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Neuroevolutionary algorithms, such as NeuroEvolution of Augmenting Topologies (NEAT) in Machine 

Learning (ML) methods, are utilized for training and playing computer games due to increased research 

in Artificial Intelligence (AI) field. NEAT is a genetic algorithm for the generation of evolving artificial 

neural networks. In this paper, a new study is presented. A Dama board game is designed, and the NEAT 

algorithm is implemented to develop and train the populations of neural networks for playing the game 

efficiently. Different inputs and outputs for the network are used, and various network sizes are tried for 

the game to reach or pass the human level. This paper aims to make a neural network that plays a Dama 

game like humans or is close by training different neural networks for many generations. The experimental 

results show that neural networks have been trained for several thousands of generations, and they have 

played more than one million games. It is concluded that using more input to handle information is better 

for the learning process. It is also found that a set of values for NEAT parameters is suitable for extensive 

neural networks like those used in this paper. 

Povzetek: je predstavljena nova študija. Zasnovana je tradicionalna igra, imenovana "Dama", in 

implementiran je algoritem NEAT za razvoj in usposabljanje populacij nevronskih omrežij, da igrajo igro, 

prvič, na način, ki presega človeške zmožnosti.

1 Introduction 
Since the 1940s, digital computer evaluation has been 

evident that computers can be programmed to execute 

very convoluted jobs such as proofs discovery of 

mathematical theories [1] and to play chess with excellent 

skills. Artificial Intelligent (AI) is the technique that is 

profusely used to apply and develop systems that deal with 

the different mental processes of humans, such as the 

ability to analyze and find the causes, generalize, discover 

meaning, or learn from past experiences [2, 3]. 

Machine Learning (ML) is a subfield of AI. ML is 

generally used to understand the data structure and fit that 

data into models, which people can utilize and understand 

[4]. Furthermore, ML algorithms allow the computers to 

train data inputs and use statistical analysis to output 

values that become within a specific range [5, 6]. 

Therefore, ML facilitates the processes of building models 

by computers from data samples to assist in decision-

making processes relying on data inputs [4]. 

In the middle of the 20th century, there were attempts 

to simulate the human brain that finally arrived at 

something now known as the Artificial Neural Network 

(ANN) [7]. ANN is a generalized decision-making 

system, and it is a base for processing the brain’s essential 

elements functions [8]. 

Simultaneously, some researchers were working to 

evolve the learning of computers depending on essential 

evolution keys in natural networks evolution. They arrived 

at evolutionary programming or Genetic Algorithms 

(GAs) [1, 9, 10]. 

At the beginning of the current century, there have 

been attempts to combine Neural Networks with GA. One 

of the successful attempts was Stanley’s algorithm 

NeuroEvolution of Augmenting Topologies (NEAT) in 

2002 [11, 12]. The NEAT algorithm works by creating the 

neural network in its simplest possible structure and 

letting it grow through evolving and recording its inherited 

genes information [3, 11, 13]. One of the most superficial 

neural networks is Feedforward Neural Network (FNN), 

where the input data travels only in one direction. The data 

passes through the input nodes and exits through the 

output nodes [14]. FNN does not have a back-propagation 

feature; therefore, there is no way to go back to the 

beginning and correct itself in case of any error in the 

output answer [15]. Since creating and developing ML, its 

algorithms have been used and tested on games, especially 

board games [6]. ML is a typical environment whose rules 

are clear and simple to test a theory and offers critical 

information to its algorithms or the neural networks [16]. 

In computer games, Neuro-Evolution is applied over a 

wide area more than supervised ML algorithms, requiring 

a correct tactic of input-output pairs [13]. 
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Our contribution is to apply the NEAT algorithm on 

the traditional Dama game for the first time to make a 

neural network plays like a human or close to them by 

training different neural networks for many generations.  

In this paper, a neural network using the NEAT 

algorithm was proposed to train and learn how to play the 

traditional Dama game. The proposed algorithm uses 

variables such as population, adding node chance, altering 

connection’s weight, adding connection chance, other 

variables set for speciation, and mutating new generations.  

The remainder of this paper will be organized as 

follows: section 2 will present related works, section 3 will 

explain the methodology of game board design and 

algorithm training, section 4 will discuss and display the 

experimental results of implementing and playing the 

game, and section 5 will present the conclusion and future 

works. 

2 Related works  
In this section, we show research and projects done with 

Checkers because there is almost no project that used 

neural networks on the Dama board game, and Dama and 

Checkers are similar games. 

In 1999, a neural network was implemented on the 

checker’s board game and was able to reach the human 

skill of the game. Using a minimax search strategy, they 

used Multilayer feed-forward neural networks to evaluate 

alternative positions of the board and games played. The 

additional information extraction required to play at this 

level depends on the competency evolution process. The 

best evolved neural network obtained after 250 

generations was played against humans through 90 games 

online; it could defeat two expert players and draw against 

a master [17].  

Neuroevolution was the best approach to general 

video game playing in a 2014 research of 61 Atari games 

that used four neuroevolution algorithms and three 

alternative state representations. The NEAT algorithm is 

used to play an available Atari 2600 game with indirect 

network encoding (HyperNEAT) [3]. Also, in 2014 a 

framework named Modular Multiobjective NEAT was 

used for modular neural networks evolution to play Pac-

Man video games and treated the game as multiple tasks 

that required various modes of behaviour to succeed. The 

number of modules was learned by using mutation to 

duplicate and evolve these existing modules [18]. Then in 

2015, the deep convolutional neural networks were trained 

to play the Go game by predicting the moves that the 

expert players of it has made. As a result, the trained 

networks were acquired improved performance and high 

levels of skill. For example, it could achieve 41.1% and 

44.4% of move prediction accuracies on two different 

datasets of the Go game, passing other previous states of 

the art [19]. 

In 2016, the researchers used the NEAT algorithm to 

make a neural network to play the game 2048 and reach 

well behaviour. Different board mappings were developed 

trying to find the appropriate encoding for NEAT. All 

mappings got similar scores. Altering training parameters 

did not significantly impact the evolution, but recurrent 

edges introduced looked better [20]. In 2019, a study 

proposed a minimal training method to develop 

independent virtual players utilizing the NEAT 

evolutionary algorithm for evolving an agent to play the 

Flappy Bird game. The fitness function is a weighted 

average that relies on multiple scenarios with scenario-

specific components. The neural network almost achieved 

perfect behaviour in the game, in which it took around 20 

generations [21]. But in 2020, a new Statistical Forward 

Planning (SFP) method was presented. Different versions 

of Rolling Horizon NeuroEvolution of Augmenting 

Topologies (rhNEAT) were explored in a collection of 20 

GVGAI games. This method was compared with other 

SFP methods and other results [22].  

Table 1 summarises the examined publications in 

applying existing models used in game-playing. We 

highlighted our findings to focus on applied games 

utilized models, benefits, limitations, and the authors' 

accuracy of the applied proposed method. 

3 Methodology of proposed method 
This section will briefly discuss Dama game rules, 

strategies, and game design methodologies. 

3.1 Dama game rules and strategies  

Dama game is shown in figure 1, consisting of 64 equal 

areas squares. Each player has 16 coloured stones that 

differ in colour from the opponent stones. It has several 

rules: The role player moves the stone one square forward. 

At the beginning of the game, he must choose to move it 

from among the eight possible moves, then play continues, 

one movement for each player, in turn, the direction of 

playing one square forward. The order of eating the stone 

is one square after eating, whether in front, right, or left. 

The king plays in all directions and distances. The goal is 

to draw a strategy on setting up a trap for the opponent to 

eat the largest amount of stones and transfer at least one 

stone to any square in the last row of the opponent squares 

to turn this stone into a king. 

Capture in the Dama game is obligatory, and it is not 

possible to eat the minority and leave the majority, 

whether it is taking a king or a pawn (stone). The stone 

gets the title of king (Dama) when it reaches the end of the 

last row of the competing team squares. The king 

advantage in the Dama game is that he moves anywhere 

vertically or horizontally. Therefore, he can eat more than 

one opposite stone without specifying the distance; 

 
Figure 1: Dama game after few moves. 
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considering the horizontal and vertical situation when the 

stone reaches the title of king, the color of the stone 

changes and becomes distinguished among the other 

stones. Kish (Go away) in Dama is optional and done by 

an opponent, then you can leave your stone in its current 

square or take it away, and sometimes it is mandatory 

when judged, for example (which stone will you leave? 

king or pawn). The Kish: This is a warning given by a 

stone or a king, and the player can use it defensively to 

level the playing field or offensively to win. Equalize is 

declared if the game ends between two players because 

each has 15 stones or one king. The game ends if one of 

the players wins the most stones or a king. If there are two 

kings for the player and one king for the competitor, the 

player who has two kings is considered the winner. 

3.2 The proposed method  

The proposed methodology contains three main phases: 

design, implementation, and application and evaluation. 

Figure 2 illustrates the methodology flowchart, which 

consists of designing the Dama board, implementing the 

algorithm on the game, training the algorithm, and testing 

and evaluating the game application by playing with 

trained generations of Neural Networks (NNs). The 

application design explains how it operates and its 

functionality in detail in the following subsections. 

 

Study Game Model(s) used Characteristic Drawbacks Accuracy 

Hausknecht, 

et. al, (2014) 

[3] 

Atari 2600 

video 

game 

Four neuro-

evolution 

algorithms 

(CNE, CMA-

ES, NEAT, and 

(HyperNEAT)  

An empirical 

investigation of a 

variety of 

representations and 

algorithms in this 

domain. 

The applied models 

did not solve some 

games complexity 

like Pitfall. 

NEAT highest 

average z-scores 

across the object 

is 0.67 and noise 

is 0.09, but the 

Hyper NEAT 

highest scaling of 

pixels is -0.46  

Chellapilla 

and Fogel, 

(1999) [17] 

Checkers  Multilayer feed-

forward neural 

networks  

The best ENN can 

defeat expert-level 

players and even 

master. 

The speed is limited 

to 3500 board 

positions per 

second. And using 

minimax to choose 

the optimum move. 

1901.98 average 

wining rate at 90 

games 

Schrum and 

Miikkulainen, 

(2014) [18] 

MS. Pac-

Man 

MM-NEAT  Modular networks 

find the multimodal 

activity more often 

than single module 

networks. 

It is not rewarding 

multiple players 

module directly. 

32,647 

The average post-

learning score for 

the FourMaze 

game and 65,447 

Average post-

learning score for 

MPMvs game 

Clark  and 

Storkey, 

(2015) [19] 

Go  DCNN predicting the 

moves made by 

expert Go players. 

The limitation of 

network size 

41.1% and 44.4% 

on two different 

Go datasets 

Boris and 

Goran, (2016) 

[20] 

2048 NEAT Neuroevolution 

models can be used 

to solve game 

problems 

Board mappings 

produce similar 

scores. Parameter 

modifications had 

less influence than 

planned. 

An average score 

is below 600 till 

5000Th 

generations 

Cordeiro, 

Serafim and 

Neto (2019) 

[21] 

Flappy 

Bird 

NEAT Using minimal 

training to create 

optimal scoring 

agents 

It was not applied 

on simple platform 

games  

An average score 

is below 2.0 with 

100 generations 

Liebana, 

Alam, and 

Gaina, (2020) 

[22] 

10 General 

Video 

Game 

Playing 

 

rhNEAT rhNEAT's ability to 

adapt to changing 

game elements has 

helped it to set new 

world records in 

games where other 

approaches have 

struggled 

Overall the results 

are not better than 

other Statistical 

Forward Planning 

methods 

Overall winning 

rate 36.5% 

Table 1: The summary table of related works. 
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3.2.1 Design phase 

In this phase, a new board game Dama uses Windows 

Presentation Foundation (WPF) for the first time. The 

WPF is used for designing the application and the game 

board. First, the application interface is designed using 

XAML programming Language and built using C# 

programming language. Then the structure of the game is 

developed using XAML, where the board and Dama 

pieces are dynamically added using OOP with C#.  

3.2.2 Algorithm implementation phase 

NeuroEvolution is the most successful technique to be 

applied to the games. Evolutionary algorithms (EAs) are 

robust tools used to design and train neural networks [23]. 

EAs consist of several evolutionary processes: selection, 

mutation, and crossover (also known as recombination), 

as well as encoding and speciation. Recently, Stanley 

proposed the NEAT algorithm shown in figure 3, which 

has solved a series of topology problems that the other 

EAs could not solve, such as competing conventions [11]. 

The NEAT algorithm is built to evolve topologies and 

connection weights of ANNs, which simultaneously 

learns weight values and a suitable topology for a neural 

network. It starts with the most superficial structure 

networks in the initial population with less input, output 

nodes, and a series of connection genes between them, but 

with no hidden nodes. Thus, as time progresses, the 

complexity of networks’ topology is developed, as 

illustrated in figure 4, combined with the idea of speciation 

if it is found necessary or valuable [24]. In addition, NEAT 

uses a more complex direct encoding methodology than 

other binary and simple graph encoding systems.  

In NEAT, mutation can transform existing structures 

or add new structures (nodes or connections) to a network. 

Adding a new connection between a start and end node is 

associated with a randomly assigned weight. But adding a 

new node must be placed between two already-connected 

nodes, leading to disabling the previous connection [24]. 

NEAT algorithm tackles the competing conventions, 

which are one of the evolving issues of neural networks 

topologies, by marking the historical number of the gene. 

Competing conventions means blindly crossing over the 

genotypes of two neural networks, resulting in horribly 

and non-functional mutated [23]. Speciation is used to 

support the tackling process. It divides the population into 

several species (classes) depending on the topology and 

connections similarity. 

3.2.3 Application and evaluation phase 

The NEAT algorithm was implemented using the C# 

programming language. Then, a connection between the 

Dama game code and the NEAT algorithm code is created 

to train using the game. Finally, different encoding 

systems are designed that encode an 8 by 8 game board 

into a row of numbers to feed it into the neural network, 

as shown in figure 5. 

 

The NEAT algorithm must start from the simplest 

neural network structure that consists of only input and 

output nodes and be fully connected. It means that each 

input node should be connected to each output node. In 

this work, two neural network structures are tried to get 

the best suitable NNs for the game training. The neural 

network structure in the first attempt did not enhance 

performance, leading to a second neural network structure 

in the second attempt. The latest one gets enhancement in 

comparison to the first one. The second structure was 

defended as a basic structure in the NEAT algorithm to 

generate populations of neural networks.  

 

 

Figure 2: Flowchart of the proposed method. 

 

Figure 3: NEAT algorithm structure. 

 

Figure 4: Growing an AI agent with NEAT. 
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First Attempt 

In the first structure, we used 64 input nodes. Each node 

represents a block on the board that takes different input 

values for each state on that block. Where, Input (0) for 

empty block, input (1) for the regular piece, input (3) for 

the king piece, input (-1) for the regular opponent piece, 

and input (-3) for the opponent king piece. 

Whereas, for the output, we used 256 output nodes 

that represented as table 64 by 4. Each row represents the 

piece that should move, and each of those 4 columns 

represents a direction that the piece should move. 

In this structure, there were 320 input-output nodes 

and 16,384 connections. Unfortunately, after months of 

training, it was found that the neural networks did not 

improve and did not work well because the input nodes 

were taking too much different information that caused 

bad connection weights. As a result, the algorithm could 

not get a good weight to work well with these inputs. 

Therefore, it is moved to try another neural network 

structure as a second attempt.  

 

Second Attempt 

To solve the previous problem in the first attempt, we 

changed the structure of the networks to be better. The 

output nodes were kept the same, but the input nodes were 

changed. In this attempt, the 192 input nodes are used that 

are represented as a table of 64 by 3. Each row represents 

a block on the board, and the columns represent the state 

of that block. Now the input nodes take values as a binary 

number. Where, Input (0,0,0) is for empty block, Input 

(1,0,0) is for the regular piece, Input (1,1,0) is for the king 

piece, Input (0,0,1) is for the opponent regular piece, and 

Input (0,1,1) is for the opponent king piece. 

After months of training, this structure performs better 

than the previous structure. There were 448 input-output 

nodes and more than 49,000 connections in this structure. 

Along with the training process, the training parameters 

had to be changed many times to get better values for our 

structure. Unfortunately, at the first attempt, the set of 

parameters values was too low, making the neural 

networks evolve too slowly, showing no progress. 

The next time, the values of the parameters were 

increased. The neural networks size grew very fast 

because these values were too big for the neural network 

structure. Also, the values of the big parameters were too 

bad for the algorithm because it depends on real evaluation 

of nature, and things evolve slowly. After many attempts, 

we reached suitable parameters for the second structure 

and balanced the neural network between evolving and 

size growth. 

The application is designed to execute two functions: 

training the NNs and evaluating the trained NNs. The 

training function includes selecting a path in the Personal 

Computer (PC) to save the trained NN, then starting the 

training process. The best-trained NNs are held, and the 

others are aborted. The evaluation function is performed 

by selecting one of the saved trained NNs, then playing 

with it. The application’s main window shown in figure 6 

is split into two parts. The first part on the left side of the 

window is used to select the neural network and play with 

it. In the second part on the right side, the parameters train 

neural networks with the NEAT algorithm. First, 

parameters are set to their default values. Then, select a 

location path to save trained neural networks. 

The parameters setting and controlling shown in 

figure 6 are explained below: 

- Population: it is the population (number) of neural 

networks. It has some values to be chosen from the 

drop-down list.  

- Coefficients: The coefficients illustrated by equation 

(1) are used to tell how much two neural networks are 

compatible with each other. These coefficients control 

how much we depend on Excess and Disjoint Genes 

and their weight differences. 

𝛿 =  
𝑐1𝐸

𝑁
+   

𝑐2𝐷

𝑁
+ 𝑐3  . �̅� (1) 

- Compatibility Threshold determines the threshold we 

set as a factor for neural network species.  

- Survival Chance refers to the number of neural 

networks that will remain and pass directly to the new 

generation. 

- Weight Mutation Chance: it will set the chance to 

slightly mutate the value of the connections in the new 

generation’s neural networks. 

- Random Weight Chance: it will set the chance to 

generate entirely new value to connections in the new 

generation’s neural networks. 

- Add Node Chance: it will set the chance to add a new 

hidden node to the new generation’s neural network. 

- Add Connection Chance: it will set the chance to add 

a new connection between two nodes in the new 

generation’s neural networks. 

 

 

Figure 5: Designed Dama game board with neural 

network. 
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4 Experimental results and discussion 

This section will discuss the experimental setup, the 

results gained from the experimental, and related works. 

4.1 Experimental setup 

The PC used to implement the Dama game application has 

8 GB RAM, 256 GB Hard Disk, Intel CORE i7 CPU @ 

2.40 GHz, Windows 8.1 operating system of type 64-bit 

based processor. The WPF is used for the training process, 

which is a GUI Application. But due to using a low-

performance PC that had to perform all the neural network 

calculations and visualize the game simultaneously. So a 

console application is used without visualizing the game 

so that the used PC could focus more on neural network 

calculations. The console application evolves NNs for 

generations to play as human behaviour or better. This 

approach is much better than training on WPF application 

but still slow for training such big-sized neural networks. 

After running console applications, training for months, 

playing more than one million games, and approaching 

more than 5000 generations, as shown in figure 7, the 

neural network has become better. However, because of 

the used low-performance PC and lack of training time, 

the neural network could not be powerful enough to defeat 

a professional human. The algorithm needs a few months 

to get to the human level with this PC performance 

available. 

The training window of the game application is shown 

in figure 8. The neural networks can be trained by clicking 

the “Start Train” button. The neural networks are created 

and attached to the AI agent to start the training process. 

The training window shows live training with basic 

information about the training process. It also shows every 

match played by the neural networks and how they are 

playing. 

The application will not store all the trained neural 

networks in the text files but only holds the best neural 

network from each species in every generation. The saving 

format for trained neural network data (nodes and 

connections) depends on connection information to store 

the whole neural network. As illustrated in figure 9, each 

row represents a connection from left to right. The first 

part of the row represents the input node to the connection, 

storing a node type and node id. The second part 

represents the output node from the connection. The third 

part describes the connection weight. Where (i) is the input 

node, (h) is a hidden node, and (o) is the output node.  

In addition, the application will only store enabled 

connections data and ignore those connections that are 

disabled in the training process. 

The left side of the main application window, shown 

in figure 6, is used to play with the trained NNs and 

evaluate the Dama game. First, a neural network file is 

selected to play with, and press the “Play” button to start 

play, as demonstrated in figure 10. Then, the Dama game 

board window shown in figure 5 appears and will be ready 

to play with humans. Human plays as Black, and the 

neural network play as Red; when the game is started, 

humans will have the first move to play. Also, he has to 

take out all the pieces from his opponent to win. 

4.2 Experimental Results 

The result of playing many peoples with many selected, 

trained neural networks is shown in table 2. As appeared 

in the table, each person has played more than once with 

five selected AI agents (stored trained neural networks) in 

different generations: AI1, AI2, AI3, AI4, AI5. In the 

beginning, the results proved that the winning rate of the 

machine was little with spending much playing time 

 

Figure 6: Application main window. 

 

Figure 7: Training results on console application. 

 

Figure 8: Training window of the game application. 
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reaches to a few minutes. But the winning rate started 

increasing with decreasing the playing time by evolving 

the ANNs and training for progressed generations from 

AI1 towards AI5. The evaluation and playing results 

showed that the winning rate of the AI1 agent is 31.25%, 

spending much time, and it could not reach the human 

skills. While AI2’s winning rate increased to 43.75% with 

less playtime, AI3’s winning rate increased to 56.25 %, 

similar to AI2. Also, it is found that the winning rate of 

AI4 is 62.5%, with Lessing playtime being between less 

than 2 minutes and 53s. Finally, there is an apparent 

increase in AI5’s win rate, 81.25%, with less playtime 

ranging from 1.5 minutes to several seconds. Increasing 

epochs and generations and progressing in time 

demonstrate the ability to reach AI5 to human levels and 

beat them due to advancements in the training process. 

4.3 Discussion of the result 

Here we will not go into standard criteria for comparing 

our work and other recent relevant studies that have used 

direct and indirect neuroevolution algorithms due to the 

apparent range of applicable games. 

More than one million Dama games were played in 

our study, and NNs were evolved using NEAT for more 

than 5000 generations, yielding the top trained and grown 

neural network AI5 with an 81.25 % winning rate. 

However, the study [17] used 90 checkers games to 

develop NNs over 250 generations, resulting in a mean 

winning rate of 1901.98 for the best trained and evolved 

neural network and a peak winning rate of 1975.8 for 

game 74. The results demonstrate that the NEAT 

algorithm is superior to multilayer feed-forward neural 

networks when used in the gaming industry. HyperNEAT 

was incapable of learning based on object representation 

and noise representation when tested on a complete 

collection of 61 Atari video games (see table 1). Direct 

encoding also demonstrates the NEAT impairment of 

learning to play based on a visual, raw-pixel 

representation. In contrast, our research indicates the 

NEAT power of speed NNs learning to reach the most 

significant winning rate of 81.25 % in about 50 seconds. 

In contrast to study [18], our work used the Dama 

game, which has many predetermined behaviors for each 

Dama piece ideal for direct neuroevolution algorithms like 

NEAT, whereas study [18] used MS. Pac-Man, which is a 

multi-behavior game with more than ten. As a result, 

indirect neuroevolution techniques such as Modular 

neural networks and Module Mutation networks are better 

for detecting multimodal behavior. On the other hand, the 

poorest modular networks do not utilize many modules, 

showing that the modular architecture's promise is not 

always realized. The Dama board, on the other hand, has 

a specific size that can be utilized using direct 

neuroevolution algorithms in our research. 

5 Conclusions and future works 
This paper contributed to implementing the NEAT 

algorithm on the Dama game, finding out how well it goes 

and the best structure for the neural networks. The game 

board should be encoded to give good clean information 

to the neural networks. The novelty of our work is using 

the NEAT algorithm to train and evolve NNs to play, for 

the first time, a traditional game named “Dama” with the 

human in a way that surpasses human skills. Furthermore, 

many different structures of neural networks and 

parameters’ values of the NEAT algorithm were tried to 

get the best structure and set of suitable parameters.  

We have trained the NEAT algorithm for two months. 

The result shows that training large neural networks with 

a large population, such as the one created in this paper, 

requires powerful computers for the training to reach high 

generations and provide results in a reasonable time. 

Furthermore, it was inferred that using console 

applications for PCs is much better and faster to train a 

significant population of big-sized neural networks 

because it does not require much CPU effort. Lastly, it is 

found that separating information into a more substantial 

amount of inputs instead of using a few inputs is better for 

the network and can be used easily with a good encoding 

system. 

In the future, the Dama game can be trained and 

played faster by using a high-performance PC with 

 

Figure 9: Stored neural network data. 

 

Figure 10: Play with selected neural network. 
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considerable resources for training the neural networks 

because this process needs a lot of CPU effort and big-size 

RAM and HD. Also, finding a better encoding technique 

gives the neural networks better information. And 

eventually, using other ML algorithms that train the neural 

networks faster. 
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