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The motion of water or the atmosphere that surrounds or supports a mobile platform affects the motion
of the platform in a favorable or unfavorable way. Exploiting and compensating the ambient field is in-
vestigated for different motion objectives like the classical point to point motion, observation motion,
exploration motion and so-called survival motion. Time and energy optimal trajectories in the presence of
fields are formalized and shown to be computable by means of discrete optimization.

Povzetek: Analizirano je gibanje mobilne platforme v okolju.

1 Introduction

Mobile platforms that float, dive or fly are affected by the
motion of their ambient fields. These fields may be wind,
oceanic streams like the Gulf and the Humboldt stream,
tidal or diurnal motions, currents and arbitrary combina-
tions thereof. The fields may be stationary or nonstation-
ary.

Platforms considered here include autonomous sailing
ships, commercial vessels that receive additional propul-
sion from airfoils such as skysails [14], (gliding) planes and
aerobots designed for the Earth or for a foreign planet with
an atmosphere such Venus and Mars as well as Titan (moon
of Saturn) and Europe (moon of Jupiter). The motion of a
platform is abstracted here from almost all kinematic and
dynamic constraints, so that neither inertia nor restrictions
on the control variables like bounds on turning angles ap-
ply. This allows, in particular, to ignore the motion history
for computing any motion continuation. Uncontrolled mo-
tion (drift) is considered separately from motion with con-
trols.

Key issues for trajectories without control are reachabil-
ity of a destination point by pure drift and the computabil-
ity of the distance of pure drift towards a destination point.
Key issues for trajectories with controls are computations
of minimum time and minimum energy trajectories towards
destination points, optimal trajectories according to the two
foregoing issues towards a destination region, minimum
energy trajectories towards a destination point to meet a
given due date, optimal orbits to continuously observe a
stationary point of interest, optimal trajectories to explore
a given region of interest and longest survival orbits allow-
ing a flying platform to stay airborne with a fixed energy
budget for a maximum time.

Horizontal motion will be considered first, followed by
straightforward as well as by a particular extension to three
dimensions. The field is assumed to be known through-

out. Thus, no uncertainty of the field is admitted, nei-
ther in strength nor in direction. This amounts to de-
terministic path planning rather than handling the unex-
pected like motion adaptation for collision avoidance [15]
or even managing completely unforeseeable environmental
changes. Also, selflocalization, which is the determination
of the position platform in some reference frame, is not part
of this work.

Time and energy minimization of trajectories will be ob-
tained by discrete optimization methods, in particular by
graph algorithms. The majority of the motion objectives
which are introduced below, go beyond point to point mo-
tion and use this well-known problem as starter. Optimal
trajectories for two-dimensional motion and some exten-
sions to the 3D case of homogenous, vertically stacked
wind layers were investigated in [5]. Optimal control of
hot-air balloons is considered for so-called linear wind
fields in [3]. A 3D wind field is linear if it changes lin-
early with the position. For large scales, this model does
not apply for two reasons. First, the wind speed does typi-
cally not grow linearly in the vertical component. Second,
the Coriolis force, terrain effects and else cause a wind field
to be curved and even be locally turbulent.

A sophisticated analysis of continuous 2D flows and po-
tentially emerging cyclic structures is given in [13]. The
cyclic structures allow orbits, but no platform motion is
considered. Platforms may execute controls that exploit the
fields but they may even oppose the field, at least along part
of the trajectory. The case of exploiting the wind field for
sailing ships has been covered by several references includ-
ing [1].

The remainder of this paper is organized as follows. Sec-
tions 2, 3 and 4 cover problems in two dimensions at in-
creasing complexity levels. The main distinction is that
between drift and deliberate motion. Section 5 deals with
point to point motion under different and joint objectives.
Section 6 considers motion for continuous observation of a
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point location. Section 7 deals with exploration of an area.
Section 8 extends approaches to three dimensions and con-
siders a so-called survival problem in systems of updraft
and downdraft areas.

2 Basic Model
The platform position at any moment is a 2D point P (t) =
(x(t), y(t))T with the superscript T denoting transposition.
Start and destination points of a motion are abbreviated by
PS = (xS , yS)

T and PD = (xD, yD)T . The scale of
considerations is chosen so (large) that platform orienta-
tion does not matter. Positions at future moments resulting
only from drift by the ambient fields are given by the for-
ward equation P (t+∆t) = P (t) +∆t ·w(P (t), t) +∆t ·
c(P (t), t). The effects of all ambient fields are linearized
over time.

Time increments ∆t range from a fraction of a second to
many minutes and even to six hours for vessel routing [12].
The wind field w, the current field c and possible further
fields are dealt with in the same way. Fields are vector
fields Dom → IR2 in the stationary case and vector fields
Dom × T → IR2 in the nonstationary case with Dom ⊆
IR2 in both cases. T is the index set for time with typical
setting T ⊆ [0,∞). The drift caused by a vector field may
eventually lead to positions where the field is not defined.
This view circumvents the specification of domain bounds.
Fields are assumed to generously cover considered regions
so that boundary problems are practically irrelevant.

Fields can be specified discretely in space and, if appli-
cable, in time with hyperbolic spatial interpolation. This
means that the field at some point P in the convex hull of,
say, four support points P1, . . . , P4 is

f(P ) =
4∑

i=1

1
∥P−Pi∥

1
∥P−P1∥ + . . .+ 1

∥P−P4∥
f(Pi)

in the stationary case and

f(P, t) =
4∑

i=1

1
∥P−Pi∥

1
∥P−P1∥ + . . .+ 1

∥P−P4∥
f(Pi, t)

in the nonstationary case. The effect of one support point
on a point of interest is inversely proportional to its rel-
ative distance from that support point. A feature of this
interpolation is that it is also operational if the point of in-
terest lies to the outside of the convex hull of the support
points. Discontinuities may occur when the set of consid-
ered support points changes along a trajectory but this ap-
plies to other interpolation schemes as well. Interpolation
in time is always linear between two adjacent support mo-
ments t1 < t2. For any moment t between the two support
moments, time interpolation is

f(P, t) =
t2 − t

t2 − t1
f(P, t1) +

t− t1
t2 − t1

f(P, t2)

=
1

t−t1
1

t−t1
+ 1

t2−t

f(P, t1) +
1

t2−t
1

t−t1
+ 1

t2−t

f(P, t2).

3 Motion Without Control
Natural fields may be curved so that a drifting platform may
come closer to a destination point, then increase its distance
and repeat this behavior. A field with two distance minima
is sketched in figure 1. A refined analysis reveals that a sec-
ond approach towards the destination point can occur even
if the cumulative angular change along all drift trajectories
is less than 90o. The existence of more complicated behav-
iors cannot be excluded completely but is ignored here. Yet
fields in which optimal trajectories may spiral have been
investigated [9]. The closest approximation to a destina-
tion point is computable by tracing the platform drift until
distances begin to increase for the second time or until a
boundary of the field is reached; whatever is first. Passing
through the destination point amounts to shortest distance
of value zero. The shortest distance between the destination
and a drift trajectory can be denoted as drift distance. This
is not a regular distance, because it is not even symmet-
ric. The drift distance may serve as guideline for trajectory
computations since it is a shortest segment along which the
platform requires to invoke propulsion.
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Figure 1: Drift trajectory with two local distance minima
(white points) to the destination point.

4 Control Model

4.1 Structure

The position update for motion with control is P (t+∆t) =
P (t)+∆t·f(P (t))+∆t·u(t) for a stationary field f(·) and
P (t+∆t) = P (t) +∆t · f(P (t), t) +∆t · u(t) for a non-
stationary field f(·, ·). u(t) is the control vector executed
at time t and held fixed over the time increment. Control
vectors specify heading and speed relative to the field and,
depending on the type of platform, may head into the oppo-
site direction of the field. The effect of the field along the
transition during the time increment is, so far, attributed
only to the emanation point of the transition. Since the
field typically varies along the transition, its effect should
be inferred from the field along the transition or, at least,
from the first and the last point of the transition. Thus, for
P = P (t) and Q = P (t+∆t) the effect of the field is

f(P ) + f(Q)

2
or

f(P, t) + f(Q, t+∆t)

2
.
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In the stationary case, the control vector for reaching Q
after the time increment is

u(t) =
P (t+∆t)− P (t)

∆t
− f(P ) + f(Q)

2
;

the formula for nonstationary fields is analogous. Controls
and fields need not superimpose linearly. The execution
of control vectors entails cost that are integrated over time
until the destination point is reached. Following standard
control approaches with some performance function cost :
IR2 → IR≥, the total cost is

C =

∫ tD

tS

cost(u(t)) dt.

The starting time is assumed to be known while the time
of arrival in the destination point depends on the motion
which depends on the sequence of controls. Prominent ex-
amples of cost functions are cost(u(t)) = 1 with total cost
accounting for the time and cost(u(t)) = power(u(t))
with total cost accounting for the energy spent until the des-
tination point is reached. The function power(·) encodes
the physical energy spent per time to execute the control.
Executing no control incurs no cost. The aim of finding an
optimal motion is a minimization problem over the set of
feasible controls U

min
u(t)∈U

∫ tD

tS

cost(u(t)) dt.

The minimization may be endowed with a further con-
straint so that trajectories meet a due date

minu(t)∈U

∫ tD

tS

cost(u(t)) dt

such that tD ≤ tdue.

Trajectory optimization in its most general form, thus, is
a variational problem so that the ultimate method is solv-
ing the Euler-Lagrange equation (computing the ”zero” of
the derivative). But the difficulties of finding an exact solu-
tion are enormous as illustrated, for example, by fields that
force a mobile platform to make abrupt turns [10]. Even
the most simple problem version is not trivial when the cost
function is not trivial. This is illustrated for the field being
zero everywhere. The cost minimal trajectory then con-
nects the starting point to the destination point by a straight
line leaving the optimal transition time to be computed as
a univariate minimization problem. The controls are set to

u(tS) =
PD − PS

tD − tS

with the arrival time in the destination point being in varia-
tion. The energy spent along the trajectory is

C =

∫ tD

tS

cost(
PD − PS

tD − tS
) dt

= (tD − tS) · cost(
PD − PS

tD − tS
).

The univariate minimization problem with variable tD thus
tentatively becomes

min
tD: tD>tS

(tD − tS) · cost(
PD − PS

tD − tS
).

Transition times between distinct positions cannot be arbi-
trarily small. If the minimum transition time from PS to
PD admitted by the controls is tmin > 0, then the final
optimization problem becomes

min
tD: tD≥tS+tmin

(tD − tS) · cost(
PD − PS

tD − tS
).

The solution strongly depends on the cost function. Mini-
mum energy solutions may have the ”single crossing prop-
erty” which describes a certain uniformity of the field in re-
lation to a given trajectory and which is stated here without
formal proof. This property claims that an energy minimal
trajectory crosses every drift trajectory at most once, if all
vectors of the ambient field on every normal of the energy
minimal trajectory point into the halfspace which contains
the destination point. This property is illustrated by figure
2.
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Figure 2: Energy optimal trajectory with one normal and
five drift trajectories shown. The field at the intersections
of the normal with all five trajectories points into the same
(”lower right”) halfspace of the normal as is supposed for
all non-visualized drift trajectories. The destination point
lies in that halfspace.

The single crossing property is not a necessary optimal-
ity criterion as it may or may not hold in heavily turning
fields such as in figure 1. Also, the property does not hold
if the destination point lies too far upstream. The energy
minimal trajectory may then have to slalom around regions
of strongly opposing drift thus crossing at least one drift
trajectory more than once, see figure 3.

4.2 Computational preliminaries
Computations of optimal trajectories follow two principal
approaches. The first is put a grid into the region of interest
and compute motion for grid points only. The spatial res-
olution of the grid can be selected independently from the
spatial resolution of the fields. An interesting, non-uniform
grid has been derived for long distance vessel routing [7].
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Figure 3: Numbers and arrows indicate field velocity and
direction in the rectangles. An energy minimal trajectory of
a platform with suitable characteristics will multiply cross
drift trajectories (slanted arrows).

The nodes are placed along the great circle between start
and the destination point and perpendicular to the great cir-
cle up to a specified width. Alternatively, the motion is
free meaning that waypoints are not set before computa-
tions. This is the dynamic graph approach and dynamically
placed nodes have been proposed for motion planning by
splines [4].

Static and dynamic graphs are directed and denoted as
waypoint graphs. Static waypoint graphs allow computa-
tions by standard graph algorithms like the Dijkstra algo-
rithm and dynamic programming. The disadvantage is that
an optimal path must, typically, be smoothed to become a
real-world path. Dynamic waypoint graphs allow to place
nodes in control-compliant positions. But then, computa-
tions may suffer from the number of nodes growing at an
unmanageable rate which puts heavy burden on elimination
techniques.

The static graph is the concept of choice here. A static
waypoint graph may be defined universally for a region or it
may be defined specifically for the starting and destination
points as in figures 4 and 11. Several points may lie at dif-
ferent distances in the same direction from some waypoint
P0 which is not intuitive for neighbors. This phenomenon
is excluded by requiring that only the closest point in a
given direction belongs to any neighbor set [17]. Moreover,
far points are excluded from that set if the direction of the
field deviates beyond a threshold angle from the direction
in P0. The set of all waypoints is denoted by V .

Arc labels for waypoint graphs depends on characteris-
tics of the platform. When the objective is time, velocity
predictions and interpolations from so-called polar plots
may apply [1]. Computations of energy values are illus-
trated by concrete data and figure 5. The distance from A
to B is 10 nautical miles with current setting in orthogonal
direction at 3 knots (nautical miles per hour). When travel-
ing at an apparent speed of 5 (8) knots, fuel consumption is
10 (21) liters per hour. Only the two speeds are allowed. In
the first case, ground speed towards B is 4 knots, so that the
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Figure 4: Static waypoint graph with herringbone pattern.
Arcs reach from all points of a bone to all points of the
next bone until the bone with destination point is reached.
Only five of the nine arcs reaching from one node to the
subsequent bone are indicated. Also, arcs within a bone
are only indicated for three bones.

transition time from A to B is 10nm/(4nm/h) = 2.5h and
fuel consumption is 10l/h ·2.5h = 25l. In the second case,
ground speed towards B is

√
55 = 7.416 knots, so that

the transition time from A to B is 10nm/(7.416nm/h) =
1.348h and fuel consumption is 21l/h · 1.348h = 28.31l.
The better of the two options results in the energy label 25
for the arc from A to B.
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Figure 5: Vector additions for sample energy computations.

Transition costs along an arc (A,B) are specified by a
label c(A,B) for stationary fields and by parameterized la-
bels c(A,B; t) for nonstationary fields with t denoting the
moment when the platform leaves A and heads for B. Two
waypoints may or may not be connected by opposing arcs.
If so, their labels may be different.

5 Point Motion with Controls

5.1 Single objective for point to point
motion

Paths will preferably be computed by the Dijkstra algo-
rithm and modifications thereof instead by dynamic pro-
gramming. Though optimal paths satisfy the dynamic prin-
ciple [2], the Dijkstra algorithm proceeds along forward
computations while standard dynamic programming ap-
plies backward computations. Backward computations are
not intuitive for nonstationary fields; the field is more likely
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to be known at starting conditions than at terminating con-
ditions since the latter, among others, depend on the com-
puted trajectory.

The Dijkstra algorithm in standard form [6] suffices for
shortest path computations in stationary fields. For non-
stationary fields the algorithm is formulated for transitions
along arcs without idleness. This means that the platform
will never wait for more opportunistic conditions of the
field; the arrival time in an intermediate waypoint is iden-
tical to the departure time in that waypoint. The departure
time from the starting node is tPS

≥ 0 and arrival times at
nodes are specified by the labels m(·).

Dt (Dijkstra algorithm for nonstationary fields)

1. (Initialization). Set L = V , m(l) = ∞ ∀ l ∈ V −
{PS}, and m(PS) = tPS

.

2. (Iteration). While PD ∈ L do:

(a) If minl∈L m(l) < ∞ then selection of i =
argminl∈L m(l), else output ”Destination not
reachable” and stop.

(b) L = L− {i}.
(c) ∀ j ∈ L with (i, j) ∈ A do:

if m(i) + c(i, j;m(i)) < m(j), then m(j) =
m(i) + c(i, j;m(i)) and pred(j) = i.

3. (Termination). Output m(PD) and
PD, pred(PD), pred(pred(PD)), . . . , pred(. . .
(PD) . . .) = PS .

An optimal path from start to destination results from
tracing the waypoints which attain minima of the node la-
bels. These labels denote the cost of the best path found so
far from the starting point. The list L consists of the way-
points to which an optimal path has not yet been found or
has not yet been confirmed to be found. These waypoints
are tentatively labeled, while all others are permanently la-
beled. Preceding vertices are stored in the pred(·) function
so that the waypoints of an optimal motion are specified
reversely.

Replacing the time dependent labels c(i, j; t) by time in-
dependent labels c(i, j) results in the ordinary Dijkstra al-
gorithm. The Dijkstra algorithm for both label kinds is a
one-to-many algorithm. This means that the algorithm may
find optimal paths from the initial node to several nodes as
discussed next.

5.2 Single objective for point to region
motion

Computations of optimal paths from the starting point to
all other waypoints can be facilitated by a single run of
algorithm Dt by modifying the stopping criterion as to the
list L being empty. Optimal paths to each node of a selected
region of waypoints are computed when the list is cleared

of all target nodes. A variation of the last problem is to
reach only one waypoint in a given region, namely the one
which is reachable at minimal cost. This point need not be
known prior to the computations.

An interesting case is that of the region consisting of all
waypoints from which the destination point is observable.
The computed motion is then one from which the destina-
tion point comes earliest ”in sight”, see figure 6. If ob-
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Figure 6: Sketch of waypoint graph from figure 4 and a cir-
cle around the destination point from which the destination
point is observable.

servability solely depends on the Euclidean distance to the
destination point, the optimization problem is formalized
as

min
i∈V : ∥i−PD∥≤d

m(i);

m(i) is the permanent label assigned to waypoint i by al-
gorithm Dt and the maximum observation distance d > 0
must be specified as input. The region from which to reach
a waypoint is the observability region OD(d) = {i ∈ V :
∥i − PD∥ ≤ d}. The cost function for reaching the region
of observability may differ from that for motion within that
region. For example, it may be appropriate to reach the
region of observability in minimal time but then to finally
approach the destination with minimum energy.

5.3 Multiple objectives for point to point
motion

Energy minimization subject to a due date can be handled
as a two-criteria minimization problem. Such problems are
solvable by a variation of the Dijkstra algorithm which op-
erates on sets of labels for arcs and nodes instead of single
labels. For the sake of simplicity, we consider only finite
sets of arc labels. The ”classical” multicriteria shortest path
problem with one vector-valued label per arc already is NP-
hard. But, occasionally, it is considered as one of the least
intractable problems [16].

The arc (i, j) receives paired labels of the form
(d(i, j; t), e(i, j; t)). The value d(i, j; t) is a feasible du-
ration of the transition along the arc while the transition
begins at time t. The complete energy required therefore
is e(i, j; t). Longer durations correspond to smaller en-
ergy values. Practically, very long durations may again
lead to larger energy values as engines consume fuel even
if the platform does not move or move at extremely low
speed. Such combinations of time and energy are not con-
sidered for the purpose of optimization. Thus, the labels
of each arc form a Pareto optimal set which means that
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an improvement in one coordinate can only be achieved
by a deterioration of the other. All feasible labels are ar-
ranged in the list Λ(i, j; t) with time dependency disap-
pearing in the stationary case. An example is Λ(2, 7) =
{(10, 95), (11, 91), (13, 80)}. The transition from way-
point 2 to waypoint 7 may take 10 time units requiring
95 energy units or 11 time units requiring 91 energy units
etc. For convenience all these lists are sorted by increasing
time.

A simple approximation of an energy minimal path with
due date in a stationary field is to compute a shortest path
and then to maintain the sequence of waypoints while suc-
cessively allowing more time for arc transitions. These re-
laxations, which conserve energy, terminate if no further
prolongation is admitted.

Relaxations are selected along maximal energy savings
per additional transition time. Therefore, ∆t(t(i, j)) =
next(t(i, j)) − t(i, j) denotes the time increment for the
duration t(i, j) being replaced by the next value in Λ(i, j).
Similarly, the increment of saved energy is denoted as
∆e(e(i, j)) = e(i, j)− next(e(i, j)). Both increments are
positive due to sorting. Each relaxation then picks an arc
attaining the maximum of the savings ratio provided that
the due date is still met. Formally, a relaxation amounts to

max
(i,j)∈P

{∆e(e(i, j))

∆t(t(i, j))
| tD +∆t(t(i, j)) ≤ tdue},

where P is an arc-wise specified path from PS to PD. The
arrival time at the destination point is updated after each
relaxation by tnewD = tD + ∆t(t(i, j)) and tD ← tnewD .
The foregoing procedure is of a greedy type and, therefore,
need not find the energy minimum even along the given
path.

An exact algorithm for energy minimization under due
dates requires a quite extensive modification of the Dijk-
stra algorithm. First, nodes will receive sets of labels in the
same way as arcs have received sets of labels prior to the
start of the algorithm. Second, sets of labels will be prop-
agated. Yet the strongest modification is concerned with
permanence declarations of node labels. It is not correct
– in a straightforward adaptation of the original Dijkstra
method – to declare that tentatively labeled node as the
next one permanently labeled which carries the minimum
energy value. This wrongful propagation is illustrated in
figure 7. It calls for decoupling of label propagation and
permanence declarations. For stationary fields, label prop-
agation along one arc (i, j) proceeds along the following
three steps which may have to be executed multiply.

PL (Propagation of Labels)

1. L′(j) = L(i) ⊕ Λ(i, j) = {((d1, e1) +
(d2, e2), i)| (d1, e1) ∈ L(i) and (d2, e2) ∈ Λ(i, j)}.

2. L′′(j) = L(j) ∪ L′(j).

3. L(j) = Pareto boundary(L′′(j)).

rPS

(0, 0)

r(20, 53)
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Figure 7: Initially, any reasonable computing scheme will
label both successors of the starting point with the label
sets of the two emanating arcs. The minimum energy value
over the four pairs is 45. So, selecting the upper interme-
diate waypoint as the next one permanently labeled – by
an oversimplified propagation scheme – results in only two
label pairs for the destination point; one with arrival time
25 and another with 35. For due date tdue = 34 only la-
bel (25, 58) remains. But propagation from the ’lowest’
node gives the energy minimal solution taking time 33 and
requiring only 57 energy units.

Each label has an additional coordinate which will even-
tually allow to identify a sequence of predecessors. This
information cannot be attached – in contrast to the single
criterion case – to the nodes themselves because different
pairs of objective values may require different paths to at-
tain them. The additional coordinate is occasionally omit-
ted for easy of notation and the starting node does not have
an additional coordinate. The first step of PL is the prop-
agation step in which all arc labels are added to all node
labels. The second steps unites old and new node labels
and third step cleans them up. It deletes all labels for which
there is another label which has a smaller duration as well
as a smaller energy value.

The overall algorithm works with a list T of tentative
node labels instead of a list of tentative nodes. Labels from
this list do not loose their node assignments. This allows
multiple propagations from a node during one run of the
subsequent labeling algorithm. When the list of tentative
labels becomes void, the best energy value is selected from
all labels of the destination node whose time coordinate
meets the due date.

E-due (Energy with due dates)

1. (Initialization). Set T = (0, 0) with (0, 0) belonging
to PS = 1.

2. (Iteration). While T ̸= ∅ do:

(a) Selection of lexicographically smallest label
(d0, e0) from T belonging to node i ∈ V .
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(b) T = T − {(d0, e0)}.
(c) ∀ j ∈ V with (i, j) ∈ A do:

i. update node label set L(j) by PL.
ii. T = T ∪ L(j).

iii. Deletion of all labels of T belonging to j
that are dominated by other labels of T that
also belong to j.

3. (Termination). Output e(PD) = min{e| (d, e) ∈
L(PD) and d ≤ tdue} and optimal path traced by la-
bels.

Though the multicriteria shortest path problem is sym-
metric as it considers both objectives as equally important,
even in the present case of constrained energy minimiza-
tion, it introduces a lexicographic order of the objectives.
This break of symmetry affects the operations but not on
the result. Considering time as the more important crite-
rion renders a depth-first search behavior to the algorithm.
Considering energy as the more important criterion renders
a breadth-first search behavior to the algorithm.

Several technical improvements are possible. When a la-
bel generated in step 2(c)i. has an arrival time that exceeds
the due date, this label can trivially be omitted. Also, a
label of some node that is dominated by a label of the des-
tination node can be omitted. The method is illustrated in
figure 8.

r PS = 1

(0, 0)

r
2

(20, 53, 1) ∗ 1∗
(30, 45, 1) ∗ 1∗

(13, 65, 3) ∗ 2∗
(28, 52, 3) ∗ 2∗

r
3

(8, 60, 1) ∗ 1∗
(23, 47, 1) ∗ 1∗

rPD = 4
(25, 58, 2) ∗ 3∗
(35, 50, 2) ∗ 3∗
(18, 70, 2) ∗ 3∗
(33, 57, 2) ∗ 3∗

���������1
(20, 53)
(30, 45)

Q
Q
Q
Q
Q

Q
Q
QQs

(8, 60)
(23, 47)

6

(5, 5)

-
(5, 5)

Figure 8: Labels set by the multicriteria Dijkstra algorithm
for the problem from figure 7. In addition, nodes are num-
bered and predecessors are specified by these numbers as
third coordinates of the node labels. Starred numbers indi-
cate the iteration of step 2 in which the node labels are gen-
erated. The second label of the destination node is deleted
because the due date tdue = 34 is violated. At most nine
iterations of step 2 empty the tentative label set T . The
node label (8, 60) is the first to be deleted from T , (13, 65)
is the second etc. The minimum energy value belonging to
feasible arrival times is 57 = min{58, 70, 57}.

6 Observability Motion
Instead of reaching a destination point, coming (and stay-
ing) close may suffice for observation. Staying close is
specified by a region of observability RoO around the des-
tination point so that the objective becomes to uninterrupt-
edly stay within the RoO at minimum energy use. If a time
bound for the observation is lacking, the formal objective
becomes to indefinitely stay in the RoO at minimum energy
use per time. Once the RoO has been reached, the compen-
sation of drift caused by the ambient field is considered to
be the only reason for energy consumption. The RoO may
be circular as in figure 6, but other shapes are feasible. The
essential trade-off for observability motions is that between
staying in one position while continuously consuming little
energy vs. drifting for some time at no energy consump-
tion, moving upstream at some energy consumption and
drifting again etc. Depending on the characteristics of the
platform and the ambient field, the second strategy, called
orbiting or oscillating, may be superior.

As an example, a ship may remain still somewhere in a
RoO see figure 9. This requires to continuously compen-
sate the drift which is assumed to be constant at two knots
throughout the field. Fuel consumption for drift compensa-
tion is assumed to equal 5l/h. When the distance between
A and B is 10 nautical miles and the platform initially is
located at A, it may drift five hours at zero consumption
and then travel back to A at an assumed speed of six knots
through the water at an assumed fuel consumption of 10l/h.
So, it takes 10nm/(6 knots - 2 knots) = 2.5h to travel from
B to A thereby consuming 25l fuel. Thus, the average con-
sumption over one orbit is 25l/7.5h = 3.333l/h which is
less than the consumption for immobility.

q
A

q
B

qPD

-
2 knots

boundary of RoO boundary of RoO

Figure 9: Region of observability for PD and drift in a
constant field from boundary point A to boundary point B.
Upon arrival in B, the platform travels upstream to A where
it resumes drifting.

Boundary points of a RoO at which the field directs into
the interior of the RoO are denoted as entry points (of the
RoO) and boundary points at which the field directs to the
outside are denoted as exit points (of the RoO). An orbit is
a closed trajectory from an entry point to an exit point and
back. A drift orbit is an orbit of which the partial trajectory
from the entry to the exit point is a mere drift trajectory.
The trajectory from the entry point to the exit point may be
different from the inverse trajectory back to the entry point.
The situation from figure 9 is special in this respect.

When the observation time is unbounded, an optimal or-
bit or, more precisely, a minimum average power (MAP)
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orbit adheres to the fractional program

min
O∈O

energy(O)

time(O)
.

The orbits O range through some setO of orbits that may
be finite or infinite. In the finite case, a MAP drift orbit can
be approximated by the following two steps:

1. (Drift trajectory) For each of the entry points compute
the drift trajectory according to the forward equation
P (t+∆t) = P (t) + ∆t · f(P (t)) until an exit point
is reached. A drift trajectory with maximum duration
is selected.

2. (Partial trajectory back to entry point) An energy min-
imal path is computed by algorithm Dt from the exit
point of the selected drift trajectory to its entry point.

Minimum average power orbits need not be of a drift
type. ”Jockeying” between drift trajectories, which con-
sumes energy, can be favorable if the field changes differ-
ently along different drift trajectories, figure 10.
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-1
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Figure 10: Two drift trajectories with labels indicating
time. Maximizing drift time requires to switch from the
upper to the lower trajectory. The return trajectory to the
upper entry point is omitted.

A MAP orbit which is not necessarily of a drift type
can be approximated by concatenations of minimum en-
ergy paths from entry points to exit points and back. As
orbits are cyclic, this order can be reversed so that an exit
point becomes the starting point of an orbit. When a plat-
form arrives at a RoO it may do so either in an entry point
or in an exit point and the beginning of an orbit is cho-
sen accordingly. If the best computed orbit does not pass
through the arrival point, the arrival point will connected to
the best orbit. One way to do so is to compute a minimum
energy path from the arrival point to the orbit by the Di-
jkstra algorithm with all orbit points forming a destination
region. The orbit computation itself is as follows.

MAP-orbit (Minimum Average Power-orbit approxi-
mation)

1. Input RoO and finite set En of entry points.
(Initialization). For each a ∈ En compute its exit
point ex(a) reached by mere drift. All these exit
points are summarized as exit set Ex = {ex(a)| a ∈
En}.

2. (Computations).

(a) For all a ∈ En and all b ∈ Ex computation of a
minimum energy path P (a, b) from a to b.

(b) For all b ∈ Ex and all a ∈ En computation of a
minimum energy path Q(b, a) from b to a.

(c) For all a ∈ En and all b ∈ Ex concatenate min-
imum energy paths to form orbits through a and
b as O(a, b) = P (a, b) ◦Q(b, a).

(d) OMAP = argminO(a,b), a∈En, b∈Ex
energy(O(a,b))
time(O(a,b)) .

3. (Termination). Output OMAP .

Algorithm Dt can be used for the path computations in
steps 2 (a) and (b) and durations are recorded for all paths
so that the cycle times of all orbits are known in step 2 (d).
The computations of algorithm MAP-orbit for all paths
emanating from the same entry and same exit point can be
interleaved. The formation of orbits from paths is obvi-
ous by aligning the waypoints of one path behind the other
while avoiding immediate repetitions of the exit and entry
points. Path alignment is denoted by the concatenation op-
eration ◦.

An approximation of a MAP orbit without concatena-
tion can be facilitated by integrating the two computing
stages of MAP-orbit. Essentially, this requires to provide
a double waypoint graph as sketched in figure 11. The first
part of the waypoint graph allows approximations of en-
ergy minimal paths from entry to exit points and the sec-
ond graph allows for the inverse. The structure of the sec-
ond graph can be obtained by reflecting the first graph, but
arc labels may be completely different. In order to admit a
minimum path computation, a hypothetical source node s
is connected at zero cost to all entry nodes and the copy of
the entry nodes is connected at zero cost to a hypothetical
sink node t.

An energy minimal path approximates a MAP orbit. If
such a path uses the same entry point in both copies of the
entry set, then the path actually amounts to an orbit. If not,
a sequence of orbit-like paths is better than a single orbit
traced repeatedly. Instances of the waypoint graph can then
be added to result in a fourfold waypoint graph, a sixfold
waypoint graph etc. A shortest path from source to sink
then yields an optimal motion that is more complex than an
orbit. This, particularly, applies to nonstationary fields.

When a best orbit is searched for, an energy minimal or-
bit is computed for each entry point by setting to infinity the
arc labels between source and entry set as well as between
the copy of the entry set and the sink except for one entry
point. Then, the minimum energy orbit through this en-
try point is computed and the procedure is repeated for all
other entry points. The best of all these orbits is eventually
chosen. Noteworthy, the arc labels in the grid sections of
the double waypoint graph are not affected. Computations
are summarized in the next algorithm and a computation
sample with Scilab [11] is illustrated in figure 12.
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Figure 11: Double waypoint graph with arc directions and
labels omitted in the RoO. The RoO is here assumed to be
rectangular with a discretization of 28 nodes. Also, every
node of the boundary either is an entry point or an exit point
(unless the field is zero in a boundary point or heads along
a straight segment of the boundary), but the entry set and
the exit set are only shown partially.

MAP-orbit-double (Minimum Average Power-orbit
approximation in double waypoint graph)

1. Input RoO and finite set En of entry points.
(Initialization). For each a ∈ En compute the exit
point ex(a), summarize all these as exit set Ex =
{ex(a)| a ∈ En} and create the double waypoint
graph.

2. (Computations).

(a) For all a ∈ En do:

i. c(s, a) = 0.
ii. c(s, b) =∞ for all b ∈ En− {a}.

iii. c(a′, t) = 0.
iv. c(b′, t) =∞ for all b′ ∈ En′ − {a′}.
v. Computation of a minimum energy path

P (s, t) from s to t by Dt.
vi. Deletion of s and t from P (s, t) to result in

orbit O(a) through a.

(b) OMAP = argminO(a), a∈En
energy(O(a))
time(O(a)) .

3. (Termination). Output OMAP .

Figure 12: Double waypoint graph with original waypoint
graph (left) with three entry nodes and two exit nodes. Only
arcs with zero energy cost are shown in that part. The
reflected graph section (right) has different energy labels:
horizontal and vertical transitions incur 10 units and diag-
onal transitions incur 15 units. Transition times are identi-
cally one for all horizontal and vertical transitions and 1.5
for all diagonal transitions. The two prolonged arcs be-
tween the exit points and their reflections have no physical
meaning and incur zero time and energy cost. The upper
path requires 0 + 55 = 55 energy units while using 6+5.5
= 11.5 time units requiring average power 55/11.5 = 4.783
which is optimal. Another path is the lower path which re-
quires 0 + 50 = 50 energy units and 5 + 5 = 10 time units
thus requiring average power 50/10 = 5.

The average energy spent by orbiting is compared to
the power spent by remaining still at the most favorable
point inside RoO and the better of the two options is se-
lected. A most favorable point is one with minimum field
strength: Pmin = argminP∈RoO ∥f(P )∥. To remain still
there requires to continuously execute the control vector
u(t) = −f(Pmin) which incurs the power cost(u(t)) =
power(−f(Pmin)), see section 4.1.

The objective of minimizing energy for uninterrupted
observation can be overlayed with a variety of other objec-
tives. These include the requirement for observation from
sufficiently many positions and angles, intended unobserv-
ability or positional irregularity of the observing platform
itself and interleaving observations of different objects that
cannot be observed from any one position.

7 Exploration
Exploration of a region is similar to observation with the
difference being that a set of locations must be traversed
so that each point of the exploration region is observable at
least once. If the whole exploration region were observable
from a single location, say by a circular scan, then explo-
ration were trivial. It is thus assumed that no single obser-
vation region – be it circular, rectangular or else – covers
the exploration region so that the platform must move, see
figure 13. It is further assumed that the cost of making ob-
servations is negligible compared to the cost of moving the
platform with the exception of drift which incurs zero cost.
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r r
p p p

Figure 13: Trajectory with observation regions from two
locations from which the observations are made.

The aim is to find minimum time and minimum energy
trajectories which to cover an exploration region by finite
many observation regions. A minimum energy exploration
trajectory need not trace ”adjacent” drift trajectories as in-
dicated by figure 14. For computing exploration paths, the
exploration region is endowed with an exploration graph.
This is a directed graph whose nodes indicate all locations
that must be visited for making observations. The posi-
tions in figure 13 may serve as nodes of an exploration
graph. Its arcs describe possible motions between nodes
and each arc receives a label with the same meaning as
in waypoint graphs. Physical resolutions of exploration
graphs and waypoint graphs may differ.

�2

�2

�2

�10

�10

�10
exploration
region E��

?

-

6

�

?

-

6

�
?

-

Figure 14: Drift trajectory with high velocity field regions
being traveled downstream while low velocity field regions
are traveled upstream for exploring region E. Observation
regions are not shown.

An exploration path may repeatedly visit nodes of the
exploration graph before all other nodes have been visited.
Thus, exploration paths relax Hamilton paths which visit
each node of a graph exactly once; a Hamilton path is a
Hamilton cycle in which ”the last” arc is missing. A stan-
dard transformation [8, p. 23] allows to reduce the compu-

tation of an exploration path to a Hamilton path. The ex-
ploration graph is therefore endowed with all missing arcs.
The resulting complete directed graph receives arc labels
that denote the shortest path from head to tail for each node
in terms of the original arc labels. For stationary fields the
new labels are formally denoted as

C(i, j) = length of shortest path from i to j

according to the arc labels c(·, ·).

The new labels can be computed by several applications
of algorithm Dt or by a single application of the Floyd-
Warshall (triple) algorithm [6]. A Hamilton path is then
computed for the ”completed” exploration graph. When
such a path uses an arc which does not exist in the origi-
nal exploration graph, the platform travels along the corre-
sponding shortest path as indicated in figure 15. The start-
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Figure 15: Original exploration graph (shown as undirected
graph for notational ease) with one additional arc (dashed
arrow) shown for the completed exploration graph and used
by an optimal Hamilton path from a starting node PS to
an end node PE . The resulting exploration trajectory in
the original exploration graph is indicated by solid arrows.
Two of the nodes (circled) are visited twice.

ing node of an exploration path, typically, is that node of
the exploration graph which is reachable at minimum cost
from the present platform location – either inside or outside
the exploration region. While the starting point PS is pre-
determined for computations of exploration paths, the end
point PE is determined by the optimization.

The shortest Hamilton path problem is known to allow a
great variety of initialization and improvement heuristics.
An initial heuristic which works under all circumstances
is the nearest neighbor heuristic which is now adopted to
yield exploration paths. The approach, simply, is to choose
the nearest unvisited node for the next visit until all nodes
have been visited. This greedy procedure works on the
completed exploration graph is that node repetitions may
occur.

NN (Nearest Neighbor heuristic)

1. Input exploration graph with node set VE , original arc
labels c(·, ·) and starting point PS .
(Initialization). Set L = VE−{PS}, path = (PS) and
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Pcurrent = PS , computation of shortest path labels
C(·, ·).

2. (Iteration). While L ̸= ∅ do:

(a) Computation of j0 =
argminj∈VE−L C(Pcurrent, j).

(b) L = L− {j0}.
(c) path = path ◦ j0.

(d) Pcurrent = j0.

3. (Termination). Output exploration trajectory path =
(PS , . . . , PE).

The exploration path is incrementally built by node con-
catenation in step 2(c). An alternative to greedy procedures
is to solve an assignment problem which maps each node
to a successor node such that each successor appears only
once overall and the sum of transition costs from all nodes
to their successors becomes minimal. Assignment prob-
lems can be solved efficiently. Subcycles which potentially
occur in an optimal assignment need to be connected to
form a Hamilton cycle. Eventually, this Hamilton cycle is
broken up ”right before” the starting point is revisited.

8 Motion with Controls in 3D
The foregoing approaches generalize to three dimensions
in an evident manner with controls being 3D vectors. Static
waypoint graphs typically are regular 3D grids with each
interior node having at least six neighbors, depending on
the platform characteristics; see figure 16. Regularity of the
3D grid may be weakened by the horizontal grid spacing
being different from the vertical spacing. Also, depending
on the characteristics of the platform, pure vertical motion
may be feasible (hot air balloons) or impossible (planes).
The last case is expressed by the time and energy labels for
those arcs being artificially high or infinity.
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Figure 16: Grid point with four neighbors at the same al-
titude and two at different altitudes. If vertical transitions
are impossible, these arcs are assigned high transition costs
and slanted arcs are added.

The 3D case allows to pose original motion problems
like finding a maximum survival trajectory. For an aerial
platform with fixed energy budget this means that the plat-
form should stay airborne with for a maximum time or
travel a maximum distance. Both versions of the problem
differ when energy for lift can be traded for propulsion.
Survival problems make sense only for platforms that are
not lighter than the atmosphere.

A survival trajectory will seek updraft areas and avoid
downdraft areas, see figure 17. These may be part of cir-
cular atmospheric patterns like Hadley cells. Vertical and
horizontal motion of the atmosphere are coupled inside one
Hadley cell. At high altitude, the atmosphere horizontally
moves from an updraft area towards a downdraft area while
at low altitude motion heads in the opposite direction. It
can hence be reasonable to even come close to downdraft
areas. Boundaries of updraft and downdraft areas are not
crisp.
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Figure 17: A survival trajectory connects the updraft areas
while it avoids the downdraft area. Horizontal field mo-
tion is indicated for high altitudes (double arrow) and low
altitudes (single arrow).

A trajectory that intends to visit all updraft areas with
minimum energy – be it a survival trajectory or not – re-
quires to determine the order of the visits and the entry and
exit points. It is reasonable to allow revisits of updraft ar-
eas before all other updraft areas have been visited. This is
in analogy to exploration paths, so that survival trajectories
need not form Hamilton paths. A survival trajectory can be
approximated by the nearest insertion method.
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NIns (Nearest Insertion heuristic)

1. Input collection of updraft areas L = (U1, . . . , Um),
starting position PS .
(Initialization). Set Pin = PS , P = ∅.

2. (Iteration). While L ̸= ∅ do:

(a) Computation of energy minimum path Q by al-
gorithm Dt from Pin to an intermediate destina-
tion point = first point Pl reached in an updraft
area Ui ∈ L.

(b) L = L− {Ui}.
(c) P = P ◦ Q.

(d) Pin = Pl.

3. (Termination). Output survival trajectory P .

Though all intermediate destination points computed in
step 2(a) lie in different updraft areas, the incremental paths
Q are allowed to revisit updraft areas as well as waypoints
inside and outside updraft areas.

When an updraft area is not exited at maximum altitude,
an additional ascent adds a safety margin. When vertical
motion is expensive, it is not obvious how far to climb so
that the next updraft area is entered higher than originally
planned. Modifying a path to enter the next updraft area
at a higher altitude can be facilitated by the following in-
cremental lift procedure. To simplify the notation, it is as-
sumed that sufficient (feasible) altitude can be gained in the
current updraft area.

IncLift (Incremental Lift heuristic)

1. Input current entry point P1 and exit point P2 =
(x2, y2, z2)

T of updraft area Ui and entry point P3 =
(x3, y3, z3)

T of the next updraft area Uj .
(Initialization). Set z′3 = z3, k = 1.

2. (Iteration). While z′3 ≤ z3 do:

(a) Computation of energy minimal path Q1 by al-
gorithm Dt from P1 to the first point P ′

2 ∈ U ′
i =

{P = (x, y, z)T ∈ Ui| with z = z2 + k · d}.
(b) Computation of energy minimal path Q2 by al-

gorithm Dt from P ′
2 to the entry point P ′

3 =
(x′

3, y
′
3, z

′
3)

T of Uj .

(c) k = k + 1.

3. (Termination). Output new partial survival trajectory
Q = Q1 ◦ Q2.

The remainder of the survival trajectory must be adapted
to the next updraft area Uj and incremental liftings can be
applied to other transitions as well. A greedy behavior sug-
gests to continue climbing in each updraft area until the
average cumulative climbing energy in the present updraft
area increases.

9 Conclusion
It has been shown how to model and perform trajectory
computations in ambient fields beyond mere point to point
motion. Trajectories are specified in space and time resolu-
tions that typically range above the control level, though
the computations can be embedded into standard con-
trol frameworks. Advantageous field effects are exploited
where possible and disadvantageous effects are mitigated
where needed. All approaches lend to identical or simi-
lar spatial discretizations as well as to related graph algo-
rithms.

Future work is to include uncertainty of the ambient field
such as given for simple point to point motion in the frame-
work of Markov decision processes [18]. Of particular in-
terest are deviations from the assumed field which can be
sensed by the mobile platform itself. The case of no a-
priori information about the actual field is an even more
challenging task.
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