of

learning to play based on a visual, raw-pixel

representation. In contrast, our research indicates the

NEAT power of speed NNs learning to reach the most

significant winning rate of 81.25 % in about 50 seconds.

In contrast to study [18], our work used the Dama

game, which has many predetermined behaviors for each

Dama piece ideal for direct neuroevolution algorithms like

NEAT, whereas study [18] used MS. Pac-Man, which is a

multi-behavior game with more than ten. As a result,

indirect neuroevolution techniques such as Modular

neural networks and Module Mutation networks are better

for detecting multimodal behavior. On the other hand, the

poorest modular networks do not utilize many modules,

showing that the modular architecture's promise is not

always realized. The Dama board, on the other hand, has

a specific size that can be utilized using direct

neuroevolution algorithms in our research.

5 Conclusions and future works
This paper contributed to implementing the NEAT

algorithm on the Dama game, finding out how well it goes

and the best structure for the neural networks. The game

board should be encoded to give good clean information

to the neural networks. The novelty of our work is using

the NEAT algorithm to train and evolve NNs to play, for

the first time, a traditional game named “Dama” with the

human in a way that surpasses human skills. Furthermore,

many different structures of neural networks and

parameters’ values of the NEAT algorithm were tried to

get the best structure and set of suitable parameters.

We have trained the NEAT algorithm for two months.

The result shows that training large neural networks with

a large population, such as the one created in this paper,

requires powerful computers for the training to reach high

generations and provide results in a reasonable time.

Furthermore, it was inferred that using console

applications for PCs is much better and faster to train a

significant population of big-sized neural networks

because it does not require much CPU effort. Lastly, it is

found that separating information into a more substantial

amount of inputs instead of using a few inputs is better for

the network and can be used easily with a good encoding

system.

In the future, the Dama game can be trained and

played faster by using a high-performance PC with

Figure 9: Stored neural network data.

Figure 10: Play with selected neural network.

36 Informatica 46 (2022) 36–37 B.A. Qader et al.

considerable resources for training the neural networks

because this process needs a lot of CPU effort and big-size

RAM and HD. Also, finding a better encoding technique

gives the neural networks better information. And

eventually, using other ML algorithms that train the neural

networks faster.

References
[1] E. Z. Elfeky et al. (2021). “A Systematic Review of

Coevolution in Real-Time Strategy Games.” IEEE

Access, vol. 9, pp. 136647–136665,

doi: 10.1109/ACCESS.2021.3115768.

[2] H. L. J. van der Maas, L. Snoek, and C. E. Stevenson

(2021). “How much intelligence is there in artificial

intelligence? A 2020 update”. Intelligence, vol. 87,

pp. 101548, doi: 10.1016/j.intell.2021.101548.

[3] M. Hausknecht, J. Lehman, R. Miikkulainen, and P.

Stone (2014). “A neuroevolution approach to general

atari game playing”. IEEE Transactions on

Computational Intelligence and AI in Games, vol. 6,

no. 4, pp. 355–366,

doi: 10.1109/TCIAIG.2013.2294713.

[4] S. Risi and J. Togelius (2017). “Neuroevolution in

games: State of the art and open challenges”. IEEE

Transactions on Computational Intelligence and AI

in Games, vol. 9, no. 1, PP. 25-41,

doi: 10.1109/TCIAIG.2015.2494596.

[5] M. Bichler, M. Fichtl, S. Heidekrüger, N. Kohring,

and P. Sutterer (2021). “Learning equilibria in

symmetric auction games using artificial neural

networks”. Nature machine intelligence, vol. 3, no.

8, pp. 687–695, doi: 10.1038/s42256-021-00365-4.

[6] S. M. Miraftabzadeh, M. Longo, F. Foiadelli, M.

Pasetti, and R. Igual (2021). “Advances in the

application of machine learning techniques for

power system analytics: A survey†”. Energies, vol.

14, no. 16, pp. 11–14, doi: 10.3390/en14164776.

[7] X. Yang et al. (2021). “Research and applications of

artificial neural network in pavement engineering: A

state-of-the-art review”. Journal of traffic and

transportation engineering (English Ed.), vol. 8, pp.

1-22, doi: 10.1016/j.jtte.2021.03.005.

[8] Simonov, A. Zagarskikh, and V. Fedorov (2019).

“Applying Behavior characteristics to decision-

making process to create believable game AI”.

Procedia Computer Science, vol. 156, pp. 404–413,

doi: 10.1016/j.procs.2019.08.222.

[9] P. García-Sánchez, A. Tonda, A. M. Mora, G.

Squillero, and J. J. Merelo (2018). “Automated

playtesting in collectible card games using

evolutionary algorithms: A case study in

hearthstone”. Knowledge-Based Systems, vol. 153,

pp. 133–146, doi: 10.1016/j.knosys.2018.04.030.

[10] T. M. Martins and R. F. Neves (2020). “Applying

genetic algorithms with speciation for optimization

Player

Name

AI1 AI2 AI3 AI4 AI5

Winner Time Winner Time Winner Time Winner Time Winner Time

Ibrahim S. H. Ibrahim 3:17m AI2 2:05m AI3 1:31m Ibrahim 1:00m AI5 1:03m

Ismail S. H. Ismail 2:24m AI2 2:12m AI3 3:32m AI4 2:25m Ismail 3:07m

Hawraz R. A. Hawraz 2:43m Hawraz 2:07m AI3 3:13m AI4 58s Hawraz 2:12m

Harman Y. I. Harman 2:39m Harman 1:56m Harman 2:41m Harman 1:09m AI5 1:24m

Dylan A. A. Dylan 3:11m Dylan 2:21m AI3 2:53m AI4 2:01m AI5 2:17m

Ibrahim R. S. Ibrahim 2:11m Ibrahim 1:44m AI3 2:36m AI4 1:54m AI5 1:29m

Ahmed O. A. Ahmed 3:17m AI2 2:28m Ahmed 3:03m Ahmed 1:41m Ahmed 2:28m

Ali H. B. AI1 2:31m Ali 2:37m Ali 2:40m AI4 55s AI5 54s

Sirwan A. J. AI1 2:50m Sirwan 2:27m AI3 2:15m Sirwan 59s AI5 57s

Maryam F. K. Maryam 3:01m Maryam 2:08m Maryam 3:00m AI4 1:38m AI5 50s

Noor A. T. Noor 2:49m AI2 1:48m AI3 1:29m Noor 1:48m AI5 1:02m

Amira D. L. AI1 2:00m Amira 1:59m Amira 1:52m AI4 1:05m AI5 58s

Emad I. A. Emad 3:12m AI2 1:46m AI3 1:42m AI4 1:12m AI5 1:10m

Fatma SH. E. AI1 2:19m Fatma 2:25m Fatma 2:38m AI4 53s AI5 50s

Aya F. M. AI1 2:03m AI2 2:23m Aya 2:18m AI4 56s AI5 1:19m

Zainab M. A. Zainab 3:14m AI2 1:30m AI3 1:14m Zainab 59s AI5 1:30m

Table 2: The evaluation result by playing humans with neural networks.

Evolving and training of Neural Network to Play... Informatica 46 (2022) 29–37 37

of grid template pattern detection in financial

markets”. Expert Systems with Applications, vol.

147, pp. 113191, doi: 10.1016/j.eswa.2020.113191.

[11] K. O. Stanley and R. Miikkulainen (2002).

“Evolving neural networks through augmenting

topologies”. ," Evolutionary Computation, MIT

Press, vol. 10, no. 2, pp. 99–127,, doi:

10.1162/106365602320169811.

[12] K. C. Chatzidimitriou and P. A. Mitkas (2013).

“Adaptive reservoir computing through evolution

and learning”. Neurocomputing, vol. 103, pp. 198–

209, doi: 10.1016/j.neucom.2012.09.022.

[13] S. Lang, T. Reggelin, J. Schmidt, M. Müller, and A.

Nahhas (2021). “NeuroEvolution of augmenting

topologies for solving a two-stage hybrid flow shop

scheduling problem: A comparison of different

solution strategies”. Expert Systems with

Applications, vol. 172,

doi: 10.1016/j.eswa.2021.114666.

[14] M. Şahin and R. Erol (2017) “A Comparative Study

of Neural Networks and ANFIS for Forecasting

Attendance Rate of Soccer Games”. Mathematical

and computational applications, vol. 22, no. 4, p. 43,

doi: 10.3390/mca22040043.

[15] S. Murat H. (2006). “A brief review of feed-forward

neural networks,” Commun. Fac. Sci. Univ. Ankara,

vol. 50, no. 1, pp. 11–17, doi: 10.1501/commua1-

2_0000000026.

[16] M. Giannakos, I. Voulgari, S. Papavlasopoulou, Z.

Papamitsiou, and G. Yannakakis (2020). “Games for

artificial intelligence and machine learning

education: Review and perspectives”. In Lecture

Notes in Educational Technology, Springer Science

and Business Media Deutschland GmbH, pp. 117–

133.

[17] K. Chellapilla and D. B. Fogel (1999). “Evolving

neural networks to play checkers without relying on

expert knowledge”. IEEE transactions on neural

networks, vol. 10, no. 6, pp. 1382–1391, doi:

10.1109/72.809083.

[18] J. Schrum, R. M.-P. (July 2014). “Evolving

multimodal behavior with modular neural networks

in Ms. Pac-Man”. in Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO),

Canada, dl.acm.org, pp. 325–332, doi:

10.1145/2576768.2598234.

[19] C. Clark and A. Storkey (July 2015). “Training deep

convolutional neural networks to play go”. In 32nd

International Conference on Machine Learning

(ICML), France, vol. 3, pp. 1766–1774, Accessed:

Dec. 10, 2021. [Online]. Available:

http://proceedings.mlr.press/v37/clark15.html.

[20] T. Boris and S. Goran (2016). “Evolving neural

network to play game 2048”. In 2016 24th

Telecommunications Forum (TELFOR), Belgrade,

Serbia, doi: 10.1109/TELFOR.2016.7818911.

[21] M. G. Cordeiro, P. B. S. Serafim, Y. L. B. Nogueira,

C. A. Vidal, and J. B. Cavalcante Neto (Oct. 2019).

“A Minimal Training Strategy to Play Flappy Bird

Indefinitely with NEAT”. In 2019 18th Brazilian

Symposium on Games and Digital Entertainment,

(SBGAMES), Rio de Janeiro, Brazil, vol. 2019-Oct.,

pp. 21–28, doi: 10.1109/SBGames.2019.00014.

[22] D. Perez-Liebana, M. S. Alam, and R. D. Gaina

(Aug. 2020). “Rolling Horizon NEAT for General

Video Game Playing”. In IEEE Conference on

Games (CoG), Osaka, Japan, pp. 375–382,

doi: 10.1109/CoG47356.2020.9231606.

[23] M. Wittkamp, L. Barone, and P. Hingston (2008).

“Using NEAT for continuous adaptation and

teamwork formation in pacman”. In 2008 IEEE

Symposium on Computational Intelligence and

Games (CIG), 2008, pp. 234–242,

doi: 10.1109/CIG.2008.5035645.

[24] A. L. A. Paulino, Y. L. B. Nogueira, J. P. P. Gome,

C. L. C. Mattos, and L. R. Rodrigues (2020). “On the

Use of Cultural Enhancement Strategies to Improve

the NEAT Algorithm”. In IEEE Congress on

Evolutionary Computation (CEC),

doi: 10.1109/CEC48606.2020.9185847.

38 Informatica 46 (2022) 29–37 B.A. Qader et al.

