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This paper presents a novel mixed-integer programming formulation for scheduling non-preemptive, aperi-
odic, hard real-time tasks with precedence constraints. It provides an integrated partitioning and scheduling
co-synthesis approach. The problem formulation maps some n precedence-related, indivisible jobs hav-
ing specified processing requirements, release times, and due-dates to a system involving a single Central
Processing Unit (CPU) and up to m potential reconfigurable Field Programmable Gate Arrays (FPGAs).
We provide a time-indexed mixed-integer 0-1 programming formulation that jointly assigns tasks to either
the CPU or to one of the FPGAs, and determines the task sequence for each software or hardware compo-
nent that is utilized, with the objective of minimizing a composite cost of task partitioning and scheduling.
Computational experience is provided using randomly generated instances to demonstrate the applicability
of the proposed methodology.

Povzetek: Predstavljen je algoritem za porazdeljevanje opravil pri snovanju programske in strojne opreme.

1 Introduction and Motivation

The task partitioning and scheduling problem bears prac-
tical significance in software/hardware co-design of hard
real-time applications that arise in a host of applications
such as flight and defense control, telecommunication, or
nuclear power plants, to name a few. Specifically, we con-
sider the problem of partitioning and scheduling n indivisi-
ble (no preemption), aperiodic (which could be considered
as the body of a looped system), precedence-related jobs
that are characterized by specific processing requirements,
release times, and due-dates (which are deadlines that can-

not be violated). The system architecture is depicted in Fig-
ure 1, and involves a single Central Processing Unit (CPU)
and a maximum of some m potential reconfigurable Field
Programmable Gate Arrays (FPGAs) controlled by a single
controller unit. The system components are connected with
two explicit communication buses (channels). The first bus
is the system bus, which is used for input/output (I/O) data
transfers, whereas the second is used for FPGA reconfig-
uration transfers. The task processing effort is primarily
carried out by the CPU, in general, and the FPGAs are in-
crementally utilized if the CPU alone cannot conform to all
due-date restrictions. In contrast with scheduling problems
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Figure 1: System Architecture

that arise in production and logistical systems where it is
often desirable to meet imposed due-dates, it is imperative
to comply with the specified due-dates in the problem un-
der investigation.

Another reason for the use of such dual systems in prac-
tice resides in the benefits accruing from the cooperation
between software and hardware components. As a conse-
quence, the co-design problem has gained increasing at-
tention over the last decade, (see [6], [7], [10], [12], [16],
[19], and [20]). This process involves three main oper-
ations, namely, resource (software, hardware, and auxil-
iary components) allocation to the system, task partition-
ing among software and hardware processing components,
and scheduling of the tasks over their assigned processing
components (CPU or FPGA). Most works in the literature
have addressed this joint problem via two-phase methods
[14], where a task partitioning is achieved first, and then
tasks are subsequently scheduled over the relevant process-
ing components. It is important, however, to note that the
task partitioning and scheduling operations are intertwined
[9], and need to be dealt with concurrently in order to de-
termine optimal operational solutions.

An algorithm that aims at partitioning and scheduling
the tasks on two CPUs and several hardware components
with the objective of minimizing the total execution time
and the hardware cost was presented by Liu and Wong
[13]. Arato et al. [2] designed a procedure for schedul-
ing tasks on a software component, where tasks that violate
their deadlines are partially assigned to an auxiliary hard-
ware component. A mixed-integer 0-1 formulation for par-
titioning precedence-related tasks on a single-CPU-single-
FPGA system, as well as a genetic algorithm to address
larger problem instances was presented in [2]. Ali and Das
[1] presented a heuristic algorithm that progressively as-
signs indivisible tasks to dynamically reconfigurable FP-
GAs when certain tasks cannot meet their deadlines on the
CPU. In contrast, this challenging scheduling problem is
tackled in the present paper using a mixed-integer 0-1 pro-
gramming model with the objective of minimizing a com-
posite cost of task partitioning and scheduling on a single
CPU along with several potentially reconfigurable FPGAs.

Jeong et al. [11] proposed a mixed-integer 0-1 formu-
lation and a heuristic for hardware-software partitioning in
systems consisting of a single CPU and a single FPGA,
with the objective of minimizing the reconfiguration over-
head. A mixed-integer programming model was developed
by Niemann and Marwedel [14] that employs a two-phase
method for hardware/software partitioning, where a tenta-
tive schedule is first proposed and is subsequently verified;
if the timing constraints are violated, the partitioning step is
repeated with timing constraints that are tighter than the es-
timated scheduling horizon length. Bender [3] discussed an
alternative mixed-integer programming approach for map-
ping real-time precedence graphs into a system of Appli-
cation Specific Integrated Circuits (ASICs) that are used as
hardware components, and pipelined microprocessors that
are used as software components. Initially, only a limited
number of hardware components are used, and these are in-
crementally increased until a feasible solution is obtained.

Recently, hardware/software partitioning for multimedia
and wireless mobile applications has gained great impor-
tance. Brogioli et al. [4] proposed a set of criteria for
partitioning real-time embedded multimedia applications
between software programmable Digital Signal Processors
(DSPs) and hardware-based FPGA coprocessors. Dasu and
Panchanathan [5] investigated the design and development
of a dynamically reconfigurable multimedia processor that
involves an optimal hardware/software codesign method-
ology. Furthermore, a hardware/software partitioning for
multimedia application that utilizes process-level pipelin-
ing and a heuristic technique based on simulating annealing
was presented by Juan et al. [12].

A design space exploration tool that supports both ex-
plicit communication and reconfigurable hardware was ad-
dressed by Haubelt et al. [10]. The developed algorithm
strictly separates functionality from the architecture, and
maps a process graph onto components such that data de-
pendencies given by the process graph can be handled in
the resulting implementation. The work presented in the
present paper bears some similarity to this approach in that
we also use explicit communication channels and reconfig-
urable hardware in our system architecture.

Observe that the problem at hand is also related to the
challenging class of unrelated parallel machine schedul-
ing problems (see [15]). It is characterized by the pres-
ence of release dates, imperative due-dates, precedence
constraints, inter-task data communication, reconfiguration
of hardware resources (FPGAs), and a composite objective
function that minimizes the processing and resource uti-
lization costs. Also, it is specially structured due to the fact
that all processing components are identical, except for the
CPU.

The main contribution of the present paper is a novel
formulation of a time-indexed mixed-integer 0-1 program-
ming model for the co-synthesis hardware/software inte-
grated partitioning and scheduling problem. The motiva-
tion for the proposed work is two-fold: first, it provides
a tool for simultaneously partitioning (or mapping) and
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scheduling tasks onto hardware/software units, and second,
it offers a design space exploration tool to ascertain the
minimum number of FPGAs required for a particular ap-
plication before a system is actually built.

The remainder of this paper is organized as follows. In
Section 2, we formally describe the problem under inves-
tigation along with our notation. Thereafter, we introduce
in Section 3 a mixed-integer 0-1 programming formulation
that simultaneously captures the requirements pertaining to
the partitioning and scheduling operations. Section 4 delin-
eates our data generation scheme, and reports our compu-
tational experience using a set of random test instances to
demonstrate the effectiveness of the proposed solution ap-
proach. We close the paper in Section 5 with a summary of
our findings.

2 Problem Description and Notation

We address the problem of scheduling some n precedence-
related jobs having specified processing requirements, re-
lease times, and inviolable due-dates in a system involving
a single Central Processing Unit (CPU) and a maximum of
some m potential reconfigurable Field Programmable Gate
Arrays (FPGAs). Each job can be processed either by the
CPU itself, or it can be scheduled for processing on one of
the m available FPGAs. In either case, no preemption is
permitted, and each resource (CPU or FPGA) can process
at most one job at any point in time. However, whenever
an FPGA begins processing a job, it must be reconfigured
to perform the required operation by a single available re-
configuration controller. This reconfiguration process con-
sumes a specified duration that is part of the total process-
ing time required for performing the job on the associated
FPGA. Note that while the controller is reconfiguring any
FPGA to begin processing a job, it is occupied and cannot
simultaneously reconfigure another FPGA. Again, no pre-
emption is permitted in the reconfiguration process. Also,
not all the m available FPGAs need be used; in fact, there
is a fixed cost for using an FPGA that competes with the
cost related to achieving scheduling efficiency. When an
FPGA finishes executing any task, it becomes available for
the next task if needed. This is described more in detail in
the model formulation given in Section 3.

In our analysis, the FPGAs cannot be preconfigured
since it is not known in advance which task will be exe-
cuted on the FPGA rather than on the CPU. Moreover, if
the system has more than one FPGA, it is not known which
FPGA will be used until scheduling is complete. The pro-
posed system (Figure 1) is generic and can be used for ex-
ecuting any precedence-related jobs. However, for a given
real-time set of jobs, once an optimal system configuration
and scheduling decisions are determined, then a partial run-
time reconfiguration can be performed during implementa-
tion where only the configuration bits of the particular task
are transferred to the FPGA in order to reduce the configu-
ration time.

Notation:

– j = 1, ..., n: Index for jobs.

– For establishing precedences, we define P =
{(j1, j2) : j1 → j2, i.e., the processing of job j1 must
precede that of job j2}.

– m = maximum potential number of FPGAs available
for use.

– Index for time-slots: Let the time be discretized so that
the scheduling time-line for the CPU and each FPGA
contains s time-slots, where the end of time-slot s
is estimated to be the maximum allowable makespan
duration, based on due-dates. We index the time-
slots over this maximum makespan duration as: t =
1, ..., s. (Note that the actual duration of the time-slots
is arbitrary and rescalable, and typically ranges from
1 to 300 seconds in practice. Also, the time measure-
ment (in discretized units) begins at time t = 0 at the
beginning of slot 1.)

– Index for slots: These correspond to a sequential in-
dexing of the foregoing time-slots over the resources,
where the slots for the CPU are indexed as k =
1, ..., s, the slots for FPGA 1 are indexed as k =
s + 1, ..., 2s, the slots for FPGA 2 are indexed as
k = 2s + 1, ..., 3s, and so on, up to slots k =
ms + 1, ..., (m + 1)s for FPGA m. (Note that the
time-slots are numbered 1, ..., s, whereas the slots are
indexed contiguously over the CPU and the m FPGAs
as k = 1, ..., (m+ 1)s.)

– Index for resources: r = 0, 1, ...,m, where r = 0 is
the CPU and r = 1, ...,m index the FPGAs.

– r(k) = resource corresponding to slot k. (So r(k) = 0
for k = 1, ..., s, r(k) = 1 for k = s+1, ..., 2s, and so
on.)

– δjr = processing time of job j on resource r (in in-
tegral time units that conform with the time-slot dura-
tion).

– πjr = reconfiguration time on resource FPGA r to pro-
cess job j (in integral time units that conform with the
time-slot duration). We assume that πjr is included
within δjr, ∀j, ∀r ≥ 1.

– αj = release time of job j. That is, if a job j has
no predecessors, then the earliest time-slot to start its
processing is αj + 1.

– dj = due-date of job j.

– lbj = lower bound on the starting time-slot for job
j. If a job has no predecessor, then lbj = αj + 1;
otherwise we may simply take lbj = max{αj +
1, max

j1:(j1,j)∈P
{lbj1 +min

r
{δj1r}}}.
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– k mod+ (s) = remainder for the division k/s, except
that this is taken as s if the remainder is zero.

Principal Decision Variables:
The principal decision variables are defined below:

– xjk =

{
1 if job j is assigned to start at slot k
0 otherwise, ∀j, k.

– yr =

{
1 if FPGA r is utilized
0 otherwise, r = 1, ...,m.

Auxiliary Decision Variables:
The following auxiliary variables are defined based on

the xjk-variables:

– sj = time-slot at which the processing of job j starts.

– fj = time-slot at which the processing of job j ends.

Key Sets:
We define certain key sets based on individual job pro-

cessing times (which could, in general, be CPU- and
FPGA-dependent), reconfiguration times (which could
again be FPGA-dependent), job release/availability times,
and job due-dates:

– Sj ≡ {slots k: xjk = 1 is a possible decision based
on release, due-date, processing, and reconfiguration
times}, ∀j = 1, ..., n.

Observe that we may express Sj as

Sj = {k : k ∈ {1, ..., (m+1)s}, lbj ≤ k mod+(s) ≤
dj − δjr(k) + 1}, ∀j = 1, ..., n.

– Sjr = {k ∈ Sj :
slot k is associated with resource r}, ∀j =
1, ..., n, r = 0, ...,m.

– Jk = {(j, ℓ) : j ∈ {1, ..., n}, ℓ ∈ Sj , and xjℓ = 1
would imply that slot k would be occupied by the re-
configuration/processing of job j}, ∀k = 1, ..., (m +
1)s.

Note that Jk can be expressed as

Jk = {(j, ℓ) : j ∈ {1, ..., n}, ℓ ∈ Sj , r(ℓ) =
r(k), ℓ mod+(s) ≤ k mod+(s) ≤ ℓ mod+(s) +
δjr(ℓ)}.

– Rt = {(j, ℓ) : j ∈ {1, ..., n}, ℓ ∈ Sj , and xjℓ = 1
would imply that during the time-slot t, the controller
is busy performing a reconfiguration}, ∀t = 1, ..., s−
∆, where ∆ = min

j,r
{δjr − πjr}.

We can formally state Rt as

Rt = {(j, ℓ) : j ∈ {1, ..., n}, ℓ ∈ Sj , ℓ ≥ s +
1, ℓ mod+(s) ≤ t ≤ ℓ mod+(s) + πjr(ℓ)}.
Note that Rt ≡ ∅ for t = s−∆+ 1, ...., s.

Cost Parameters:

– cjk = cost of commencing the operation of job j at
the duration corresponding to slot k.

– λ = cost per FPGA used.

Remark 1. The cost of resources (number of FP-
GAs used) and efficiency (as predicated by the term
n∑

j=1

∑
k∈Sj

cjkxjk) compete in the objective function of the

mathematical program formulated in Section 3. In addi-
tion, observe that it might be desirable to preclude alterna-
tive optimal solutions that allow idleness on the available
resources. To this end, we may require the hierarchy of
cost parameters cjk associated with any job j to be strictly
increasing with respect to the time-slot k mod+ (s). 2

3 Mathematical Programming
Formulation

We present below our proposed mixed-integer 0-1 pro-
gramming formulation, denoted by HWSW, which ascer-
tains the task partitioning and scheduling decisions in order
to minimize the total processing and resource costs.

HWSW: Minimize
n∑

j=1

∑
k∈Sj

cjkxjk + λ

m∑
r=1

yr (1a)

subject to
∑
k∈Sj

xjk = 1, ∀j = 1, ..., n (1b)

∑
(j,ℓ)∈Jk

xjℓ ≤ 1,

∀k = 1, ..., (m+ 1)s (1c)∑
(j,ℓ)∈Rt

xjℓ ≤ 1,

∀t = 1, ..., s−∆ (1d)

sj =
∑
k∈Sj

[k mod+(s)]xjk,

∀j = 1, ..., n (1e)

fj =
∑
k∈Sj

[k mod+(s) + δjr(k) − 1]xjk,

∀j = 1, ..., n (1f)

fj1 + 1 ≤ sj2 , ∀(j1, j2) ∈ P (1g)

yr ≥
∑

k∈Sjr

xjk,

∀j = 1, ..., n, ∀r = 1, ...,m (1h)

1 ≥ y1 ≥ y2 ≥ ... ≥ ym ≥ 0 (1i)
n∑

j=1

∑
k∈Sjr

xjk ≥
n∑

j=1

∑
k∈Sj,r+1

xjk,

∀r = 1, ...,m− 1 (1j)

x binary, y continuous. (1k)

The objective function (1a) seeks to minimize the to-
tal processing and resource costs. Constraint (1b) requires
each job to be feasibly scheduled on either the CPU or on
an FPGA. Constraint (1c) asserts that no resource can be
processing more than one job simultaneously during any
associated slot. Likewise, Constraint (1d) enforces the re-
striction that the controller can be reconfiguring at most
one job at any point in time. Note that whenever xjk = 1
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for some job j ∈ {1, ..., n}, and k ∈ Sj , where slot k
corresponds to FPGA r, say, then it is assumed that job j
starts its reconfiguration by the controller on FPGA r at
the time corresponding to the beginning of slot k, after
which it immediately proceeds to be processed by FPGA
r. Constraints (1e) and (1f) state the definitional identities
for the start and finish time-slots for each job j in terms of
the x-variables, and Constraint (1g) represents the prece-
dence relationships. Constraint (1h), along with the second
objective term, invokes that yr = 1 if and only if some
job is processed on FPGA r, and is zero otherwise, even
when restricted to be a continuous variable on [0, 1]. Con-
straints (1i) and (1j) attempt to defeat the inherent symme-
try in the problem with respect to the FPGAs, assuming that
the FPGAs are identical with respect to processing times.
(Note that if there are subgroups of identical FPGAs, then
these types of constraints can be incorporated within each
such subgroup.) Specifically, Constraint (1i) requires that
the lower-indexed FPGAs be utilized first, and more im-
portantly, Constraint (1j) attempts to impart an identity to
the utilized FPGAs by imposing the hierarchy that FPGA r
should process at least as many jobs as FPGA r+1. With-
out such hierarchical constraints, the inherent symmetry in
the problem can hopelessly mire the solution process by
requiring it to search among symmetric reflections of es-
sentially the same sets of solutions (see Sherali and Smith
[17]). Finally, (1k) represents the logical restrictions on the
variables, where the y-variables would automatically turn
out to be binary-valued at optimality, even when permitted
to be continuous variables on the interval [0, 1].

The model is a linear mixed-integer 0-1 program (MIP),
which can be solved using a commercial solver to any de-
sired percentage of optimality.

Remark 2. It is possible to accommodate different alter-
native objective functions of practical interest within this
modeling framework involving the makespan, resource us-
age (number of FPGAs, durations of usage of FPGAs, etc.),
and the completion times of jobs, as desired. 2

4 Computational Experience

In this section, we begin by delineating the data genera-
tion scheme for constructing random, small- to moderately-
sized test instances. Next, we present our computational
experience to test the efficiency of the proposed mathemat-
ical programming formulation. Our proposed formulation
was coded in AMPL and solved using CPLEX 10.1 on a
Dell Precision 650 workstation having a Xeon(TM) CPU
2.40 GHz processor and 1.50 GB of RAM.

4.1 Data generation

To demonstrate the usefulness of the optimization schedul-
ing model, we have used randomly simulated, realistic

graphs along with the associated data. Although the result-
ing test cases do not pertain to actual hardware data, they
simulate what one might expect in practice.

In our test-bed, the number of jobs n was selected to be
10, 20, or 30, and the number of potential FPGAs, m, was
specified to ensure the feasibility of the resulting instance
upon generating the different processing times and key sets.

Random Parameters:

– The precedence relationships between the tasks
were randomly generated according to the following
scheme. Given j2 ∈ {2, ..., n}, and for all j1 ∈
{1, ..., j2 − 1}, we generated φj1j2 using a uniform
distribution over the range [0, 1]. For some threshold
ρ, if φj1j2 > ρ, then the arc (j1, j2) was added to P ,
that is, task j1 was required to be a predecessor of task
j2. In our scheme, we took ρ = 0.75, which induced
a desired density of the precedence arcs in the task
graph. Also, redundant arcs were suppressed from the
set P by invoking transitivity in the precedence rela-
tionships. That is, if the arc (jβ , jγ) was generated
while there also exists an alternative path from jβ to
jγ in the precedence graph, then the direct arc (jβ , jγ)
is redundant, and was consequently deleted from the
set P .

– The δj0-parameters and the release dates, αj , were
generated using a uniform discrete distribution over
the sets {1,...,10} and {0,...,15}, respectively.

– Following a scheme similar to that employed by Ali
and Das [1], we took the reconfiguration times πjr to
be given by ⌊0.015ζj⌋, where ζj was randomly gen-
erated using a uniform distribution over the range [0,
200], and where ⌊·⌋ denotes the rounding-down oper-
ation.

– We set dj = ⌊1.3lbj + θj⌋, where θj is a randomly
generated value using a uniform distribution over the
interval [δ̄ − τ − Λ

2 , δ̄ − τ + Λ
2 ], and where δ̄ is the

average processing time over the CPU, and τ and Λ
are parameters that influence the tightness of the due-
dates. Here, the term [δ̄ − τ − Λ

2 , δ̄ − τ + Λ
2 ] is based

on Fisher’s method [8]; we took τ = 0.2 and Λ = 1
in our experiments.

– The processing costs were computed as cjk = ⌊ℵj⌋+
k mod+(s), where ℵj was generated using a uniform
distribution over the interval [0, 5], and where s was
computed as noted below.

Additional Deduced Parameters:

– δjr = ⌈0.3δj0⌉+ πjr, ∀j, ∀r ≥ 1.

– s = max
j=1,...,n

{dj}.

– λ = 4 max
j=1,...,n

{dj}.
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Remark 3. If the reconfiguration times, as well as certain
processing times on FPGAs, are fractional, then all time-
related parameters may be suitably rescaled to achieve data
integrality. This process, however, could entail a significant
growth in the size of the problem. An alternative approach
would be to round up all fractional processing times (and
to round down due-dates, as appropriate). The marginal
time amounts that are introduced by this rounding process
may be viewed as idleness-buffers on the relevant hardware
or software components. By solving the problem instance
with such integerized data, we would obtain a heuristic so-
lution to the original problem. Further improvements can
be achieved via a routine that shifts operations to the left to
eliminate the marginal idleness that has been introduced by
this rounding process. 2

4.2 Illustrative example

As a prelude, we present below an example to illustrate
the problem under investigation and to gain insights into
the proposed formulation. Consider the problem instance
where the jobs to be processed are related via the prece-
dence graph depicted in Figure 2 and where the associated
parameters are provided in Table 1 (with the remaining data
being generated as prescribed in Section 4.1). The available
resources include a single CPU and one FPGA for poten-
tial use. The discrete, time-indexed scheduling horizon has
a projected length of s = 39 time-slots.

The solution produced by Model HWSW is summarized
in Table 1, and is depicted in the Gantt-chart in Figure
3. This small-sized problem instance was solved to op-
timality in 0.04 seconds. Observe that the slot values k
for which xjk = 1, as specified in Table 1, indicate in-
directly when operations start their processing, as well as
the processing components on which these operations are
scheduled (by observing the time-slot ranges attributed to
each software/hardware component). For instance, both
jobs 9 and 10 start at the beginning of time-slot 28 and
are completed at the end of time-slot 31. However, since
x9,28 = x10,67 = 1, job 9 is scheduled on the CPU,
whereas job 10 is processed on FPGA 1.

Job j αj δj0 πj1 dj k : xjk = 1 sj fj
1 4 1 1 11 5 5 5
2 1 9 1 9 45 6 9
3 5 4 3 14 10 10 13
4 0 6 1 23 14 14 19
5 3 9 2 24 53 14 18
6 5 2 3 29 20 20 21
7 14 10 3 29 61 22 27
8 1 7 3 39 71 32 37
9 2 4 2 38 28 28 31

10 4 7 1 39 67 28 31

Table 1: Data and results for an illustrative example

4.3 Computational results

Table 2 summarizes the results obtained for instances hav-
ing n = 10 and 20. The first column of this table spec-
ifies the instance number as well as the number of jobs

and the maximum number of FPGAs involved. The sec-
ond column provides the length of the scheduling hori-
zon (number of time-slots). In the next three columns,
we present the results obtained for solving the continuous
or linear programming (LP) relaxation of Model HWSW,
denoted HWSW, by allowing the x-variables to assume
continuous values between 0 and 1. The optimal objective
value of the continuous relaxation (ν(HWSW)), the ensu-
ing computational time in seconds, and the % optimality
gap, are reported for each instance. We define the % Gap
as = 100 ν(HWSW)−ν(HWSW)

ν(HWSW) . The final two columns relate
to solving Problem HWSW to optimality. Table 2 reveals
that for these instances having up to 20 jobs, optimal solu-
tions were obtained within manageable times.

Table 3 provides the results for the more challenging 30-
job problem instances. Here, in addition to solving the
problem to optimality, we demonstrate the effectiveness of
employing two heuristics to derive good quality feasible
solutions in a relatively timely fashion. In Table 3, in ad-
dition to the LP solution, we report the first MIP solution
produced by CPLEX during its branch-and-bound (B&B)
exploration, as well the best available MIP solution that the
solver could obtain within a specified computational limit
of 300 CPU seconds. We compare these two heuristic ap-
proaches to solving the problem to optimality by reporting
the percentage deviation (% Dev.) between the heuristic
solution value from the optimal solution value.

Whereas the LP relaxation objective values for n = 10
were particularly tight (within an average optimality gap
of 0.7% as seen in Table 2), the LP relaxation for larger
problem instances (n ∈ {20, 30} over Tables 2 and 3) ex-
hibited an average optimality gap of 19.5%. As a con-
sequence, these larger problem instances required a sig-
nificant amount of branching operations within the B&B
algorithm employed by the solver. However, it is worth-
while mentioning that by considering the first MIP solution
obtained by the solver, or by imposing a time-bound (of
300 CPU seconds) on the computational effort, the result-
ing heuristic solutions respectively sacrificed only 2% and
0.18% of optimality on average for n = 30, while achiev-
ing an average computational savings of 98.6% and 93.8%,
respectively, as compared with determining optimal solu-
tions. This indicates that near-optimal solutions are typi-
cally identified at early stages of the B&B exploration and,
hence, motivates the use of such B&B-based heuristic ap-
proaches for larger problem instances. It is also important
to highlight that the efficiency of such B&B-based heuris-
tic approaches is predicated on the integration of a round-
ing heuristic scheme and a relaxation-induced neighbor-
hood search (RINS) heuristic that is implemented within
CPLEX. At a frequency that the user may control (based on
the difficulty and the size of the test instance under investi-
gation), the solver triggers the rounding scheme and/or the
RINS heuristic at any node of the B&B tree in an attempt
to identify a good quality MIP solution. In our quest for
the first MIP solution and the best MIP solution within 300
CPU seconds, the rounding scheme and the RINS heuristic
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were triggered by the solver at every node explored in the
B&B tree.

5 Conclusions

We have proposed a novel formulation for partitioning and
scheduling precedence-related jobs on both hardware and
software components over a time-indexed horizon. Our
model effectively captures the nonpreemption assumption,
the precedence constraints, the inviolable due-date restric-
tions, and the processing times required over hardware and
software components. Computational experience reported
using randomly generated test instances reveals that opti-
mal solutions can be computed (for n ≤ 20) within about
20 seconds. For n = 30, we demonstrated the effective-
ness of two branch-and-bound-based heuristic approaches
in producing near-optimal solutions. In particular, using
the branch-and-bound algorithm of CPLEX 10.1 to output
the first MIP solution and the best MIP solution within a
timelimit of 300 CPU seconds, the resulting heuristic solu-
tions respectively sacrificed only 2% and 0.18% of optimal-
ity on average, while achieving an average computational
savings of 98.6% and 93.8%, respectively, as compared
with determining optimal solutions. Thus, we recommend
the use of such heuristic approaches for large instances in
order to obtain near-optimal solutions with manageable ef-
fort. Also, we have focused our attention on minimizing the
total processing and resource costs. However, the proposed
model is flexible enough to accommodate different alter-
native objective functions of practical interest within this
same modeling framework, which involve the makespan,
resource usage (number of FPGAs, durations of usage of
FPGAs, etc.), and the completion times of jobs, as desired.
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Figure 2: Task precedence graph for the illustrative example involving 10 tasks
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Figure 3: Gantt chart for an illustrative example involving 10 tasks and one FPGA

Instance s LP Solution MIP solution
#, (n,m) ν(HWSW) Time (s) % Gap ν(HWSW) Time (s)

1, (10,3) 42 387 0.05 1.5 393 0.35
2, (10,3) 69 413 0.09 0 413 0.09
3, (10,3) 59 363.8 0.11 1.6 370 0.20
4, (10,3) 71 431 0.12 0.2 432 0.14
5, (10,3) 62 396 0.09 0.2 397 0.12

6, (20,2) 40 639.66 0.12 20.2 803 0.39
7, (20,2) 44 649.30 0.11 22.4 838 1.45
8, (20,2) 58 829.14 0.14 23.0 1079 17.12
9, (20,2) 72 1008 0.10 22.2 1296 0.54
10, (20,2) 63 841 0.17 23.5 1100 20.93

Table 2: Performance of Model HWSW for instances having n = 10 and 20

Instance s LP Solution First MIP MIP within 300 s Optimal MIP
#, (n,m) ν(HWSW) Time (s) % Gap ν(HWSW) Time (s) % Dev. ν(HWSW) % Dev. ν(HWSW) Time (s)
11, (30,2) 77 1444.7 0.18 17.9 1769 6.3 0.4 1761 0 1761 10.8
12, (30,2) 74 1228.11 0.21 20.0 1571 17.4 2.2 1537 0 1537 103.93
13, (30,2) 57 1166.49 0.23 17.7 1484 21.6 4.5 1433 0.9 1419 6647.9
14, (30,2) 92 1175.98 0.39 19.2 1485 165.6 1.9 1466 ≈ 0 1456 2819.3
15, (30,2) 81 1639.24 0.39 9.6 1836 17.6 1.1 1815 0 1815 6943.7

Table 3: Performance of Model HWSW for instances having n = 30
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