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Privacy-preserving data mining has been an active research area in recent years due to privacy concerns
in many distributed data mining settings. Protocols for privacy-preserving data mining have considered
semi-honest, malicious, and covert adversarial models in cryptographic settings, whereby an adversary is
assumed to follow, arbitrarily deviate from the protocol, or behaving somewhere in between these two,
respectively. Semi-honest model provides weak security requiring small amount of computation, on the
other hand, malicious and covert models provide strong security requiring expensive computations like
homomorphic encryptions. However, game theory allows us to design protocols where parties are neither
honest nor malicious but are instead viewed as rational and are assumed (only) to act in their self-interest. In
this paper, we build efficient and secure two-party set-intersection protocol in game-theoretic setting using
cryptographic primitives. Our construction allow to avoid the use of expensive tools like homomorphic
encryption and zero knowledge proof. We also show that our protocol satisfies computational versions of
strict Nash equilibrium and stability with respect to trembles.

Povzetek: Predstavljen je protokol med dvema stranema na osnovi Nashevega ravnotežja.

1 Introduction

A key utility of large databases today is scientific or eco-
nomic research. Despite the potential gain, this is often
not possible due to the confidentiality issues which arise,
leading to concerns over privacy infringement while per-
forming the data mining operations. The need for privacy
is sometimes due to law (e.g., for medical databases) or can
be motivated by business interests. To address the privacy
problem, several privacy-preserving data mining protocols
using cryptographic techniques have been suggested.

Depending on the adversarial behavior assumptions,
those protocols use different models. Classically, two
main categories of adversaries have been considered, called
Semi-honest and malicious adversaries. Following Gol-
dreich’s definition [9], protocols secure in the presence
of semi-honest adversaries (or honest-but-curious) assume
that parties faithfully follow all protocol specifications and
do not misrepresent any information related to their in-
puts, e.g., set size and content. However, during or after
protocol execution, any party might (passively) attempt to
infer additional information about the other party’s input.
On the other hand, security in the presence of malicious
parties allows arbitrary deviations from the protocol. It
is well known that the protocols secure in the malicious
model offer more security. However, these are not effi-
cient enough to be used in practice. Most of these con-
structions use general zero-knowledge proofs for fully ma-
licious multi-party computation (MPC) protocols. These

zero-knowledge compilers lead to rather inefficient con-
structions [28]. Recently, a new type of adversarial model,
named covert adversary, has been proposed by Aumann et
al. [3]. These adversaries are somewhere in between the
semi-honest and malicious models.

Since the work of Halpern and Teague [12], protocols for
some cryptographic tasks (e.g., secret sharing, multi-party
computation) have begun to be re-evaluated in a game-
theoretic light (see [6, 18] for an overview of work in this
direction). In this setting, parties are neither honest nor
corrupt but are instead viewed as rational and are assumed
(only) to act in their self-interest. This feature is partic-
ularly interesting for data mining operations where huge
collection of data is used, since parties will not deviate
(i.e., abort) as there is no incentive to do so. In many real-
world settings, parties are willing to actively deviate/cheat,
but only if they are not caught. This is the case in many
business, financial, political and diplomatic settings, where
honest behavior cannot be assumed, but where the compa-
nies, institutions and individuals involved cannot afford the
embarrassment, loss of reputation, and negative press as-
sociated with being caught cheating, hence having smaller
incentive.

In data mining area, private set-intersection and
set-union protocols allow two parties interact on their
respective input sets. These protocols address several
realistic privacy issues. Typical application examples
include:
1. Business Interest: Companies may want to decide
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whether to make a business alliance by the percentage of
customers shared among them, without publishing their
customer databases including the shared customers among
them. This can be treated as an intersection cardinality
problem. As another example, to determine which cus-
tomers appear on a “do-not-receive-advertisements” list, a
store must perform a set-intersection operation between its
private customer list and the produce’s list.
2. Aviation Security: The Department of Homeland
Security (DHS) of the U.S. needs to check whether any
passenger on each flight from/to the United States must be
denied boarding, based on some passenger watch list. For
this purpose, airlines submit their entire list of passengers
to DHS, together with other sensitive information, such as
credit card numbers. This poses liability issues with regard
to innocent passengers’ data and concerns about potential
data losses. In practice, information only related to the
passengers on the list should obtained by DHS without
disclosing any information to the airlines.
3. Healthcare: Insurance companies often need to obtain
information about their insured patients from other parties,
such as other insurance carriers or hospitals. The insurance
carriers cannot disclose the identity of inquired patients,
whereas, the hospitals cannot provide any information on
other patients.

1.1 Related Work

Cryptographic techniques have been used to design many
different distributed privacy-preserving data mining algo-
rithms. Secure distributed protocols have been developed
for horizontally partitioned data for mining decision trees
[24], k-means clustering [22], k-nn classifiers [16]. In the
case of vertically partitioned data, it is assumed that dif-
ferent sites collect information about the same set of en-
tities but they collect different feature sets. For example,
both a university and a hospital may collect information
about a student. Again, secure protocols for the vertically
partitioned case have been developed for mining associa-
tion rules [33], and k-means clusters [14, 32]. All of those
previous protocols claimed to be secure only in the semi-
honest model. In [7, 17], authors present two-party secure
protocols in the malicious model for data mining. They fol-
low the generic malicious model definitions from the cryp-
tographic literature, and also focus on the security issues
in the malicious model, and provide the malicious versions
of the subprotocols commonly used in previous privacy-
preserving data mining algorithms. Assuming that at least
one party behaves in semi-honest model, they use thresh-
old homomorphic encryption for malicious adversaries pre-
sented by Cramer et al. [4]. Recently, Miyaji et al. pre-
sented a new adversarial model named covert adversaries
[28] for performing data mining algorithms. They show
that protocols under covert adversarial model behave in be-
tween semi-honest and malicious models. Oblivious trans-
fer (OT) and homomorphic encryption have been used as

the building blocks in [28]. Since homomorphic encryp-
tion and zero-knowledge proof are considered too expen-
sive [25], the protocols proposed in malicious and covert
adversarial models are not very practical for operations on
large data items. Game theory and data mining, in gen-
eral, have been combined in [15, 30] for constructing var-
ious data mining algorithms. Rational adversaries have
also been considered in privacy-preserving set operations
[2, 34]. These protocols consider Nash equilibrium to an-
alyze the rational behavior of the participating entities. As
discussed by Kol and Naor in [21], using Nash equilibrium
is not suitable in many cases, since many bad strategies are
not ruled out by it. Instead, they suggest the stronger no-
tion of strict Nash equilibrium in the information-theoretic
setting, in which every player’s strategy is a strict best re-
sponse. Due to the restrictive nature of this notion, it is
regarded as a sufficient condition and not as a necessary
one. As in all of cryptography, computational relaxations
are meaningful and should be considered; doing so allows
us to get around the limitations of the information-theoretic
setting. So, analyzing set operations from the viewpoint of
computational strict Nash equilibrium is interesting, since
it gives more realistic results. There have been several
works on game theory based MPC/secret sharing schemes
[1, 8, 12, 13, 20, 31]. But [12, 31] require the contin-
ual involvement of the dealer even after the initial shares
have been distributed or assume that sufficiently many par-
ties behave honestly during the computation phase. Some
schemes [1, 20] rely on multiple invocations of protocols.
Other work [13] relies on physical assumptions such as
secure envelopes and ballot boxes. [8] proposed efficient
protocols for rational secret sharing. But secret sharing
schemes cannot be directly used for our purpose since they
require the existence of TTP and their set up is different.

1.2 Our Contribution
In this work1, we build two-party secure set-intersection
protocol in game-theoretic setting using cryptographic
primitives. It is assumed that parties are neither honest nor
corrupt but are instead rational. Our construction does not
use the expensive tools like homomorphic encryption and
zero-knowledge proof. We have used verifiable random
functions (VRF) as the underlying cryptographic primitive.
We also discuss about replacing VRF with a cheaper tool
like message authentication code (MAC) or trapdoor per-
mutation (TDP). We show that our protocol satisfies com-
putational versions of strict Nash equilibrium and stability
with respect to trembles, defined by Fuchsbauer et al. [8].

Organization of the paper: The remainder of the paper
is organized as follows: Section 2 presents the background
and preliminaries. Section 3 describes the protocol model.
Section 4 includes protocol construction. In Section 5, we
analyze the protocol formally. Section 6 includes perfor-
mance comparison. We give some concluding remarks in
Section 7.

1A preliminary version [29] of this paper appears at DBSec2011.
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2 Background and Preliminary

2.1 Definitions

In this section, we will state the definitions of compu-
tational strict Nash equilibrium and computational strict
Nash equilibrium w.r.t. trembles introduced in [8]. A pro-
tocol is in Nash equilibrium if no deviations are advanta-
geous; it is in strict Nash equilibrium if all deviations are
disadvantageous. In other words, there is no incentive to
deviate in the case of a Nash equilibrium whereas there is
an incentive not to deviate for a strict Nash equilibrium.
Another advantage of strict Nash is that protocols satisfy-
ing this notion inhibit subliminal communication. A party
who tries to use protocol messages as a covert channel has
the risks to lose utility if there is any reasonable probabil-
ity that the other player is following the protocol, since any
detectable deviation by a party from the protocol results
in lower utility while the other party follows the protocol.
The computational version of strict Nash equilibrium is in-
tuitively close to strict Nash considering the computational
limitations. Moreover, our protocol satisfies a strong con-
dition that each party can send a unique legal message that
at every point in the protocol. Our protocol thus rules out
subliminal communication in a strong sense. We denote
the security parameter by n. A function ϵ is negligible if
for all c > 0 there is a nc > 0 such that ϵ(n) < 1/nc for all
n > nc; let negl denote a generic negligible function. We
say ϵ is noticeable if there exist c, nc such that ϵ(n) > 1/nc

for all n > nc.
We consider the strategies in our work as the PPT interac-
tive Turing machines. Given a vector of strategies σ⃗ for
two parties in the computation phase, let uj(σ⃗) denote the
expected utility of Pj , where the expected utility is a func-
tion of the security parameter n. This expectation is taken
over the randomness of the players’ strategies. Following
the standard game-theoretic notation, (σ′

j , σ⃗−j) denotes the
strategy vector σ⃗ with Pj’s strategy changed to σ′

j .
Definition 1: Π induces a computational Nash equilib-

rium if for any PPT strategy σ′
1 of P1 we have u1(σ

′
1, σ2) ≤

u1(σ1, σ2) + negl(n), and similarly for P2.
The computational notion of stability with respect to

trembles models players’ uncertainty about other parties’
behavior, and guarantees that even if a party Pi believes
that other parties might play some arbitrary strategy with
small probability δ (but follow the protocol with probabil-
ity 1 − δ), there is still no better strategy for Pi than to
follow the protocol. The following definition is stated for
the case of a deviating P1 (definition for a deviating P2

is analogous). Let P1 and P2 interact, following σ1 and
σ2, respectively. Let mes denote the messages sent by P1,
but not including any messages sent by P1 after it writes
to its (write-once) output tape. Then viewΠ

2 includes the
information given by the trusted party to P2, the random
coins of P2, and the (partial) transcript mes. We fix a
strategy γ1 and an algorithm A. Now, let P1 and P2 in-
teract, following γ1 and σ2, respectively. Given the entire

view of P1, algorithm A outputs an arbitrary part mes′ of
mes. Then viewA,γ1

2 includes the information given by the
trusted party to P2, the random coins of P2, and the (par-
tial) transcript mes′.

Definition 2: Strategy γ1 yields equivalent play with re-
spect to Π, denoted γ1 ≈ Π, if there exists a PPT algorithm
A such that for all PPT distinguishers D, the following
holds: | Pr[D(1n, viewA,γ1

2 ) = 1]−Pr[D(1n, viewΠ
2 ) =

1] |≤ negl(n)

Definition 3: Π induces a computational strict Nash
equilibrium if: 1. Π induces a computational Nash equi-
librium; 2. For any PPT strategy σ′

1 ̸≈ Π , there is a c > 0
such that u1(σ1, σ2) ≤ u1(σ

′
1, σ2) + 1/nc for infinitely

many values of n .

In stability with respect to trembles, we say that γi is
δ-close to σj if with probability 1 − δ party Pj plays σj ,
while with probability δ it follows an arbitrary PPT strat-
egy σ′

j . In fact, a pair of strategies (σ1, σ2) is stable with
respect to trembles if σ1 (resp., σ2) remains the best re-
sponse even if the other party plays a strategy other than σ2

(resp., σ1) with some small (but noticeable) probability δ.
The fact that the prescribed strategies are in Nash equilib-
rium ensures that any (polynomial-time) local computation
performed by either party is of no benefit as long as the
other party follows the protocol. Stated differently, even if
a party Pj believes that the other party might play a differ-
ent strategy with some small probability δ, there is still no
better strategy for Pj than to outwardly follow the protocol.

Definition 4: Π induces a computational strict Nash
equilibrium that is stable with respect to trembles if: 1.
Π induces a computational Nash equilibrium; 2. There
is a noticeable function δ such that for any PPT strategy
γ2 that is δ-close to σ2, and any PPT strategy γ1, there
exists a PPT strategy σ′

1 ≈ Π such that u1(γ1, γ2) ≤
u1(σ

′
1, γ2) + negl(n)

Verifiable Random Functions (VRFs): A VRF is a keyed
function whose output is random-looking but can still be
verified as correct, given an associated proof. The notion
was introduced by Micali et al. [27], and various efficient
constructions in the standard model are known [5, 26]. It
has been shown in [26] that efficient VRFs can be con-
structed without relying on zero-knowledge proofs2. A
VRF with range R = {Rn} is a tuple of PPT algorithms
(Gen, Eval, Prove, V erify) such that: G(1n) gener-
ates the key pair (pk, sk). Evalsk(x) computes the value
y = Fpk(x); Provesk(x) computes the proof z that y =
Fpk(x); and V erifypk(x, y, z) verifies that y = Fpk(x)
using the proof z. For such a VRF, the properties like cor-
rectness, verifiability and pseudorandomness hold.

2The VRF gives us computational security. However, it is also pos-
sible to design our protocol with information-theoretic security using
information-theoretically secure MACs.
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3 Model

In a typical protocol, parties are viewed as either honest or
semi-honest/malicious. To model rationality, we consider
players’ utilities. Here we assume that F = {f : X×Y →
Z} is a functionality where | X |=| Y | and their domain
is polynomial in size (poly(n)). Let D be the domain of
output which is polynomial in size. The function returns a
vector I that represents the set-intersection where It is set
to one if item t is in the set-intersection. In other words,
for all the data items of the parties (i.e., X and Y ), we
will compute X ∩ Y , and we get I as the output of the
function. Clearly for calculating set-intersection, we need
to calculate xe ∧ ye for each e where xe ∈ X and ye ∈ Y .
Similarly, for set-union, we need to calculate xe∨ye for all
e. This can be rewritten as ¬(¬xe ∧ ¬ye). Computing the
set-union is thus straight forward.

Given that j parties are active during the computation
phase, let the outcome o of the computation phase be a vec-
tor of length j with oj = 1 iff the output of Pj is equal to
the exact intersection (i.e., Pj learns the correct output).
Let νj(o) be the utility of player Pj for the outcome o. Fol-
lowing [12], we make the following assumptions about the
utility functions of the players:
- If oj > o′j , then ν(oj) > ν(o′j)
- If oj = o′j and

∑
j oj <

∑
j o

′
j , then ν(oj) > ν(o′j)

In other words, player Pj first prefers outcomes in which
he learns the output; otherwise, Pj prefers strategies in
which the fewest number of other players learn the result
(in our two-party case, the other player learns). From the
point of view of Pj , we consider the following three cases
of utilities for the outcome o where U∗ > U > U ′:
- If only Pj learns the output, then νj(o) = U∗.
- If Pj learns the output and the other player does also, then
νj(o) = U .
- If Pj does not learn the output, then νj(o) = U ′.
So, we have the expected utility of a party who outputs a
random guess for the output3 (assuming other party aborts
without any output, or with the wrong output) as follows:
Urand = 1

|D| · U
∗ + (1− 1

|D| ) · U
′.

Also, we assume that U > Urand; else players have almost
no incentive to run the computation phase at all. We make
no distinction between outputting the wrong secret and out-
putting a special ‘don’t know’ symbol- both are considered
as a failure to output the correct output.

To complete the protocol, we need to provide a way for
parties to identify the real iteration. Some work [1, 10, 20]
allows parties to identify the real iteration as soon as it oc-
curs. This approach could be used in our protocol if we
assume simultaneous channels. But, this approach is vul-
nerable to an obvious rushing strategy when simultaneous
channels are not available. To avoid this, delaying the sig-
nal indicating whether a given iteration is real or fake until
the following iteration has been used. In this case, until be-

3We do not consider U ′′- the utility when neither party learns the out-
put, since ‘not learning the output’ is not the target of a rational adversary
in practice.

ing sure of the occurence of real iteration, a party cannot
risk aborting. Moreover, once a party learns that the real
iteration occurred, the real iteration is over and all parties
can compute the real output. Simultaneous channels are
thus not needed in this process at the price of adding only
a single round.

4 Rational Set-Intersection Protocol

4.1 An Overview of the Protocol
Let x denote the input of P1, let y denote the input of
P2, and let f denote the set-intersection function they are
trying to compute. We follow the same high-level ap-
proach as in [1, 10, 12, 20, 21]. Our intersection compu-
tation protocol proceeds in a sequence of ‘fake’ iterations
followed by a single ‘real’ iteration. As in [8, 11, 19],
our protocol is composed of two stages, where the first
stage can be viewed as a pre-processing stage and the sec-
ond stage that computes the intersection takes place in a
sequence of r = r(n) iterations. More specifically, in
the pre-processing phase the trusted third party chooses
i∗ ∈ {1, . . . , r} uniformly at random and defines {ai} =
{a1, . . . , ar} and {bi} = {b1, . . . , br} as follows: First, it
choose a1, . . . , ai∗−1 ∈ {0, 1} and b1, . . . , bi∗−1 ∈ {0, 1}
independently and uniformly at random. Then, it chooses
c ∈ {0, 1} uniformly at random and lets ai∗ = · · · = ar =
bi∗ = · · · = br = c. The trusted third party creates se-
cret shares of the values {a1, . . . , ar} and {b1, . . . , br} us-
ing a secure 2-out- of-2 secret sharing scheme, and these
shares are given to the parties. For concreteness, we use
the specific secret-sharing scheme that splits a bit x into
(x(1);x(2)) by choosing x(1)in{0, 1} uniformly at random
and letting x(2) = x⊕ x(1). In every round i ∈ {1, . . . , r}
the parties exchange their shares for the current round,
which enables P1 to reconstruct ai, and P2 to reconstruct bi
as discussed in the Intersection Computation Phase below.
Clearly, when both parties are honest, the parties produce
the same output bit which is uniformly distributed.

Now, we talk about how to remove the trusted party. We
eliminate the need for the trusted third party by relying on a
potentially unfair sub-protocol that securely computes with
abort the functionality ShareGenr, formally described
in Figure 1. Such a protocol with a constant number
of rounds can be constructed assuming the existence of
oblivious transfer as in [23]. Briefly speaking, the stages
have the following form:

Pre-processing stage:

– A value i∗ ∈ {1, . . . , r} is chosen according to some
geometric distribution 0 < α < 1 where α depends
on the players’ utilities (discussed later in Section
5). This represents the iteration, in which parties will
learn the ‘true output’.

– For i < i∗, {ai} = {a1, . . . , ar} (resp.,{bi} =
{b1, . . . , br}) are chosen according to some distribu-
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tion that is independent of y (resp., x). For i ≥ i∗,
ai = bi = f(x, y).

– Each ai is randomly divided into shares a
(1)
i ,

a
(2)
i with a

(1)
i ⊕ a

(2)
i = ai (and similarly for

each bi). The stage concludes with P1 be-
ing given a

(1)
1 , b

(1)
1 , . . . , a

(1)
r , b

(1)
r , and P2 being

given a
(2)
1 , b

(2)
1 , . . . , a

(2)
r , b

(2)
r alongside the VRFs 4

(ShareGenr provides the parties with VRFs so that
if a malicious party modifies the share it sends to the
other party, then the other party will almost certainly
detect this due to the property of VRFs. It will be
treated as an abort if such manipulation is detected.).

After this stage, each party has a set of random shares
that reveal nothing about the other party’s input.

Intersection Computation Phase:

In each iteration i, for i = 1, . . . , r, the parties do the fol-
lowing: First, P2 sends a(2)i to P1 who reconstructs ai; then
P1 sends b(1)i to P2 who reconstructs bi. (Parties also check
the VRF but we omit this here.) If a party aborts in some
iteration i, then the other party outputs the value recon-
structed in the previous iteration. Otherwise, after reaching
iteration r the parties output ar and br, respectively. To
compute the correct intersection, parties run a sequence of
iterations until the real iteration is identified, and both par-
ties output the result at that point. If some party fails to
follow the protocol, the other party aborts. In fact, it is
rational for Pj to follow the protocol as long as the ex-
pected gain of deviating is positive only if Pj aborts ex-
actly in iteration i∗; and is outweighed by the expected loss
if Pj aborts before iteration i∗. The intersection compu-
tation phase proceeds in a series of iterations, where each
iteration consists of one message sent by each party. Since
we want to avoid simultaneous communication, we simply
require P2 to communicate first in each iteration.

When X and Y (the domains of f ) are polynomial size,
we follow [11, 19] and set ai = f(x, ŷ) for ŷ chosen uni-
formly from Y , and set bi = f(x̂, y) for x̂ chosen uni-
formly (and independently) from X . Note that ai (resp.,
bi) is independent of y (resp., x), as desired.

4.2 Protocol Construction
As described above, our protocol Π consists of two stages.
Let p be an arbitrary polynomial, and set r = p· | Y |. We
implement the first stage of Π using a sub-protocol π for
computing a randomized functionality ShareGenr (pa-
rameterized by a polynomial r) defined in Figure 1. This
functionality returns shares to each party, alongside r-time
VRF (Gen,Eval, Prove, V erify). In the second stage of

4It is the parties’ own interest that they input the correct values for
ShareGenr . Otherwise, they will receive incorrect shares that will give
them no chance to compute the correct intersection result, which will only
enable them of having smaller incentives.

Π, the parties exchange these shares in a sequence of r it-
erations as described in Figure 2. The protocol returns I at
the end of the operations on all the data items.

5 Protocol Analysis
Here we will give some intuition as to why the reconstruc-
tion phase of Π is a computational Nash equilibrium for an
appropriate choice of α. Let us assume that P2 follows the
protocol, and P1 deviates from the protocol. (It is easier to
analyze the deviations by P2 since P2 starts in every itera-
tion.) As soon as it receives z(i)2 = signal1, P1 can abort
in iteration i = i∗ + 1, or it can abort in some iteration
i < i∗ + 1. While aborting in i = i∗ + 1, P1 ‘knows’
that it learned the correct output in the preceding iteration
(iteration i∗) and can thus output the correct result; how-
ever, P2 will output the correct result as well since it sent
the z(i)2 = signal1 value to P1. So P1 does not increase its
utility beyond what it would achieve by following the pro-
tocol. In the second case, when P1 aborts in some iteration
i < i∗ + 1, the best strategy P1 can adopt is to output a(i)1

hoping that i = i∗. Thus, following this strategy, the ex-
pected utility that P1 obtains can be calculated as follows:

– P1 aborts exactly in iteration i = i∗. In this case, the
utility that P1 gets is at most U∗.

– When i < i∗, P1 has ‘no information’ about correct
ar and so the best it can do is guess. In this case, the
expected utility of P1 is at most Urand.

Considering the above, P1’s expected utility of following
this strategy is at most:

α× U∗ + (1− α)× Urand

Now, it is possible to set the value of α such that the ex-
pected utility of this strategy is strictly less than U , since
Urand < U by assumption. In such a case, P1 has no
incentive to deviate. Since there is always a unique valid
message a party can send and anything else is treated as an
abort, it follows that the protocol Π induces a strict com-
putational Nash equilibrium which is stable with respect
to trembles. The proofs of the propositions below mostly
follow those in [8].

Proposition 1: The protocol Π induces a computational
Nash equilibrium given that 0 < α < 1, U > α × U∗ +
(1− α)× Urand, and the pseudorandomness of VRFs.
Proof: We first show that Π is a valid set-intersection pro-
tocol. Computational secrecy follows from the proof, be-
low, that the intersection computation is a computational
Nash equilibrium. Because if secrecy did not hold then
computing the output locally and not participating in the
intersection computation phase at all would be a profitable
deviation. We next focus on correctness. Assuming both
parties run the protocol honestly, the correct output is com-
puted unless:
- i∗ ≥ 2n − 1
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———————————————————————————————————————–
Input: Let the inputs to ShareGenr be x ∈ Xr and y ∈ Yr. (If one of the received inputs is not in the correct
domain, a default input is substituted.)
———————————————————————————————————————–
Computation:

– Define values a1, . . . , ar and b1, . . . , br in the following way:

– Choose i∗ according to some geometric distribution α

– For i < i∗ do,
- Choose ŷ ← Yr and set ai = fr(x, ŷ)
- Choose x̂← Xr and set bi = fr(x̂, y)

– For i = i∗, set ai = bi = q = fr(x, y).

– For i > i∗, set ai = bi = NULL

– For all iteration i, choose (a(1)i , a
(2)
i ) and (b(1)i , b

(2)
i ) as random secret shares of ai and bi, respectively.

(I.e., a(1)i ⊕ a
(2)
i = ai, b

(1)
i ⊕ b

(2)
i = bi)

– Let D = {0, 1}l be the domain of the output. Let (Gen,Eval, Prove, V erify) and
(Gen′, Eval′, P rove′, V erify′) be VRFs with range {0, 1}l and {0, 1}n, respectively. Compute
(pk1, sk1), (pk2, sk2)← Gen(1n) and (pk′1, sk

′
1), (pk′2, sk

′
2)← Gen′(1n). For all i, compute share1i =

Evalsk2(i∥b
(1)
i ) and share2i = Evalsk1(i∥a

(1)
i ). Also compute signal1 = Eval′sk′

2
(i∗ + 1) and

signal2 = Eval′sk′
1
(i∗ + 1)

Output:

– Send to P1 the values (sk1, sk′1, pk2, pk
′
2, a

(1)
1 , . . . , a

(1)
r , (b

(1)
1 , share11), . . . , (b

(1)
r , share1r), signal1).

– Send to P2 the values (sk2, sk′2, pk1, pk
′
1, b

(1)
1 , . . . , b

(1)
r , (a

(1)
1 , share21), . . . , (a

(1)
r , share2r), signal2).

Figure 1: Functionality ShareGenr

- For some i < i∗ + 1, either signal1 = Eval′sk′
2
(i) or

signal2 = Eval′sk′
1
(i)

The first event occurs with negligible probability. Pseu-
dorandomness of the VRF, along with the fact that i∗ ≤ n
with all but negligible probability, easily imply that the lat-
ter two events happen with only negligible probability as
well. We next show that Π induces a computational Nash
equilibrium. Assume P2 follows the strategy σ2 prescribed
by the protocol, and let σ′

1 denote any PPT strategy fol-
lowed by P1. (The other case, where P1 follows the proto-
col and we look at deviations by P2, follows similarly with
an even simpler approach.) In a given execution of the re-
construction phase, let i denote the iteration in which P1

aborts (where an incorrect message is viewed as an abort);
if P1 never aborts then set i = 1. Let early be the event
that i < i∗; let exact be the event that i = i∗; and let
late be the event that i > i∗. Let correct be the event
that P1 outputs the correct output. We will consider the
probabilities of these events in two experiments: the ex-
periment defined by running the actual intersection com-
putation scheme, and a second experiment where P1 is
given share1, signal1 chosen uniformly at random from
the appropriate ranges. We denote the probabilities in the
first experiment by Prreal[·], and the probabilities in the
second experiment by Prideal[·]. We have the following

equation using the fact (as discussed above) that when-
ever late occurs P2 outputs the correct result. Since when
both parties follow the protocol P1 gets utility U , we need
to show that there exists a negligible function ϵ such that
u1(σ

′
1, σ2) ≤ U + ϵ(n):

u1(σ
′
1, σ2) ≤ U∗×Prreal[exact]+U∗×Prreal[correct∧

early]+U ′×Prreal[correct∧ early]+U ×Prreal[late]
Now we have the following claim that follows from the
pseudorandomness of the VRFs:
Claim 1: There exists a negligible function ϵ such that

| Prreal[exact] − Prideal[exact] |≤ ϵ(n)

| Prreal[late] − Prideal[late] |≤ ϵ(n)

| Prreal[correct ∧ early] − Prideal[correct ∧ early] |≤ ϵ(n)

| Prreal[correct ∧ early] − Prideal[correct ∧ early] |≤ ϵ(n)

Now, we have Uideal = U∗ · Prideal[exact] + U∗ ·
Prideal[correct∧early]+U ′ ·Prideal[correct∧early]+
U · Prideal[late]

From Claim 1 we get that | u1(σ
′
1, σ2)− Uideal |≤ ϵ(n)

for some negligible ϵ. We bound Uideal as follows: Let
abort = exact ∨ early, so that abort is the event that P1

aborts before iteration i∗ + 1. We have Prideal[exact |
abort] = α and Prideal[correct | early] = 1/D. It is
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——————————————————————————————————–
Input: Party P1 has input x and party P2 has input y.
——————————————————————————————————–
Computation:

– Preliminary phase:
1. P1 chooses ŷ ∈ Yr uniformly at random, and sets a0 = fr(x, ŷ). Similarly, P2 chooses x̂ ∈ Xr

uniformly at random, and sets b0 = fr(x̂, y).
2. Parties P1 and P2 run a protocol π to compute ShareGenr, using their inputs x and y.
3. If P2 receives ⊥ from the above computation, it outputs b0 and halts. Otherwise, the parties proceed to
the next step.
4. Denote the output of P1 from π by (sk1, sk′1, pk2, pk

′
2, a

(1)
1 , . . . , a

(1)
r , (b

(1)
1 , share11), . . . , (b

(1)
r ,

share1r), signal1).
5. Denote the output of P2 from π by (sk2, sk′2, pk1, pk

′
1, b

(1)
1 , . . . , b

(1)
r , (a

(1)
1 , share21), . . . , (a

(1)
r ,

share2r), signal2).

– Intersection Computation Phase
For all i do:
P2 sends message to P1:
1. P2 computes y

(i)
2 = Provesk2(i∥a

(2)
i ), z

(i)
2 = Eval′sk′

2
(i), z̄

(i)
2 = Prove′sk′

2
(i). It sends

(a(2)i , share2i, y
(i)
2 , z

(i)
2 , z̄

(i)
2 ) to P1.

2. If P2 does not send anything to P1, then P1 outputs ai−1 and halts. P2

sends (a(2)i , share2i, y
(i)
2 , z

(i)
2 , z̄

(i)
2 ) to P1. If V erifypk2(i∥a

(2)
i , share2i, y

(i)
2 ) = 0 or

V erify′pk′
2
(i, z

(i)
2 , z̄

(i)
2 ) = 0, then P1 outputs ai−1 and halts. If signal1 ̸= z

(i)
2 then P1 outputs

ai−1, sends its iteration-i message to P2, and halts.
3. If V erifypk2(i∥a

(2)
i , share2i, y

(i)
2 ) = 1 and a

(1)
i ⊕ a

(2)
i ̸= NULL (i.e., x = xi), then P1 sets

ai = a
(1)
i ⊕ a

(2)
i , and continues running the protocol.

P1 sends message to P2:
1. P1 computes y

(i)
1 = Provesk1(i∥b

(1)
i ), z

(i)
1 = Eval′sk′

1
(i), z̄

(i)
1 = Prove′sk′

1
(i). It sends

(b(1)i , share1i, y
(i)
1 , z

(i)
1 , z̄

(i)
1 ) to P2.

2. If P1 does not send anything, then P2 outputs bi−1 and halts. P1 sends (b(1)i , share1i, y
(i)
1 , z

(i)
1 , z̄

(i)
1 )

to P2. If V erifypk1(i∥b
(1)
i , share1i, y

(i)
1 ) = 0 or V erify′pk′

1
(i, z

(i)
1 , z̄

(i)
1 ) = 0, then P2 outputs bi−1 and

halts. If signal2 ̸= z
(i)
1 then P2 outputs bi−1, sends its iteration-i message to P1, and halts.

3. If V erifypk1(i∥b
(1)
i , share1i, y

(i)
1 ) = 1 and b

(1)
i ⊕ b

(2)
i ̸= NULL (i.e., y = yi), then P2 sets

bi = b
(1)
i ⊕ b

(2)
i , and continues running the protocol.

Output: If all r iterations have been run, party P1 outputs ar and party P2 outputs br.

Figure 2: Protocol for computing the functionality for set-intersection

easy to find that Uideal = U + (α ·U∗ + (1−α) ·Urand−
U)·Prideal[abort] ≤ U given that α·U∗+(1−α)·Urand−
U < 0. This shows that Π induces a computational Nash
equilibrium.

Proposition 2: If 0 < α < 1, U > α × U∗ + (1 −
α)× Urand, VRFs are pseudorandom, and there is always
a unique valid message each party can send, then the pro-
tocol Π induces a computational strict Nash equilibrium.
Proof: The analysis of Proposition 1 and the fact that
there is always a unique valid message each party can send
show us that Π induces a computational strict Nash equi-
librium. In other words, say P1 plays a strategy σ′

1 with
σ′
1 ̸≈ Π. This implies that Prreal[abort] ≥ 1/poly(n)

for infinitely many values of n. Claim 1 then shows that
Prideal[abort] ≥ 1/poly(n) for infinitely many values of

n, and so U − Uideal ≥ 1/poly(n). Since | u1(σ
′
1, σ2) −

Uideal | is negligible, we conclude that U − u1(σ
′
1, σ2) ≥

1/poly(n) for infinitely many values of n.
Proposition 3: The protocol Π is stable with re-

spect to trembles given that 0 < α < 1 and
U > α× U∗ + (1− α)× Urand.
Proof: Let δ be a parameter. Let ρ2 be any PPT strategy
that is δ-close to σ2, and let ρ1 be an arbitrary PPT strategy
for P1. There exists a PPT strategy σ′

1 satisfying Definition
3. Let strategy σ′

1 be defined as follows:

1. Run ρ1 on the output of ShareGenr. Set aborted = 0.
2. In each iteration i:

– Receive the iteration-i message mi from P2. If P2

aborts, then set aborted = 1.
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– Give mi to ρ1 and get message m′
i as response.

– If aborted = 1 then forward m′
i to P2; otherwise,

compute the response (e.g., the protocol transcripts)
as prescribed by Π and send that to P2 instead.

3. If aborted = 0 determine the output according to Π;
otherwise, output whatever ρ1 outputs.

When σ′
1 interacts with σ2, then aborted is never set to

1; thus, σ′
1 yields equivalent play w.r.t Π, and u1(σ

′
1, σ2) =

u1(ρ1, ρ) = U . It remains to show u1(ρ1, ρ2) ≤
u1(σ

′
1, ρ2) + negl(n). Let ρ̂2 is run only with probabil-

ity δ by ρ2. During a session where P1 follows strategy ρ1,
let abort denote the event that ρ1 aborts before P2 aborts,
and let prabort(a) be the probability of abort when P2 fol-
lows strategy a. We now state two claims. The first one
says that the only advantage to P1 of playing ρ1 rather than
σ′
1 because of σ1 aborting first.
Claim 2: u1(ρ1, ρ̂2)−u1(σ

′
1, ρ̂2) ≤ prabort(ρ̂2) · (U∗−

U ′)
The following claim shows that abort occurs at least as
often when ρ1 interacts with σ2 as when ρ1 interacts with
ρ̂2.

Claim 3: prabort(σ2) ≥ prabort(ρ̂2)
We omit the proofs of the above since they are analogous

to those in [8].
Now, let Ũ = α × U∗ + (1 − α) × Urand, and we have
Ũ < U by assumption. Using Uideal ≤ U , Claim 1, Claim
2,and Claim 3 we get that u1(ρ1, ρ2)− u1(σ

′
1, ρ2) ≤ (1−

δ)×(Ũ−U)×prabort(ρ̂2)+δ×(U∗−U ′)×prabort(ρ̂2)+
negl(n). Since Ũ − U is strictly negative, there exists δ >
0 for which the above expression is negligible for n large
enough. This completes the proof sketch.

According to the above propositions and their proofs, we
give the theorem as follows:

Theorem 1: If 0 < α < 1, U > α × U∗ + (1 −
α)× Urand, and VRFs are pseudorandom, then Π induces
a computational strict Nash equilibrium that is stable with
respect to trembles.

6 Performance Comparison
For a single data item, the protocol in covert model [28] re-
quires only a constant number of rounds, single oblivious
transfer to the number of input items, and requires n|C|
number of communication bits where n is the security pa-
rameter and |C| is the size of the circuit being computed.
Whereas the protocol in malicious model [17] requires d
number of rounds (d is the depth of C), more communi-
cation bits (dependent on the number of parties), and ex-
pensive computation like ZK proof which is linear to the
number of data items. Both the covert and malicious mod-
els rely on homomorphic operations. On the other hand, in
our rational model, we do not need any ZK proof or homo-
morphic encryption computation. As discussed earlier, use
of ZK proof and homomorphic encryption leads to ineffi-
ciency in practical world and we want to avoid using the

expensive tool like ZK proofs. As for the other parame-
ters in rational model, the share size is |t| + O(n), where
t is the size of data items and n is the security parame-
ter. The round complexity of the protocol for each item
is O(α−1), where α is the geometric distribution used to
pick up the value of i∗ (typically, we will need only two
rounds for each items in our protocol). In our construc-
tion, we have showed the use of VRFs, which is also an
expensive tool. However, it is possible to design our proto-
col with information-theoretic security using information-
theoretically secure MACs. It is also possible to replace
VRFs with TDPs, since the properties of VRF that we re-
quire for our constructions are also available with TDPs.
Using TDPs would give us much more efficient protocol
as compared to using VRFs. Construction using TDP is
straightforward and we omit the details here. Clearly, the
rational model requires much lighter computation than the
protocol designed in malicious model and performs even
better than the covert model in terms of computational
overhead given that MAC or TDP is used instead of VRF.

7 Conclusion
In this paper, we have proposed a privacy-preserving set-
intersection protocol in two-party settings from the game-
theoretic perspective. We have used VRFs as the under-
lying cryptographic primitive. We also suggest replacing
VRFs with information-theoretic secure MACs or TDPs,
which are simple and efficient. Our protocol satisfies strong
equilibrium notions like computational versions of strict
Nash equilibrium and stability with respect to trembles.

References
[1] Abraham, I., Dolev, D., Gonen, R., and Halpern, J.:

Distributed Computing Meets Game Theory: Robust
Mechanisms for Rational Secret Sharing and Multi-
party Computation. In 25th ACM Symposium Annual
on Principles of Distributed Computing, pp. 53-62,
2006.

[2] Agrawal, R. and Terzi, E.: On Honesty in Sovereign
Information Sharing. In the 10th International
Conference on Extending Database Technology-
EDBT’06, pp. 240-256 2006.

[3] Aumann, Y. and Lindell, Y.: Security Against Covert
Adversaries: Efficient Protocols for Realistic Adver-
saries, In Theory of Cryptography- TCC’07, pp. 137-
156, 2007.

[4] Cramer, R., Damgard, I., and Nielsen, J.B.: Multi-
party Computation from Threshold Homomorphic
Encryption. In Advances in Cryptology- EURO-
CRYPT’01, pp. 280-299, 2001.

[5] Dodis, Y.: Efficient Construction of (distributed)
Verifiable Random Functions. In 6th International



PRIVACY-PRESERVING TWO-PARTY RATIONAL . . . Informatica 36 (2012) 277–286 285

Workshop on Theory and Practice in Public Key
Cryptography- PKC’03, pp. 1-17, 2003.

[6] Dodis, Y. and Rabin, T.: Cryptography and Game
Theory. In N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory, pp.
181-207, Cambridge University Press, 2007.

[7] Emura, K., Miyaji, A., and Rahman, M.S.: Efficient
Privacy-Preserving Data Mining in Malicious Model.
In The 6th International Conference on Advanced
Data Mining and Applications, ADMA’10. pp. 370-
382, 2010.

[8] Fuchsbauer, G., Katz, J., and Naccache, D.: Efficient
Rational Secret Sharing in Standard Communication
Networks. In Theory of Cryptography- TCC’10, pp.
419-436, 2010.

[9] Goldreich, O.: Foundations of cryptography: Ba-
sic applications. Cambridge Univ. Press, Cambridge,
2004.

[10] Gordon, S.D., Katz, J.: Rational Secret Sharing, Re-
visited. In 5th International Conference on Security
and Cryptography for Networks- SCN’06, pp. 229-
241, 2006.

[11] Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.:
Complete Fairness in Secure Two-party Computa-
tion. In 40th Annual ACM Symposium on Theory of
Computing- STOC’08, pp. 413-422, 2008.

[12] Halpern, J. and Teague, V.: Rational Secret Shar-
ing and Multi-party Computation: Extended abstract.
In 36th Annual ACM Symposium on Theory of
Computing- STOC’04, pp. 623-632, 2004.

[13] Izmalkov, S., Micali, S., and Lepinski, M.: Rational
Secure Computation and Ideal Mechanism Design.
In 46th Annual Symposium on Foundations of Com-
puter Science- FOCS’05, pp. 585-595, 2005.

[14] Jagannathan, G. and Wright, R.N.: Privacy-
preserving Distributed k-means Clustering over Ar-
bitrarily Partitioned Data. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining- KDD’05, pp. 593-599, 2005.

[15] Jiang, W., Clifton, C. and Kantarcioglu, M.: Trans-
forming Semi-Honest Protocols to Ensure Account-
ability. In Data and Knowledge Engineering (DKE),
65(1), pp. 57-74, 2008.

[16] Kantarcioglu, M. and Clifton, C.: Privately Com-
puting a Distributed k-nn Classifier. In 7th European
Conference on Principles and Practice of Knowl-
edge Discovery in Databases- PKDD’04, pp. 279-
290, 2004.

[17] Kantarcioglu, M., and Kardes, O.: Privacy-preserving
Data Mining in the Malicious model. In International
Journal of Information and Computer Security, Vol.
2, No. 4, pp. 353-375, 2008.

[18] Katz, J.: Bridging Game Theory and Cryptography:
Recent Results and Future Directions. In Theory of
Cryptography- TCC’08. pp. 251-272, 2008.

[19] Katz, J.: On Achieving the Best of Both Worlds in Se-
cure Multi-party Computation. In 39th Annual ACM
Symposium on Theory of Computing- STOC’07, pp.
11-20, 2007.

[20] Kol, G. and Naor, M.: Cryptography and Game The-
ory: Designing Protocols for Exchanging Informa-
tion. In Theory of Cryptography- TCC’08, pp. 320-
339, 2008.

[21] Kol, G. and Naor, M.: Games for Exchanging Infor-
mation. In 40th Annual ACM Symposium on Theory
of Computing- STOC’08, pp. 423-432, 2008.

[22] Lin, X., Clifton, C. and Zhu, M.: Privacy-preserving
Clustering with Distributed EM Mixture Modeling.
In Knowledge and Information Systems, July, Vol. 8,
No. 1, pp. 68-81, 2005.

[23] Lindell,Y: Parallel coin-tossing and constant-round
secure two-party computation. Journal of Cryptology,
16(3):143-184, 2003.

[24] Lindell, Y. and Pinkas, B.: Privacy-preserving Data
Mining. In Advances in Cryptology- CRYPTO’00,
pp. 36-54, 2000.

[25] Liu, J., Lu, Y.H., and Koh, C.K.: Performance Anal-
ysis of Arithmetic Operations in Homomorphic En-
cryption. In ECE Technical Reports, Purdue Univer-
sity, 2010.

[26] Lysyanskaya, A.: Unique Signatures and Verifiable
Random Functions from the DH-DDH Separation. In
Advances in Cryptology- CRYPTO’02, pp. 597-612,
2002.

[27] Micali, S., Rabin, M. O., and Vadhan, S. P.: Verifi-
able Random Functions. In 40th Annual Symposium
on Foundations of Computer Science- FOCS’99, pp.
120-130, 1999.

[28] Miyaji, A., and Rahman, M.S.: Privacy-preserving
Data Mining in Presence of Covert Adversaries. In
The 6th International Conference on Advanced Data
Mining and Applications, ADMA’10. pp. 429-440,
2010.

[29] Miyaji, A., and Rahman, M.S.: Privacy-Preserving
Data Mining: A Game-Theoretic Approach. In The
25th Annual WG 11.3 Conference on Data and Appli-
cations Security and Privacy, DBSec’11. pp. 186-200,
2011.



286 Informatica 36 (2012) 277–286 A. Miyaji et al.

[30] Nix, R. and Kantarcioglu, M.: Incentive Compatible
Distributed Data Mining. In IEEE International Con-
ference on Privacy, Security, Risk and Trust, pp. 735-
742, 2010.

[31] Ong, S. J., Parkes, D., Rosen, A., and Vadhan, S.:
Fairness with an Honest Minority and a Rational Ma-
jority. In Theory of Cryptography- TCC’09, pp. 36-
53, 2009.

[32] Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai,
K.: Security and Correctness Analysis on Privacy-
Preserving k-Means Clustering Schemes. In IEICE
Trans. Fundamentals, Vol.E92-A, No.4, pp. 1246-
1250, 2009.

[33] Vaidya, J. and Clifton, C.: Privacy Preserving As-
sociation Rule Mining in Vertically Partitioned Data.
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining- KDD’02, pp. 639-
644, 2002.

[34] Zhang, N. and Zhao, W.: Distributed Privacy-
preserving Information Sharing. In the 31st In-
ternational Conference on Very large data bases-
VLDB’05, pp. 889-900, 2005.


