
Informatica 36 (2012) 379–408 379

Systematic Literature Review on Regression Test Prioritization
Techniques

Yogesh Singh
Vice Chancellor, The Maharaja Sayajirao University of Baroda, Gujarat, India
E-mail: ys66@rediffmail.com

Arvinder Kaur, Bharti Suri and Shweta Singhal
University School of Information and Communication Technology, G.G.S.IP.University, Delhi, India
E-mail: arvinder70@gmail.com,bhartisuri@gmail.com, miss.shweta.singhal@gmail.com

Overview paper

Keywords: regression testing, test prioritization, systematic literature review (SLR)

Received: August 31, 2011

The purpose of regression testing is to validate the modified software and detect whether the unmodified
code is adversely affected. Regression testing is primarily a maintenance activity. The main motivation
behind this systematic review is to provide a ground for advancement of research in the field of
Regression Test Prioritization. The existing techniques were compared along with their collected
empirical evidences to find if any particular approach was superior to others. 65 papers reporting 50
experiments and 15 case studies were identified. A total of 106 techniques were evaluated for regression
test prioritization. Also, a rigorous analysis of the techniques was performed by comparing them in
terms of various measures like size of study, type of study, approach, input method, tool, metrics etc.
Encouragingly, SLR yielded that almost half of the techniques for regression test prioritization are
independent of their implementation language. While on the other hand the future research should focus
on bridging the large gaps that were found existing in the usage of various tools and artifacts. During
the course of research, preliminary literature survey indicated that to the best of our knowledge, no
systematic review has been published so far on the topic of regression test prioritization.

Povzetek: V preglednem članku so opisane regresijske metode testiranja programske opreme.

1 Introduction
Regression test prioritization aims to prioritize the test cases
that need to be re-executed during regression testing. The
test cases are executed in that order so as to catch the faults
at the earliest within minimum time. This is an important
activity during maintenance phase as it rebuilds confidence
in the correctness of the modified or updated system. This
paper presents the systematic review of regression test
prioritization techniques. Though a few of these techniques
have been evaluated and compared by many researchers [1,
2, 3, 4, 5, 6, 7, 8, 9 etc], a generalized conclusion has not
been drawn by any of them. In order to come up with a base
for the advancement of future work in the field of
Regression Test Prioritization (RTP), a systematic review
was conducted to collect and compare some common
parameters of the existing techniques and their empirical
evidences.

There is a growing number of researches that are being
carried out in the field of software engineering. Reviews are
the essential tools by which a researcher can keep up with
the new evidences in a particular area. There is a need to
develop formal methods for systematic reviewing of the
studies. In the last decade, the medical research field has
successfully adopted the evidence based paradigm [10]. In
[10], it is suggested that Evidence Based Software

Engineering (EBSE) should be adopted. In [10], they have
also discussed the possibility of EBSE using an analogy
with the medical practices. EBSE is important as the
software intensive systems are taking central place in our
day to day life. EBSE can assist practitioners to adopt the
appropriate technologies and to avoid the inappropriate
ones. The goal of EBSE is “to provide the means by which
the current best evidence from the research can be integrated
with the practical experience and human values in the
decision making process regarding the development and
maintenance of a software” [10]. EBSE involves five basic
steps [11]: 1) Convert the problem into an answerable
question, 2) search the literature for the best available
evidence, 3) critically appraise the evidence for its validity,
impact, and applicability, 4) combining the critical appraisal
with our environment and, 5) evaluating the efficiency of
execution of the previous 4 steps and finding ways to
improve them for future use. The first three steps constitute
a systematic review. The systematic review is a specific
research methodology that is aimed at gathering and
evaluating the available evidences related to a focused topic
area. They evaluate and interpret the relevant research that is
available for the particular research questions or topic area
[10].

380 Informatica 36 (2012) 379–408 Y. Singh et al.

The systematic review should consolidate the
empirical studies conducted so far in the field. This
review presents an overall report of all the existing
regression test prioritization techniques presented till
date, along with their properties and the comparisons
among a few of them. It makes an attempt in displaying
the amount of efforts already been put in to the field. To
achieve the same, 65 test case prioritization papers were
identified that reported 50 experiments, 15 case studies and
106 techniques of regression test prioritization. A qualitative
analysis of the techniques was performed by comparing
them with respect to the various measures like size of the
study, type of the study, approach, input method, tool, and
metrics etc.

2 Related Work
In a systematic review, the main research questions, the
methodological steps, and the study retrieval strategies
are explicitly defined. In 2004, the procedures for
performing a Systematic Literature Review (SLR) in
Software Engineering were first proposed by
Kitchenham [12]. In the report [12], medical guidelines
for performing systematic reviews were adapted to the
requirements of software engineering. The first
systematic review conducted in the field of software
testing was on “the testing technique experiments”
published in 2004 [13]. Staples and Niazi [14] shared
their experiences while using the guidelines given by
Kitchenham [12]. They emphasized more on the clearer
and narrower choice of research questions and also on
reporting the changes made in the strategy followed
during SLR in order to adapt with the respective research
scenarios. In addition to this, they [14] also found that
reliability and quality assessment was difficult based on
the given guidelines [12]. In-spite of these findings they
[14] commend the same guidelines [12] to other
researchers for performing SLR's. A systematic review in
software engineering [15] presented all the systematic
reviews conducted during Jan 2004-Jun 2007 in the field.
Their SLR on 20 relevant found studies revealed that the
topic areas covered by SLR's in software engineering are
limited and that European researchers, especially the
ones at Simula Labarotory [15] were the leading
exponents of SLR's. Another systematic literature survey
on regression test selection techniques was presented in
2009 [16]. 27 relevant studies were identified for the
SLR[16] and evaluated quantitatively. According to the
results obtained after relating various techniques to each
other using empirical comparisons, Engstrőm, Runeson
and Skoglund [16], found that due to the dependence
over varying factors no technique was clearly superior.
Also, they identified a need for concept based evaluation
of empirical studies rather than evaluations based on
small variations in implementations. Engstrőm and
Runeson also presented a general industry based survey
on regression testing practices in 2010 [17]. The survey
was conducted for 15 industry participants and the
outcomes were validated by 32 respondents via an
online questionnaire. According to the authors [17], the
practices were found not to be specific to regression

testing and conclusion drawn was that regression testing
should not be researched in isolation.

Furthermore, a very rigorous survey on regression
test minimization, selection and prioritization was
presented by Yoo and Harman [18]. Though it was not a
systematic literature review, nonetheless it reported a
detailed summary of the current state of art and trends in
the field. The number of studies included in their study
is almost the same as compared to the size of selected
papers for the current research. This is reasonable as 1)
their's was not an SLR, thus inclusion of every relevant
study is not necessary; 2) the current SLR has been
conducted including the studies that were published in
the time slot of almost 2.5 years after their their survey
was completed. An SLR should be very selective in the
inclusion of a study with respect to its research questions.
Thus, some of the studies included in the survey by Yoo
and Harman for RTP area, got excluded at the study
selection stage of our SLR. Also, there are a few
additional studies found and included in this SLR that
were published during and after the time frame for the
survey in [18]. Nonetheless, Yoo and Harman have
summed up the various approaches used for RTP,
regression test minimization and selection along with the
artifacts that have been used by these techniques. The
same has also been repeated in this SLR to find whether
their findings are correct or not. They had not reported
the language dependency, granularity of the technique
and the type of input to the technique. These aspects have
been reported and used as a basis for the comparison of
various techniques in the current research.

3 Difference between Literature
Review and Systematic Literature
Review (SLR)

Following the recent rise in the number of empirical
studies in the field, SLR is a necessity for providing a
thorough, unbiased and valuable summary of all the
existing information. Systematic reviews require the
documentation of not only the search criterions but also
of the different databases that are searched. The starting
point of a SLR is the review protocol that specifies the
focused research question(s) to be addressed and the
method to be employed in the process; while in the
literature review the questions may be broad in scope.
SLR employs a defined search strategy, and an
inclusion/exclusion criterion for identifying the
maximum possible relevant literature. Traditional review
can be accomplished only by a single reviewer; while on
the other hand, the systematic review requires a review
team to establish the objectivity of literature
classification at the very minimal level [19].

4 Research Method
This study presents a rigorous insight to various test case
prioritization techniques developed and applied in
regression testing area. Following the guidelines given
by Kitchenham [12], the course of action undertaken for

SYSTEMATIC LITERATURE REVIEW ON…

this research has been presented in Fig.1. After being
motivated for conducting this SLR, finalizing the
research questions for the study was the first task to be
completed. Once the research questions were reached,
various databases were searched based on the search
criteria to retrieve the relevant research in the area. The
next and the most crucial step of the study was the
selection of the most relevant papers based
finalized parameters (discussed in section 3.3.2). After
this step, 65 studies were finalized, and were rigorously
examined to find the answers to our research questions.
Their data extraction conforming to various parameters
led to their empirical evaluation, comparison, appraisal
etc., wherever possible And finally the conclusions were
reached. The steps undertaken in the Systematic
literature review for prioritization techniques are
documented in detail in the following sections.

Figure 1: Course of action for this SLR

4.1 Research questions
The aim is to summarize the current state of art in the
RTP research by proposing answers to the set of the
following questions:

RQ 1: What are the existing empirical evidences for
various approaches followed by the RTP techniques?
RQ 2: Is it possible to prove the independence of various
RTP techniques from their implementation languages?
RQ 3: What are the existing gaps in the current research
regarding the use of tools, metrics and artifacts for
various RTP techniques?
RQ 4: Can a RTP technique be shown superior to others
based on a) the level of granularity followed, or b) the
type of information used in prioritization?

4.2 Search Process

4.2.1 Sources of information
As suggested by Kitchenham in [19], searchin
gives more wider search space. In accordance with the
guidelines, the following six databases were searched
rather than the limited set of Journals and Conference
proceedings to cover the maximum possible information.

 Inspec (digital-library.theiet.org)

SYSTEMATIC LITERATURE REVIEW ON… Informatica

this research has been presented in Fig.1. After being
motivated for conducting this SLR, finalizing the
research questions for the study was the first task to be

eted. Once the research questions were reached,
various databases were searched based on the search
criteria to retrieve the relevant research in the area. The
next and the most crucial step of the study was the
selection of the most relevant papers based on various
finalized parameters (discussed in section 3.3.2). After
this step, 65 studies were finalized, and were rigorously
examined to find the answers to our research questions.
Their data extraction conforming to various parameters

ical evaluation, comparison, appraisal
etc., wherever possible And finally the conclusions were
reached. The steps undertaken in the Systematic
literature review for prioritization techniques are
documented in detail in the following sections.

Course of action for this SLR.

The aim is to summarize the current state of art in the
RTP research by proposing answers to the set of the

RQ 1: What are the existing empirical evidences for
RTP techniques?

RQ 2: Is it possible to prove the independence of various
implementation languages?

RQ 3: What are the existing gaps in the current research
metrics and artifacts for

RTP technique be shown superior to others
granularity followed, or b) the

type of information used in prioritization?

As suggested by Kitchenham in [19], searching databases
gives more wider search space. In accordance with the
guidelines, the following six databases were searched
rather than the limited set of Journals and Conference
proceedings to cover the maximum possible information.

theiet.org)

 ACM digital library (dl.acm.org)

 IEEE eXplore (www.ieeexplore.ieee.org)

 Science Direct (www.sciencedirect.com)

 Springer LNCS (www.springerlink.com)

 Google scholar (scholar.google.com)

These electronic sources have been mentioned in
[16, 17 and 19] as being relevant to the software
engineers. There was an overlapping in the papers
resulting from these sources and thus the duplicate
papers were excluded manually.

4.2.2 Search Criteria
The initial search string was reached in order to find all
the possibly relevant matter in the area of test case
prioritization. Engström, Runeson and Skoglund [16]
have already presented an SLR on regression test
selection techniques. Their SLR is in a field much similar
to our topic, thus the search string was reached
considering the search string used by them [16] and the
requirements for our topic. The keywords used were
(((software) <or> (regression)) <and> ((testing) <or>
(test)) <and> ((prioritisation) <or> (prioritization))). To
make sure that all potentially relate
found, the above search string was applied on full text,
rather than only on the title or the abstract. The start was
set to January 1969 up till February 2011. The earliest
paper included was published in the year 1997. Various
searching standards are followed by different databases.
Hence, the search strategy has to be de
accordingly. Some of the databases do not have the
“and” option. In those, we had to search phrase by
phrase. Search was carried out in 3 steps for such
databases: 1) (software) <or> (regression) 2) (test) <or>
(testing) 3) (prioritisation) <or> (prioritization).
search at 2nd step was carried out only on the results from
the first step. Similarly, the 3rd

from the results from the 2nd

during the search process also mentioned for the content
not from books, standards, magazines, newsletters and
educational courses.

4.2.3 Study Selection
The steps followed for the study selection procedure are
as in Fig. 2. Initially, the study located 12,977
potentially relevant papers from all the sources
mentioned in section 4.2.1. Elementary search yielded a
huge amount of literature due to the use of the terms
'regression' and 'testing' in the search string. Databases
could not differentiate between “statistical regression
testing” and “software regression testing”, and there
exists a huge amount of literature on “statistical
regression testing”. Similar abundance in initial search
results was observed in [16] when SLR wa
on regression test selection techniques. In the next step,
title based exclusions for papers irrelevant to the

Informatica 36 (2012) 379–408 381

ACM digital library (dl.acm.org)

IEEE eXplore (www.ieeexplore.ieee.org)

Science Direct (www.sciencedirect.com)

Springer LNCS (www.springerlink.com)

Google scholar (scholar.google.com)

These electronic sources have been mentioned in
19] as being relevant to the software

engineers. There was an overlapping in the papers
resulting from these sources and thus the duplicate
papers were excluded manually.

The initial search string was reached in order to find all
bly relevant matter in the area of test case

prioritization. Engström, Runeson and Skoglund [16]
have already presented an SLR on regression test
selection techniques. Their SLR is in a field much similar
to our topic, thus the search string was reached

nsidering the search string used by them [16] and the
requirements for our topic. The keywords used were
(((software) <or> (regression)) <and> ((testing) <or>
(test)) <and> ((prioritisation) <or> (prioritization))). To
make sure that all potentially related literature could be
found, the above search string was applied on full text,
rather than only on the title or the abstract. The start was
set to January 1969 up till February 2011. The earliest
paper included was published in the year 1997. Various

hing standards are followed by different databases.
Hence, the search strategy has to be designed
accordingly. Some of the databases do not have the
“and” option. In those, we had to search phrase by
phrase. Search was carried out in 3 steps for such

ases: 1) (software) <or> (regression) 2) (test) <or>
(testing) 3) (prioritisation) <or> (prioritization). The

step was carried out only on the results from
rd step search was computed
step. The exclusion criteria

during the search process also mentioned for the content
from books, standards, magazines, newsletters and

The steps followed for the study selection procedure are
, the study located 12,977

potentially relevant papers from all the sources
mentioned in section 4.2.1. Elementary search yielded a
huge amount of literature due to the use of the terms
'regression' and 'testing' in the search string. Databases

uld not differentiate between “statistical regression
testing” and “software regression testing”, and there
exists a huge amount of literature on “statistical
regression testing”. Similar abundance in initial search
results was observed in [16] when SLR was conducted
on regression test selection techniques. In the next step,
title based exclusions for papers irrelevant to the

382 Informatica 36 (2012) 379–408 Y. Singh et al.

software or regression testing were done. Although Dybå
[20] has suggested to consider papers irrespective of their
language, but we had to exclude the papers in any
language other than English. After the title based
exclusions, we were left with 634 studies.

Step 3 involved rejections based on the abstract for
papers lying out of the search field. At this step, studies
by both the students and the software professionals were
included. The papers about general software testing,
selection, reduction, test case generation and hybrid
approach were rejected. Only those papers were included
that dealt with prioritization. The number of the papers
left after exclusions based on reading the abstracts were
213.

The final stage of the selection process was text
based exclusions. At this stage, we made sure that each
paper is selected only if has potential to contribute
towards the answers of our research questions[21]. The
papers presenting new technique(s) for prioritization,
comparing the techniques, reviewing them or empirically
validating them were included. The “lessons learned”
papers, papers having pure discussion and expert opinion
were excluded. Also, the studies included both
qualitative and quantitative methods of research. Thus
the final number of studies left after the exclusions based
on the full text were 65 [1-9, 22-79]; these also formed
the primary studies for our work (details listed in
appendix A: Table A1).

A team of three researchers performed selection of
the research papers individually at each stage. The papers
were initially selected by two of the researchers that were
then checked by the third team member. This process
was repeated at each step of study selection (Fig.2). The
conflict was mainly on the thoroughness of the works
presented in the papers. And this was resolved by the
opinion of the third and the fourth authors. Three papers
were having conflict out of which two got selected as
three authors agreed on the study being relevant while
one was rejected. 49 primary studies out of the total 65
were found to report new technique(s), two were
extension of the previous work and 14 were re-analyses
of the previously reported studies. The same has been
listed in Appendix A: Table A1.

Figure 2: Steps followed in selection procedure for the
study undertaken.

4.2.4 Data extraction strategy
The papers were thoroughly explored to find some
common properties which formed the basis of the
comparison. These were inspired from the previous work
by Engström, Runeson and Skoglund [16] and also from
the methods described by Cruzes and Dybå [21]. Each
article was studied and appraised to detect the following:

(i) Technique description: The techniques were given
the ID’s and the names.

(ii) Artifacts used: The artifacts used in the study were
noted.

(iii) Type of study: The type of the study can be an
“experiment” or a “case study”. It might also be
possible that a study includes both the “experiment”
and the “case study”. An “experiment” is a study in
which intervention is deliberately introduced to
observe its effect [16]. A “case study” investigates
within the real life context.

(iv) Comparison: Comparisons mentioned in the study,
have been used to analyze and evaluate the studies.

(v) Language Type: It includes the type of the language
on which the technique presented in the study is
applicable. The language types found were:
procedural, binary code, language independent,
COTS component based, web designing or object
oriented.

(vi) Input method: It includes the type of the input on
which the technique can be applied. It can be:
Source code, binary form, system model, system,
call graph for program structure, or
requirements/specifications.

(vii) Approach: The various approaches were found to
be: modification based, coverage based, history
based, requirement based, fault based, genetic
based, composite or other approaches.

(viii) Granularity of approach: It specifies the granularity
on which the technique can be applied. The 17
granularities followed in the papers are: Statement
level, function level, block of binary form, method,
transition in system model, system level, program,
process level, event, component, file to be changed,
software units, web service, module, configuration
of the software system, class level or any. The
above nomenclature was being followed by the
studies. Some of the granularities seem to be same
but they are separately mentioned, as it is not clear
from the studies that they are at the same level.

(ix) Metrics: The metrics being used in a study are
noted.

(x) Tools: Researchers have been using various tools
during their study. The tools being used in each of
the study were recorded.

5 Categories of Prioritization
Techniques

Regression test prioritization re-orders the test cases so
that those with the highest priority (according to some
goal) are executed earlier in the regression testing
process than the lower priority test cases. To better
understand the progress of research in the field of
regression test prioritization, eight broad categories were
identified. Classification has been made on the basis of
the approach followed for prioritization. The discussion
presented in the following sections (4.1 – 4.10) also
provides an answer to RQ2 by specifying the compared
techniques.

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 383

5.1 Coverage Based (CB) Approach
Coverage based prioritization is based on the fact that
more the coverage achieved by the test suite, more are
the chances of revealing the faults earlier in the testing
process. Wong et al. [22] initially included prioritization
in a hybrid technique. They prioritized the test cases
according to the criterion of increasing the cost per
additional coverage.

In 1999, Rothermel et al. [23] proposed four
coverage based techniques: total/additional
statement/branch coverage respectively. The statement
level granularity was followed based on source code type
of input method. Aristotle program analysis system tool
was used for the comparison and the results were
measured using Efficacy and APFD metrics. The
ordering of the test suite was compared with respect to
the faster detection ability of catching faults. On
comparing the techniques, Rothermel et al. found that the
total coverage prioritization outperforms the additional
coverage prioritization.

This work was taken a step further by Elbaum et al.
[24] to address the version specific prioritization. Eight
techniques were proposed out of which the “total
function” and the “additional function” were based on
coverage. Rate of fault detection improved by using the
version specific test case prioritization. Comparisons
among 12 techniques (4 statement level and 8 function
level) yielded the worst and the best results for fn-total
(function-total) and fn-fi-fep-addtl (function-fault
existence/exposure-additional) techniques respectively.
A tradeoff was established between the statement and the
function level techniques. On one hand the function level
techniques were found to be more cost effective and
involved less intrusive instrumentation while on the other
hand the statement level techniques were preferred if
sufficiently high cost of delays are observed in the
detection of faults.

Srivastava and Thigarajan [25] introduced the binary
code based prioritization approach. A test prioritization
system Echelon was built that prioritizes the set of faults
based on the changes made to the program. The
suggested advantage of the binary form is the elimination
of recompilation step for coverage collection etc. making
the integration of build process easier in the production
environment. The presented case study showed that it is
possible to effectively prioritize the test cases using
binary matching in a large-scale software development
environment.

Do et al. [26] performed a controlled experiment to
examine the effectiveness of test case prioritization on
programs tested under JUnit. Six block and method level
granularity techniques were proposed: Total block
coverage, Additional block coverage, Total method
coverage, Additional method coverage, Total diff method
and Additional diff method. Diff method techniques use
modification information. These techniques are for JUnit
environment and correspond to the already proposed
techniques focusing on C language in [23, 24, 27]. The
inference drawn from the comparison was that the level
of granularity and the modification information had no

effect on the prioritization. The techniques using
feedback information (Additional techniques) provided
significant improvement in the fault detection rate. On
comparing with the previous studies on C, the statement
level techniques were found to be better than the function
level techniques. Possible reason for this as analyzed by
[26] was that the instrumentation granularity for Java
differs from C.

Bryce and Memon [25] proposed five new testing
techniques for software interaction testing of Event-
driven software. The techniques include: interaction
coverage based prioritization by length of test (longest to
shortest), 3-way interaction, 2-way interaction, unique
event coverage and length of test (shortest to longest).
The comparison within the proposed five and the random
technique resulted in the following findings: test suites
including largest percentage of 2-way and 3-way
interaction have the fastest fault detection rate; the
proposed techniques are useful for test suites having
higher interaction coverage.

A graph model based prioritization using fuzzy
clustering approach was proposed by Belli et al. [29] in
2006. The paper presented a case study of graph model
based approach on the web-based system ISELTA. The
complexity of the method has been given as O(n2). The
approach was found to be useful when test suites are
ordered within restricted time and method.

The effects of time constraint on the cost benefits of
regression testing were studied by Do. et al. [30] by
offering four techniques out of which two were based on
total/additional coverage and two on Bayesian network
approach (discussed in section 4.8.3). Additional
technique was found to be more efficient than total
technique.

Jiang et al. [31] proposed nine new coverage based
Adaptive Random Test (ART) Case Prioritization
techniques in 2009. These techniques were broadly
classified into three groups namely maxmin, maxavg,
and maxmax. For each group the level of coverage
information was based on statement, function and
branch. The comparison within the proposed techniques
and random ordering resulted in the following findings:
ART techniques are more effective than random
ordering; ART –br-maximum (br-branch) technique is
the best among the entire function group of ART
techniques; it is more practical and statistically effective
than the traditional coverage based prioritization
techniques revealing failures.

Maia et al. [32] proposed the use of Reactive
GRASP (Greedy Randomized Adaptive Search
Procedures) metaheuristics for prioritizing the test cases.
The technique uses block, decision and statement
coverage criteria. The results were compared to the
search algorithms like greedy, additional greedy, genetic
and simulated annealing techniques. They found that the
proposed technique significantly outperformed genetic,
simulated annealing and greedy algorithm. Also, the
performance was not worse than the additional greedy
algorithm. Proposed solution exhibited more stable
behaviour as compared to other solutions.

384 Informatica 36 (2012) 379–408 Y. Singh et al.

In 2009, a multilevel coverage model based family
of prioritization techniques was proposed by Mei et al.
[33] to capture the business process. Mei et al. defined
three data coverage levels as CM-1, 2 and 3 where CM
implies Coverage Model. Ten proposed techniques (M1
to M10) include: M1: Total-CM1, M2: Addtl-CM1, M3:
Total-CM2-Sum, M4:Addtl-CM2-Sum, M5:Total-CM2-
Refine, M6:Addtl-CM2-Refine, M7:Total-CM3-Sum,
M8:Addtl-CM3-Sum, M9:Total-CM3-Refine, and
M10:Addtl-CM3-Refine. They also gave a hierarchy of
the proposed techniques to analyze their effectiveness.
Except the optimal technique, M6 and M7-M10 were
found to be generally better and M1 was found to be the
worst among all other techniques. Recently in 2010, Mei
et al. [34] also proposed four black box testing
techniques for service oriented application in which the
regression test cases were reordered using WSDL (Web
Service Description Language) information. The
techniques comprise: Ascending/Descending WSDL tag
coverage prioritization, Ascending/descending WSDL
tag occurrence prioritization. Contrasting these four
black box techniques with two benchmark (random and
optimal), two traditional (Total and Additional-Activity)
and two white box (Total and Additional-Transition)
prioritization techniques they computed APFD, Boxplots
and performed ANOVA analysis. They derived the
following outcomes: Black box testing techniques are
better than the random ordering in terms of the overall
mean APFD. Moreover, white box testing techniques
required source code for the services under test while the
black box needs only interactive messages. In analogy to
traditional functional prioritization techniques, black box
testing techniques were able to achieve coverage based
on tags. Also, the black box testing techniques achieved
higher fault detection rates.

The latest study for the coverage based approach for
developing a single abstract model by combining the
GUI and the web applications for testing was published
in 2011 by Bryce et al. [35]. The prioritization has been
accomplished based on Parameter-Value Interaction
Coverage, Count, or Frequency criterion. The generic
prioritization criterion for both the GUI and the web
applications was also defined. The comparisons
concluded that both the applications showed similar
behaviour when re-casted using the new model. The
usefulness of the combined model for two types of event-
driven software was indicated by the empirical study.

5.2 Modification Based (MF) Approach
This approach aims to prioritize the test cases based on
the modifications made to the program. As already
mentioned in the previous sections, the initial paper
discussing prioritization was using modification-based
approach and was authored by Wong et al. [22]. In 2005,
Korel et al. [37] proposed System model based selective
test prioritization and Model dependence based test
prioritization techniques using Extended Finite State
Machine (EFSM) system models. Although the later
technique was a little expensive, improvement in
prioritization effectiveness was observed using rate of

fault detection metrics for both the techniques. Korel et
al. [36] proposed five more heuristic based techniques
and compared all the seven techniques in 2007. Model
dependence based technique and a heuristic technique
based on high priority assignment to test cases executing
transition that execute least number of times, exhibited
best effectiveness out of all the seven techniques. The
later is significantly simpler and requires less information
about the models than the former.

A model based prioritization approach for selection
of test cases relying on traceability links between models,
test cases and code artifacts was given by Filho et. al. in
2010 [38]. This technique supports the change based
regression testing using timestamps and property based
prioritization. They performed the prioritization and the
filtering as a part of the process of test generation using
test suite modifiers.

5.3 Fault Based (FB) Approach
Fault based prioritization techniques have been proposed
initially by Rothermel et al. in [23]. According to it, the
ability of a fault to be exposed by a test case not only
depends whether a test case executes a particular
statement but also on the probability that the fault in the
statement will cause failure for that test case. Two
techniques (Total fault exposing potential (FEP) and
Additional-FEP prioritization) with respect to the fault
exposing potential of a test case have been presented in
the study. The study also proposed four coverage-based
techniques as discussed in the earlier section. Additional
– FEP outperformed all the proposed coverage based
technique. Total FEP outperformed the same except total
branch coverage prioritization. The results shown using
Efficacy and APFD suggested that these techniques can
improve the fault detection rate and that the results
occurred even for the least expensive techniques.

Elbaum et al. presented six function level techniques
for prioritizing test cases with respect to faults [24]. Two
of the techniques are function level based fault exposing
potential (FEP) prioritization; other two are based on
fault index that represents fault proneness for that
function and two more combine both fault index and
fault exposing potential by initially applying total fault
index prioritization to all test cases and then applying
FEP prioritization to that possessing equal fault index
value as secondary ordering. Two more coverage-based
techniques presented in the paper have been discussed in
the coverage section. Enough statistical evidence has
been provided to show that the function level techniques
are less effective than the statement level techniques.
Fault proneness and FEP estimators have not been found
to significantly improve the power of prioritization
techniques.

In addition to the above techniques, four function-
level prioritization techniques were also proposed by the
same authors [27]. The techniques are DIFF-based
techniques. These techniques require the computation of
syntactic differences between two versions of the
program. The degree of change is measured for each of
the function present in both the versions by adding the

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 385

number of lines inserted, deleted or changed in the output
of UNIX diff command applied to both the versions.
Two of these four techniques are based only on DIFF and
other two combine DIFF with FEP (Fault Exposing
Potential). They have compared 18 techniques: two
reference techniques (optimal and random), four
statement-level and twelve functional-level techniques
[23, 24, 27]. Statement level-additional FEP technique
performed the best after the optimal. The second best
were the function level techniques combining fault
proneness measures and FEP. Additional techniques
were found to be better than total techniques. Also, the
statement level techniques were better than function level
technique. Finally, the techniques combining FEP and
fault index were better than the rest.

5.4 Requirement Based (RQ) Approach
Srikant et al. [39, 40] proposed a system level technique
PORT V 1.0 (Prioritization Of Requirements for Testing)
for prioritization based on the requirements and
developed a tool to implement the same. The value-
driven approach is based on four factors: customer
assigned priority of requirements, developer-perceived
implementation complexity, requirement volatility and
fault proneness of the requirements. The objective is to
reveal the severe faults earlier and to improve the
customer-perceived software quality. Higher severity
faults were mapped with the requirements with higher
range of PFV where PFV is the prioritization factor value
for a particular requirement computed using their
formula. The study showed that the PORT technique
could improve the testing efficiency by focusing on the
customer’s highest value functionality and on improving
the severe fault detection rate thereby minimizing field
fault occurrence.

Quota constrained strategies (Total and Additional)
to maximize the testing requirement coverage were
proposed for a service-centric system in [41] by Hou et
al. The aim is to maximize the total or the additional
testing requirement coverage. It selects a subset of test
cases that can satisfy the constraint imposed by the
request quotas over a period of time. The comparison of
Quota strategies with branch coverage approaches lead to
the outcome that the Quota constraint strategies provided
better branch coverage.

A model for system level test case prioritization
from the software requirement specification was
presented to improve user satisfaction and the rate of
severe fault detection in [42]. The model prioritized the
system test cases based on the following six factors:
customer priority, changes in requirement,
implementation complexity, usability, application flow
and fault impact. Another technique by the same authors
has been presented in [43] which only differs in two of
the factors affecting the prioritization algorithm. The
factors presented in [43] are: customer assigned priority,
developer perceived code implementation complexity,
changes in requirements, fault impact, completeness and
traceability. On comparing the techniques with the total
statement and the total method coverage, the rate of

detection of severe faults was found to be higher for their
technique.

5.5 History Based (HB) Approach
Kim and Porter proposed the first history-based
prioritization technique in 2002 [44]. The prioritization
performed in the technique is based on the historical
execution data. They show that the historical information
may be useful in reducing costs and increasing the
effectiveness of the regression testing process. The
notion of memory full regression testing was
incorporated in [44]. The weakness of this approach is
that only the effect of last execution of the test cases,
especially in the binary manner, is used to calculate the
selection probability of test cases. Evaluations yielded
that regression testing may have to be done differently in
the constrained environments than the non-constrained
one. Also, the historical information may be useful in
reducing the cost and increasing the effectiveness of a
lengthy regression testing process.

A historical value based approach using the
historical information to estimate the current cost and the
fault severity for cost-cognizant test case prioritization is
presented by Park et al. in [45]. It uses the function level
gratuity and the historical information of the cost of the
test cases and the fault severities of detected defects in a
test suite to calculate the historical value of the test case.
This value is then used for test case prioritization. In
analogy with functional coverage prioritization
technique, the technique produced better results in terms
of APFDc metric.

Fazlalizadeh et al. [46] modified the history based
prioritization technique proposed by Kim and Porter [44]
to give faster fault detection in the resource and time
constrained environments. The paper presented a new
equation that considers the historical effectiveness of the
test cases in fault detections, test case’s execution history
and last priority assigned to the test cases. The proposed
technique was compared to random ordering and
boxplots were used to visualize the empirical results
confirming faster fault detection and stability.

5.6 Genetic Based (GB) Approach
A time aware prioritization technique practicing genetic
approach was proposed by Walcott et al. in 2006 [47].
The experiment was conducted at program level
granularity on two subjects: Gradebook and JDepend.
Emma and Linux process tracking tool were operated on
and the results were quantified using the APFD metric.
Eventually, GA prioritization realized improvement over
no ordering (by 120%), reverse ordering and fault aware
prioritization.

Another Genetic Algorithm (GA) based test suite test
case prioritization was proffered by Conrad et al. in 2010
[48]. The paper presented a wide variety of mutation,
crossover, selection and transformation operator that
were used to reorder the test suite. An experimental study
was implemented on 8 case study applications (same as
in [49]), using same coverage effectiveness metric [49]
and their JUnit test cases at system level. The results

386 Informatica 36 (2012) 379–408 Y. Singh et al.

were analyzed with the help of beanplots. On comparison
of the proposed technique with random search and hill
climbing techniques, GA yielded finer results. Also GA
was found to have similar execution times as that of
random search and hill climbing. All in all, GA showed a
greater variability and is also an upcoming area of
research in the field.

5.7 Composite (CP) Approaches
The techniques using two or more of the above (4.1-4.6)
and other (4.8) approaches have been categorized under
the composite approach.

5.7.1 CB+MF
The introductory study that identified prioritization for
regression testing was reported by Wong et al. [22]. They
combined modification and coverage approach for their
hybrid technique (modification, minimization and
prioritization). Though the technique is applied on
statement level granularity, it can also be implemented
for function level and low level granularity. A
combination of modification and minimization was
compared with the combination of modification and
prioritization techniques. Both were found to serve as a
cost effective alternative for faster regression testing in a
time and cost constrained environment. The cost
effectiveness of techniques was measured using size
reduction, recall and precision metrics.

A case study based on the technique incorporating
aspects of modification and decision coverage was
conducted by Jones and Harrold [50]. The empirical
study revealed that the technique significantly reduced
the cost of regression testing.

The use of particle swarm optimization (PSO)
algorithm for automatic prioritization of test cases based
on the modified software units and fitness of the test
coverage was proposed in 2008 by Hla, Choi and Park
[51]. The total prioritization cost using PSO algorithm
was computed to be O((m*p)kn) < O(mn2). Comparing
with the random technique they found that 64% coverage
could be achieved against only 47% achieved by the
random technique.

5.7.2 CST+FB
Cost-cognizant test case prioritization techniques based
on the cost and fault severity were presented by
Malishevsky et al. in 2006 [52]. The author adapted and
compared their already suggested function level
techniques [24, 27] namely fn_total, fn_addtl,
fn_diff_total, fn_diff_addtl to the cost cognizant
framework. The complexity of the cost cognizant total
algorithms was found to be O(n.m + nlogn) while that of
additional algorithms was O(n2m) where n is the size of
test suite and m is the number of functions in the system.
The proposed techniques were found to be effective only
in some of the cases.

5.7.3 MF +SLC
A statement level slice based heuristic combining REG
(regular statement/branch) executed by test case, OI
(output influencing) and POI (potential OI) was
expressed in an experimental study conducted by Jeffery
and Gupta [53]. Aristotle Program Analysis tool was
used to compare the technique with total statement and
branch coverage. It was interpreted that faults were
detected earlier in the testing process from the fact that
the information about relevant slicing and modifications
traversed by each test case is beneficial when used as a
part of test case prioritization process.

5.7.4 MF+CB+FB
Mirarab et al. proposed a test case prioritization
technique based on Bayesian networks in 2007 [54]. The
demonstrated technique is a mixture of three approaches
namely modification, fault and coverage based. A
comparison was performed among ten prioritization
techniques that included three control techniques
(Original, Random and Optimal) and six total/additional
techniques based on class, method and change overage
and the introduced technique. It was observed that all the
techniques performed better than random order and
original order and that, as the number of faults grew
Bayesian network yielded promising results. In 2008, the
aforementioned authors presented an enhanced Bayesian
networks approach [55]. The technique introduced a new
feedback mechanism and a new change information
gathering strategy. The results derived from APFD have
showed the advantage of using feedback mechanism for
some objects in terms of early fault detection.

5.7.5 RQ+HB
A novel prioritization technique for black box testing
was brought up by Qu et al. [56]. It is requirement based
prioritization approach for which test history and run
time information were used as the input method.
Moreover, the technique was compared with the random
ordering suggesting that the technique improved the test
suite’s fault detection rate.

5.7.6 CB+IB
A prioritization technique “Combinatorial Interaction
Regression Testing (CIT)” combining coverage and
interaction approaches has been suggested by Qu et al.
[57]. NAPFD metric is used to compare CIT technique
with re-generation/prioritization technique where re-
generation prioritization techniques are the techniques
that are combination of generation and prioritization
using interaction testing [58]. The outcome shows that
prioritized and re-generated /prioritized CIT test suites
were able to find faults prior to unordered CIT test suite.

5.7.7 RQ+CST
Two techniques “total” and “additional” combining
“testing requirement priorities” and “test case cost” were
set forth by Zhang et al. [59]. They worked on the
simulation experiments to empirically compare 24

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 387

combinations of the requirement priorities, test cost and
test case prioritization techniques. The techniques were
compared with the unordered test suite and “additional”
technique performed the best among the three. An
original metric to evaluate the effectiveness of
prioritization based on “units of testing requirement
priority satisfied per unit test case cost” was realized.

5.7.8 MF+SVD
A methodology based on Singular value decomposition
(SVD) with empirical change records was introduced by
Sherriff et al. [60]. The case study compared the
presented technique and the regression test selection
(RTS) technique [61] with respect to inclusiveness,
efficiency and generality. It turned out that the technique
was more efficient than the RTS techniques provided the
traceability information is readily available.

5.7.9 CB+MF+SLC
Jeffrey and Gupta [62] advanced their earlier proposed
technique [53] by adding coverage requirements of the
relevant slices to the modification information for
prioritization. The two techniques derived from the
original technique “REG+OI+POI” [50], were named as
“GRP_REG+OI+PI” and “MOD*(REG+OI+PI)”. In
comparison with the statement and branch coverage
techniques, the extended MOD*(REG+OI+POI) proved
to be an improvement over the REG approach on the
grounds of the fault detection rate of prioritized test
suites.

5.7.10 CB+MF+FB+PS
A prioritization technique by Ma and Zhao [63] based on
coverage, modification, fault and program structure was
presented and compared with four other techniques: total
and additional method coverage, total and additional
different method coverage. It came forth that the
technique performed better than original, random, total
method coverage, additional method coverage, total
different method coverage and additional different
method coverage by 30%, 62%, 13%, 11%, 31% and
24% respectively.

5.7.11 CF+DF+CB+MF
Chen et al. [64] reported a test case prioritization
technique in 2010 for the web service regression testing
using WS-BPEL language. The paper presented a case
study of an ATM example and a weighted graph was
constructed that help to identify modification affected
elements using impact analysis. The study was based on
combination of four approaches: control flow, data flow,
coverage and modification. Two techniques that were
used to prioritize test cases included total and additional
techniques. The main goal of prioritization was to cover
the elements with the highest weight. The approach gave
appropriate reasons for fake dependence in BPEL
process and also gave solutions for their elimination.

5.7.12 HB+GA+CST
A cost-cognizant technique utilizing the historical
records and the genetic algorithms to carry out the
prioritization process was instigated by Huang et al. in
2010 [65]. A combination of three approaches (history,
genetic and cost based) was used by the version specific
test case prioritization technique. GA_hist was compared
with a genetic based [47], two history based [45], a cost
cognizant based, a function coverage based, random and
optimal techniques. The results highlight greater mean
APFDc value for the GA_hist than other techniques. It
was also revealed that the proposed technique improved
the effectiveness of cost-cognizant test case prioritization
without taking into account the source code, test case
cost and uniformity of the fault severities. The greater the
number of generations, more effective is the proposed
technique.

5.8 Other (O) Approaches
The approaches for which only single technique was
available in the literature have been listed in the ‘Other’
category.

5.8.1 Data flow based (DF)
Rummel et al. [66] proposed a data flow based
prioritization technique in 2005. It is based on the
definition and use of the program variables by employing
the all-DU’s test adequacy criteria. The discussed
technique was compared with the random ordering. It
was found that the time and space overhead increase with
the size of the application. Also, it was concluded that
the test suites can be prioritized according to the all-DU’s
with minimal time and space overheads. Finally, the data
flow based prioritization were not found to be always
effective than the random order.

5.8.2 Inter Component Behaviour (ICB)
In 2007, Mariani et al. [67] gave a new technique to
prioritize the test cases that provided an improvement of
the efficiency of the regression testing of the COTS
components. The proposed techniques followed inter
component behaviour approach. The technique helped in
discovering many faults after the execution of a small
amount of high priority test cases. It was also observed
that less than 10% of the high priority test cases revealed
all the faults for all the considered configurations except
in one of the configurations.

5.8.3 Bayesian Network Approach (BN)
Two class level Bayesian network based techniques were
described by Do et al. [30] in addition to the two
coverage based techniques (discussed under CB
approaches). The effectiveness of the block level and the
class level techniques were contrasted against the
original and the random ordering. It emerged that the
effect of time constraint on differences between the cost
benefits increased as the time constraint level increased.
As mentioned earlier, feedback techniques (additional)
were found to be more effective than their non-feedback

388 Informatica 36 (2012) 379–408 Y. Singh et al.

counterparts. Overall, it was found that the BN
techniques tended to have lower cost on an average than
the coverage based techniques.

5.8.4 Cost Based Approach (CST)
A prioritization technique for Multiple Processing
Queues applying task scheduling methods was proposed
by Qu et al. [68]. The technique was compared with the
random approach providing an improvement in parallel
testing scenario with respect to the fault detection.

5.8.5 Graph based Approach (GPH)
Ramanathan et al. presented a graph based test case
prioritization in 2008 [69]. A weighted graph was
constructed in which the test cases denoted the nodes and
the edges specified user defined proximity measures
between the test cases. The de clustered linearization of
nodes in the graph led to the prioritization of the test
cases. Fielder (spectral) and greedy ordering approaches
were used and were implemented using PHALANX
framework.

5.8.6 Configuration Aware Approach (CA)
A paper addressing the issue of providing configuration
aware regression testing for evolving software was
presented by Qu et al. [70]. A combinatorial interaction
testing technique was used to generate the configuration
samples that were used in the regression testing. The
comparison highlighted that the median fault finding
ability and NAPFD of the technique is higher than
original ordering and has better fault detection capability
than random ordering.

5.8.7 Classification Tree Based Approach
Yu et al. [71] proposed an annotated classification tree
based prioritization technique in 2003. The annotation to
the classification tree is made with additional information
of selector expression, occurrence tags and weight tags.
The annotated classification tree was used to prepare
prioritized test suite and this process was automated
using EXTRACT (Extracting black boX Test cases fRom
Annotated Classification Tree).

5.8.8 Knapsack Based Approach (KB)
Knapsack solvers were exploited in the time aware
prioritization by Alspaugh et al. in 2007 [72]. The test
suites were prioritized using seven algorithms: Random,
Greedy by ratio, Greedy by value, Greedy by weight,
Dynamic Programming, Generalized tabular and Core.
The effectiveness of each of the algorithm to prioritize
was measured using code coverage, coverage
preservation and order-aware coverage metrics. The
comparisons revealed that Dynamic programming,
Generalized tabular and Core do not always create more
effective prioritization. Moreover, if correctness had
utmost importance, overlap prioritizers with higher time
overhead were found to be appropriate.

5.8.9 Failure Pursuit Sampling (FPS)
Simons et al. [73] proposed a distribution based
prioritization technique called Failure Pursuit Sampling
that was previously used for prioritization of tests in
general [5]. The original technique was modified by
improving the clustering and the sampling phases of FPS
using the fault matrix computed from the execution of
test on the previous versions. It was accrued that the
technique has higher rate of efficiency than the original
FPS.

5.8.10 Search Algorithm based (SA)
Search algorithms have been used as the basis for
prioritization technique or comparisons. Some of the
studies [32, 48, 65, 72] using the search algorithms have
been discussed in the previous sections as they followed
genetic, composite or other approaches. The papers
exclusively based on search algorithms have been
discussed here. All the recorded search algorithm for
RTP have been summarized in Appendix A. (Table A3).

Li et al. [74] applied five search algorithms (Hill
climbing, Genetic algorithm, greedy, additional greedy
and 2-optimal greedy) to prioritization and compared
them by empirical evaluation. Greedy algorithms
enhance the initially empty test suite incrementally using
some heuristics. The greedy algorithms are also
compared with respect to their cost of prioritization. If m
is the number of statements and n is the number of test
cases, the cost of prioritization for greedy, additional
greedy and 2-optimal greedy was found to be O(mn),
O(mn2) and O(mn3) respectively. The results exhibited
that Additional Greedy and 2-Optimal were the finest
and along with Genetic Algorithm, these 3 always
outperformed the Greedy Algorithm.

An extension and empirical evaluation of greedy
algorithm, 2-optimal greedy algorithm and delayed
greedy algorithms was presented by Smith and
Kapfhammer in 2009 [49]. They incorporate the test case
cost, the test coverage and the ratio of coverage to cost in
the algorithm. For each of the eight observed case
studies, a decrease in the testing time and the coverage of
the test requirements was observed.

Lately in 2010, Sihan Li and his teammates [75]
performed a simulation experiment for studying the same
[74] five search algorithms for RTP. The test
requirements based on statement, decision, block and
other coverage criteria were measured. The results
concluded that the Additional and the 2-Optimal greedy
algorithm performed better in most of the cases, which is
in conformance to the results of the previous study. Also,
the overlap of test cases affected the performance of
these algorithms with respect to the test requirements.

5.9 Comparison Studies
Elbaum et al. in 2001 [1] proposed a new cost cognizant
metric APFDc (adapted from APFD) that was used for
measuring the rate of fault detection and included
varying test cases and fault costs. A case study was
performed to analyze the impact of test cost and the fault

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 389

severity of the prioritization techniques (random,
additional statement coverage, additional function
coverage and additional fault index). The additional fault
index prioritization resulted better than the other
techniques. All the four techniques were found to be
better than the random technique.

In addition to the above three techniques, three more
techniques (Total statement/ function coverage and fault
index) and optimal (instead of random) techniques were
analyzed in terms of APFD (initially explained in [20])
by Elbaum et al. [2]. The task was accomplished by
exploring the impact of certain factors of the various
prioritization techniques on the fault detection rate. The
conclusion drawn by them was that a new technique
incorporating information provided by the metric APFD
can be developed.

Nine techniques were described and compared by
Rothermel et al. in 2001 [3]. The techniques were:
original order; random order; optimal; total/additional
statement coverage; total/additional branch coverage;
total/additional fault exposing potential prioritization.
The results showed that all the techniques performed
better than the original and the random order
prioritization. Also, the additional fault exposing
potential prioritization performed the best. Moreover, the
branch coverage techniques were better than the
corresponding statement coverage techniques.

Elbaum et al. [4] examined two techniques,
total/additional function coverage along with the random
and the optimal ordering to understand the effect of
change on the cost effectiveness of the regression testing
techniques. They made use of a large number of
measures to accomplish the comparative case study. The
analysis found that the change attributes played a
significant role in the performance of the techniques.
Also, the additional function coverage technique
outperformed the total function prioritization technique
regardless of the change characteristics. The total
technique gave varied results and was sometimes worse
than random prioritization.

An empirical comparison among four different
prioritization techniques was put forward by Leon et al.
in 2003 [5]. These techniques included test suite
minimization, prioritization by additional coverage,
cluster filtering and failure pursuit sampling (FPS). The
former two techniques were broadly classified as
coverage based and the latter two as distribution based.
The comparisons yielded the following findings: when
the sample sizes are small, basic coverage maximization
can detect the facts efficiently; one per cluster sampling
achieves comparably good results and at the same time
does not achieve full coverage; for large sampling sizes,
FPS is more efficient than cluster sampling. APFD
demonstrated that the random ordering outperformed the
repeated coverage maximization for GCC while not for
Jikes and Jvac. The results also suggested that both the
coverage based and the distribution based techniques
were complimentary in finding different defects.

Rothermel and Elbaum [6] experimented and studied
the effect of test suite granularity and test input grouping
on the cost and the benefit of regression testing

methodologies. An analogy was established among the
three prioritization techniques: optimal, additional and
additional-modified function coverage prioritization. It
revealed that the test suite granularity affected several
cost-benefit factors for the methodologies and at the
same time the test input grouping had limited effect. As
the granularity level decreased, higher APFD values
were observed. It emerged that the finer granularity
precisely discriminates between the test cases. The
results were recorded to be consistent with [27].

Elbaum et al. [7] thoroughly analyzed the fault
detection rates of five prioritization techniques (random
order, total/additional function coverage prioritization;
total/ additional binary diff. function coverage
prioritization) on several programs and their versions to
help the practitioners chose a technique for a particular
scenario. The generalized results showed that the
techniques using feedback gave better results. They
suggested that since the performance of the technique
varied significantly with the scenarios (programs, test
cases and modifications), it was therefore necessary to
choose the appropriate technique. They also stressed that
choosing a technique with higher APFD is
oversimplifying and may not always imply a better
technique. The two strategies proposed by them for the
practitioners include: Basic instance-and-threshold
strategy (to choose a technique that is successful for
largest number of times) and Enhanced instance-and-
threshold strategy (that adds attribute of the scenario
using metric and then selecting the technique by
building classification tree). The results suggested, like
many others, that the techniques using feedback were
better.

A small experimental study was performed for
comparing the simple code based and the model based
test prioritization method with respect to the early fault
detection effectiveness in the modified system by Korel
et al. [76]. The study focused on the source code faults.
The results expressed that the model based test
prioritization may improve the average effectiveness of
early fault detection significantly when compared to
code-based prioritization. The model based prioritization
was less expensive but was sensitive to the information
provided by the tester or the developer.

Block and method level prioritization techniques for
the total and the additional coverage were assessed using
the mutation faults by Do and Rothermel in 2005 [8].
They also examined the consistency of the results with
the prior study [26] of Java System using hand seeded
faults. The levels of coverage had no effect on the rate of
fault detection whereas the additional techniques proved
better over the total techniques.

The same authors along with Kinner [9] empirically
performed the cost benefit analysis on the same artifacts.
The comparisons were accomplished on the same
techniques as mentioned above and also the method_diff
total and the additional techniques. They found that the
functions and the statement level in C correspond to the
method and the block level in Java respectively. It hailed
from the experiment that the statement level techniques
were superior to the function level in C. But the block

390 Informatica 36 (2012) 379–408 Y. Singh et al.

level techniques were not found to be very different from
the method level techniques in Java. This is because the
block level is not as sensitive as the statement level. The
cost benefit analysis also revealed that the method and
the block level additional techniques resulted in the
highest cost savings.

Do and Rothermel [77] further conducted an
empirical assessment of the same techniques as in [8].
Same results with respect to the level of coverage were
recorded. Due to large sampling errors produced using
the mutation faults, they were found to have better rate of
fault detection over the hand seeded faults.

Aforementioned authors [78] also put forth an
improved Cost-Benefit model incorporating the context
and the life-time factors and compared two prioritization
techniques (total/additional block coverage) and two
regression test selection techniques. Time constraint
proved an important factor for the relative benefits
hailing from the tradeoff between the cost of the
additional tests without missing the faults and the cost of
reduced testing missing the faults.

A series of controlled experiments was conducted by
Do et al. in 2010 [79]. These were used to assess the
effects of time constraint on the cost and the benefits of
six prioritization techniques. The techniques included
two control (random/original) and four heuristic
techniques (two feedback and two non-feedback). The
results showed that heuristic techniques(Bayesian
network based and conventional code coverage based)
were useful when no time constraint were applied and the
software contained a large number of faults. The results
also revealed the cost effectiveness of the feedback
(additional) prioritization techniques over their non-
feedback counterparts. In addition, the feedback
techniques again performed unvaryingly better with the
increase in the time constraint levels.

6 Results and Analysis
The study resulted in the selection of 65 RTP research
papers for the literature survey. 106 new prioritization
techniques were identified from 49 of the studies,
whereas rest 16 studies were based only on the
comparative analysis.

Publication trends (Fig. 3) were observed from 1969
till the search of studies for the survey was carried out
(Feb 2011). The first technique (composite) was recorded
in the year 1997. Over the years, many more techniques
were logged and an increasing publication trend has been
observed. Maximum number of published papers
appeared in 2007 and 2008 (11each) accounting for 35 of
the techniques. Though most of the techniques were
documented in 2009 (21), the number of studies were
only six. This is due to the fact that many studies
presented more than one technique in the same paper.

Figure 3: Publication trends.

6.1 Advent and usage of approaches (RQ1)
The techniques were broadly categorized under eight
approaches as already discussed. The advent of these
approaches has been illustrated graphically in the Fig. 4.
The height of the bars in fig.4 represents the recentness
of the use of the particular approach to regression test
prioritization. The year 1999 saw the advent of the Fault
based approach for prioritization. It also proved to be the
main motivation behind many evaluation measures such
as APFD etc. After these, the year 2002 experienced the
use of the feedback (History based) approach for test
suite prioritization [44]. Generally, the errors are
concentrated in the primary stages of the software
development process. Realizing this fact, Requirement
based techniques emerged for the first time in 2005 [40].
Genetic algorithms based techniques are an upcoming
approach documented primarily in 2006 [47] for the use
in prioritization. The approaches introduced after 2006
have been included in the ‘Others’ category along with
the approaches that have not been used more than once in
the RTP field. The earliest approaches, Coverage and
Modification based (composite), came in 1997 [22].
Almost half of the recognized techniques were only
coverage based (44%) followed by the composite, the
fault based and other approaches as depicted by the pie
chart in Fig. 5.

Figure 4: Advent of new approaches; CB-Coverage
based, MF-Modification based, CP – Composite, FB-
Fault based, HB- History based, O-Others, RQ-
Requirements based, GB- Genetic based.

Publication Trends

1
0

6
8

0

6

2

6
5

3

19

16

21

12

1

0

5

10

15

20

25

199
7

199
8

1999
200

0
200

1
 200

2
2003

200
4

200
5

200
6

200
7

200
8

200
9

201
0

201
1

Years

N
um

be
r

No. of
Techniques in
each year

Total no. of
published
papers

Advent of new approaches

1997

2006

1992
1994

1996
1998
2000

2002
2004

2006
2008

CB MF CP FB HB O RQ GB

Approach

Ye
ar

 o
f P

ro
po

sa
l

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 391

Figure 5: Usage of approaches by the techniques; CB-
Coverage based, MF-Modification based, CP –
Composite, FB- Fault based, HB- History based, O-
Others, RQ- Requirements based, GB- Genetic based.

6.2 Are RTP techniques independent of
their implementation language? (RQ2)

The groundwork culminated in determining 17 levels of
Granularity utilized by the 106 techniques. It emerged
that System level, Web services, Statement level and
Function level granularity were largely utilized (Fig. 6).
The input method used by majority of the techniques was
found to be Source Code (as clearly shown in Fig. 7).
This is justified as the majority of the prioritization
techniques have been applied in the later stages of the
software development life cycle (SDLC), i.e., after the
source code is available. Also it can be inferred that the
System Models were the next in majority to be used as
the input method. System Models were mainly utilized
by the techniques that came after the introduction of
requirement based prioritization techniques. Thus we can
observe an increase in the use of the prioritization
techniques in the earlier stages of SDLC also. The
distribution of the type of languages used by the
techniques has been depicted in Fig. 8. About half of the
techniques were found to be Language Independent,
suggesting their compatibility over many languages.
Approximately one-fourth of the techniques worked for
Procedural languages only. An increasing use of the
recent techniques for Web designing languages (16%)
was noticed. Another major used language type was
Object Oriented languages (11%). Binary code based and
COTS component based languages also formed the basis
of a few techniques.

It can be inferred from the above data that in-spite of
huge variations in 1) the level of granularity at which an
RTP technique is applied, and 2) Source code being
majorly used as an input for an RTP technique; almost
half of the RTP techniques were still found to be
language independent. Although this is not sufficient to
prove the independence of various RTP techniques from
their implementation language, it encourages the current
and future research in the field to be more language
independent. This would allow various researchers to use

each other’s technique and will surely lead to better
quality research and its assessment.

Figure 6: Usage of granularity by the techniques; Stmt.-
Statement level, Func.-Function level, Blk.-Block of
binary form, Mhd.-Method level, Tranc.-Transaction in
System Model, Sys.-System level, Prg.-Program, Prs.-
Process level, Evt.-Event, Cpt.-Component, File-file to
be changed, SU-Software units, WS-Web services, Mdl.-
Module, Cfg.-Configuration of software system, Class-
class level, Any-any level.

Figure 7: Usage of input method by the techniques; SC-
Source code, BF-Binary code, SM-System level, SYS-
System, CG-Call graph for program structure, R&SP-
Requirements and specifications.

6.3 Identifying the gaps in the usage of
Artifacts, Tools and Metrics in RTP
(RQ3)

6.3.1 Artifacts
Artifacts are the pre-requisites for accomplishing
controlled experiments on the testing techniques.
Artifacts might comprise of software, test suites, fault
data, coverage data, requirements, history information
etc. depending on the type of experiment utilizing the
artifacts. A thorough investigation of the artifacts used by
the various regression testing techniques has already
been presented by Yoo and Harman in [18]. They
emphasized more on the size of Subject Under Test

Usage of approaches by the
techniques

MF
8%

CB
44%

FB
11%RQ

6%

HB
3%

GB
2%

CP
17%

O
9%

CB

FB

MF

RQ

HB

GB

CP

O

Usage of Granularity by the
TechniquesCfg.

1%

Any
4%

Cpt.
1%

File
1%

Class
3%

Evt.
6%

SU
1%

Mdl.
1%

Stmt.
14%

Func.
13%

Blk.
3%

Mhd.
6%Tranc.

4%

Sys.
20%

Prg.
6%

Prs.
1%

WS
17%

Stmt.
Func.
Blk.
Mhd.
Tranc.
Sys.
Prg.
Prs.
Evt.
Cpt.
File
SU
WS
Mdl.
Cfg.
Class
Any

Usage of Input Method by the
techniques

SC
72%

BF
2%

SM
19%

SYS
4%

CG
1% R&SP

2%
SC

BF

SM

SYS

CG

R&SP

392 Informatica 36 (2012) 379–408 Y. Singh et al.

(SUT) and the test suites studied, and thus it has not been
replicated here. They found that 60% of the researches
used SUT’s less than 10 KLOC, while on the other hand
70% of the studies have benefited from test suites with
less than a 1000 test cases. Regarding the usage of
artifacts, our results conform to those mentioned in [18],
i.e. more than half of the artifacts have been freely
procured from the Software Infrastructure Repository
(SIR) [80]. The same has been demonstrated in the Fig. 9
having 50% share from SIR only. The research
culminated in spotting 89 artifacts mentioned in 62
studies while 3 studies [51, 71, 76] did not mention any
artifacts.

The seven C programs (printtokens, printtoken2,
replace, schedule, schedule2, tcas, and totinfo) developed
by Siemens Corporate Research and available on SIR
[80] constitute 17% of all the artifacts used in [2, 3, 23,
24, 27, 31, 32, 44, 46, 50, 53, 62, 69, 73, 74]. A single
‘Space’ program (from SIR) of 6218 LOC, alone makes
up 12% of the total artifacts exercised in [1, 2, 3, 22, 24,
27, 32, 44, 46, 50, 74]. SIR has also been used for some
more programs accounting for 21% artifacts mentioned
in all the studies [4, 6, 7, 8, 9, 26, 27, 30, 36, 37, 45, 54,
55, 57, 63, 70, 77, 78, 79]. Another single example of
‘ATM’ has been used in 5 researches [34, 36, 37, 64, 76].
A few studies [47, 48, 49, 72] have also made use of the
JDepend (JD, tool for creating design quality metric for
Java programs) and the Gradebook (GB, program

performing tasks associated with creating and
maintaining grade-book system for a course). Rest of the
studies [5-7, 25, 27-29, 31, 33-37, 39-43, 48, 49, 52, 56,
59, 60, 65-68, 75-78] comprised of the artifacts
developed using their own examples or the artifacts that
have been sparsely touched upon by others. These ‘other’
artifacts amount to be a vast 37% of all. Hence it can be
incurred that except the ones from SIR, no other major
artifacts were found to be utilized unanimously by the
RTP researchers.

The size of all the artifacts have not been mentioned
by all of the respective studies and also the information
about some artifacts was so less that they could not be
assessed. Most (53) of the total artifacts mentioning their
size were in KLOC's (i.e. over 1000 lines of codes)
while a handful (14) were having size less than 1 KLOC.
While 16 other artifacts had their size mentioned in terms
of classes, methods or transitions rather than in terms of
lines of codes. One possible reason behind this could be
the usage of source code as input by majority of the RTP
techniques developed till date. Once the source code is
known, LOC becomes the size measure for that artifact.
On the other hand the other size metrics used for artifacts
correspond to the different types of input methods
required by those RTP techniques. This was also
confirmed by the fact that all the artifacts used for one
particular RTP technique had the same size metric used
(LOC or classes or method or transitions). This gap in the
usage of artifact would remain also because various
techniques follow various approaches for RTP. It does
not make sense to calculate size of an artifact in LOC for
being applied to requirements based approach, as it
would not be possible to have the source code at the
requirements analysis stage of SDLC.

6.3.2 Tools
There is an abundance of tools available nowadays,
providing a fruitful means to the researchers for quick
implementation and automatic analysis of their works. At
the same time it is also the reason behind the
unavailability of standard and worldwide accepted tools.
In addition, many researchers need to develop their own
tools to meet their particular requirements. Thus, various
practitioners use various tools for their research instead
of any single standard tool.

Though it can be perceived from Fig. 10 that
‘Aristotle Program Analysis System’ tool was used by 11
of the studies, which is the highest of all the tools used; it
was used primarily by the same authors in different
studies [2-4, 6, 23, 24, 27, 52, 53, 57, 62]. This tool was
first used by Rothermel et al. in [23] for providing the
test coverage and the control-flow graph information.
Another tool used by five of the studies [30, 45, 77, 78,
79] was ‘Sofya’. It helped in gathering the coverage
information and the fault data of the test cases. ‘Emma’
tool has been utilized by 4 of the studies [43, 47, 53, 54]
all by different authors. Emma is an open source toolkit
for reporting Java code coverage. Few studies [2, 6, 31,
47, 52] also used ‘UNIX based’ tools such as UNIX Diff
tool, UNIX utilities etc. for process tracking, collecting

Figure 8: Usage of Languages by the Techniques;Proc -
Procedural Language, Bin.Code- Binary code, L.Ind-
Language independent, COTS-COTS component based,
WB-Web designing language, OO-Object oriented
language.

Figure 9: Artifacts assessed.

Usage of Languages by the
techniques

Proc
23%

Bin.Code
1%

L.Ind
48%

COTS
1%

WB
16%

OO
11%

Proc

Bin.Code

L.Ind

COTS

WB

OO

Artifacts Assessed
17%

12%

21%
6%

4%
3%

37%
Seimens (SIR) (17%)

Space (SIR) (12%)

Others from SIR (21%)

ATM (6%)

GB & JD (4%)

Not Mentioned (3%)

Others (37%)

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 393

dynamic coverage information or to show which lines
were inserted or deleted from the basic version. ‘SPSS’
or Statistical package for Social Sciences is an upcoming
data analysis tool used in the later researches [28, 71, 76,
79]. Another very promising tool used by 3 of the studies
[37, 63, 72] is ‘MATLAB’. It is an analysis and
programming tool developed by Matrix Laboratory and
is extensively used by many more applications; we
expect it to be used more in the area of software testing
also. One of the earlier used tools was ‘Proteum
Mutation System’ to obtain the mutation scores for use in
the Fault Exposing Potential (FEP) prioritization.
Initially used in context of test case prioritization by
Rothermel et al [23], it was further used in [3, 24, 27]. Its
use was not spotted in any of the studies after 2002. The
tools mentioning Java in their names (Junit Adaptor,
Filter, JTester and byte code mutant generator) were
grouped under the ‘Java based’ tools. Exploited in five
studies [9, 47, 66, 77, 78], these tools varied in the
purpose of their use but had a common language
background, Java.

A couple of studies [8, 9] made use of the ‘Galileo’
system for acquiring coverage information by running
test cases on the instrumented object programs in Java.
‘Sandmark’ is a watermarking program that provides
change track algorithms employed by a handful of 3
studies [30, 54, 55] only. To comply with the specific
requirements, seven studies mentioned their own created
tools [23, 24, 27, 44, 63, 71]. Mostly the tools were
created to automate their own proposed techniques.
Some of the tools like Vulcan, BMAT, Echelon, déjà vu,
GCOV, testrunner, winrunner, Rational test suite,
bugzilla and Canatata++ etc. are only experienced in one
study each. These all have been grouped under the
Others category accounting for 31 such tools mentioned
in [4-7, 22, 24-27, 30, 34, 35, 38, 39, 42-44, 46, 48, 52,
57, 69, 74, 75]. Exact details of the studies and tools used
by them are available in the Appendix (Table A2).

None of the tools was discovered to be used by more
than 13% of all the studies. This also generally results in
the final outcomes that are not in a form comparable with
the outcomes obtained using the other tools. Thus, we
observed a wide range of tools used by all groups of the
researchers without any particular standard being
followed.

Figure 10: Tools mentioned.

6.3.3 Metrics
To properly understand the effects and the outcomes of
any case study or experiment, one needs to quantify the
results or analyze them with respect to the measures, well
known in the software testing field as metrics. Unlike
the scattered distribution seen in the tools usage, many of
the diverse researchers tend to use the similar type or
exactly the same metrics. Fig. 11 presents the final
outcomes that commenced from scrutinizing the test case
prioritization field in the view of the metrics used. We
noticed a total of 97 metrics utilized by 60 research
papers while 5 studies [29, 38, 60, 67, 71] did not
mention any used metrics.

As clearly outlined in fig. 10, APFD came forth as a
striking measure for computing the Average Percentage
of Faults Detected and a massive of 29 studies [2-9, 23,
24, 26-28, 31, 33-35, 41, 46, 47, 53-55, 57, 62, 69, 73,
77] took advantage of the metric directly. This metric
was originally set forth by the by a group of researchers
in [23] and later used immensely by other groups of
researchers as well. APFD metric denotes the weighted
average of the percentage of the faults detected [2].
APFD values range from 0 to 100; higher numbers imply
faster (better) coverage rates. It denotes how fast a
prioritized test suite detects the faults. APFD is also
being used in its mutant form as APFDc, APFDp, ASFD,
WPFD, TSFD, APBC, APDC, APSC, NAPFD, APMC,
TPFD, APRC, and BPFG. These have been put under the
‘APFD alike’ category shown in the graph [fig. 8].
'APFD alike' are basically the metrics which are
calculating average percentage of faults detected with
some variations in the calculation method. APFDc is the
modified APFD to include the costs of faults and is
utilized by 5 researches [1, 52, 45, 63, 65]. Again a vast
number of 10 studies [32, 39, 40, 42, 43, 57, 63, 64, 68,
74] benefited from the APFD alike metrics. These all
sum up to more than 50% of the metrics availed by all
the studies to be APFD or its mutants. It has now become
a more or less standard in measuring the rate of fault
detection achieved by the RTP techniques. We say so
because, almost all the comparisons, whether between 2
or at most 18 techniques, given in the 65 studies were
recorded to be based on the APFD (or its mutants)
metrics. A meager of 5 studies [3, 6, 24, 27, 79] also
made use of Bonferroni metric for analyzing their data.
Bonferroni test provides a means of multiple
comparisons in the statistical analysis. Various other
metrics, whether available or self developed, such as
PTR, RFFT, ATEI, ckjm, FDD, Kruskal Wallis Test, size
reduction, precision, recall, efficacy, LOC count, and
distance etc. have also been taken advantage of by a ide
range of researchers [4, 5, 22, 23, 25, 26, 30, 31, 35-37,
41, 43, 44, 48-51, 56, 59, 63, 66, 70, 72, 75, 76, 78, 79].
Nonetheless, APFD and the other metrics provide a
useful insight to the in-depth analysis of the techniques.

Explaining all the metrics along with their
differences is beyond the scope of the current SLR,
although there might be an SLR in future only on the
software metrics being used for RTP that could include

Tools Mentioned

13%

6%

5%

6%

5%
4%

5%
6%2%4%

8%

36%

Aristotle (13%)

Sofya (6%)

Emma (5%)

Unix Based (6%)

SPSS (5%)

Matlab (4%)

Proteum (5%)

Java Based (6%)

Gali leo (2%)

Sandmark (4%)

Own (8%)

Others (36%)

394 Informatica 36 (2012) 379–408 Y. Singh et al.

the complete explanation and comparison for each
technique.

Figure 11: Metrics used.

6.4 Summarized effects of the
Comparisons with respect to the
granularity and the type of
information used (RQ4)

A handful of articles [1, 6, 23] found the ‘additional-fault
exposing potential’ technique to be better than all the
compared ones. But these were only preliminary studies
in the test case prioritization area. Among all the studied
papers, following highlights were accrued:

6.4.1 With respect to the level of granularity
(RQ4-(a))

Out of the 17 determined levels of granularity followed
by the 106 techniques, the System level, Web services,
Statement level and Function level granularity were the
most utilized (as explained earlier in 6.2 and Fig. 6).
None of the comparisons was detected to be based on the
system level or the web services granularity. The
techniques using the C language have only been tested
for statement and function level granularity and it
worked out that the statement level techniques were more
advantageous over the function level techniques [9, 24,
26, 27]. The techniques for Java (Junit) environment
showed no effect of granularity on the prioritization; the
possible cause of this was suggested to be the difference
in instrumentation granularity for Java and C [26].

6.4.2 With respect to the type of information
(RQ4-(b))

An intricate scrutiny of the 65 research papers emanated
the superiority of the additional techniques over the total
and the other techniques. The additional techniques are
the ones that are based on extra feedback information
used in the process of test case prioritization. The
comparisons in an enormous amount of 17 studies [1, 3,
4, 7, 8, 9, 23, 24, 26, 27, 30, 32, 33, 59, 74, 75, 79]
turned out to produce similar outcomes: the additional
techniques are more cost effective.

7 Conclusion
As the number of publications in the field of software
testing is increasing, there is a need for a method that can

summarize a researcher about the particular field.
Systematic review is a tool that can be used to formally
present the research made so far in a particular field. A
systematic review on regression test prioritization
techniques is presented in this paper which evaluates and
interprets all the research work related to the area. It
presents a concise summary of the best available
evidences. The research identified over a hundred RTP
techniques proposed since 1969. These were further
classified based on the utilized approaches, and almost
half of the recognized techniques came under the
coverage based approach followed by composite, fault
based and other approaches respectively. The paper
summarizes the research papers along with the
techniques they compared and the artifacts they
processed. The tools and metrics being used in the
research were also identified.

The input method used by majority of the techniques
was computed to be the Source Code. This is justified by
the use of the majority prioritization techniques in the
final stages of SDLC, i.e., after the source code is
available. After 2002, we also observed a general
increase in the use of the prioritization techniques in the
earlier stages of SDLC. Furthermore, an increasing use
of the recent techniques for Web designing languages
(16%) was detected.

Noticeably, it incurred that except the ones from
SIR, no other major artifacts were found to be utilized
unanimously by the researchers in the RTP field. No
standard or sound majority could be established in the
usage of tools. It lead to the results that were not in a
form comparable with the outcomes obtained using the
other tools. On the other hand, an analysis of the metrics
used resulted in substantial findings. All the metrics
spotted in the studies availing APFD or its mutants
summed up to be more than 50%. Remarkably, we
noticed that almost all the comparisons performed in all
the selected studies were recorded to be based on the
APFD (or its mutants) metrics. But failing to find the
specific APFD values evaluated in the comparisons
except for a few studies, it could not be possible to
contrast all the techniques in general.

Though at most only 18 techniques were found to be
compared in a single study, the results obtained provided
useful insights into the RTP field. The inference drawn
from the comparisons was that the additional techniques
provided significant improvement in the fault detection
rates. The level of granularity and modification
information had no effect on prioritization for Java
environment in general. Statement level techniques were
found to be better than the function level techniques.
Almost all the techniques were found to be better than
the random technique. Many papers also presented
comparisons with the optimal ordering, but since all the
optimal orderings are defined according to the technique
followed, it was not feasible to compare the optimal for
different techniques.

The SLR finally highlighted that even after different
approaches being followed by the various techniques, the
prime goal of test case prioritization emerged as the
increase in the rate of fault detection. Since no general

Metrics Used
31%

5%

19%5%
5%

35% APFD (31%)

APFDc (5%)

APFD alike (19%)

Bonferroni (5%)

Not Mentioned (5%)

Others (35%)

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 395

technique exists, there is a need to perform empirical
comparisons among the existing techniques that are made
to work on the same concept, implementation, metric and
artifacts.

References
[1] S.Elbaum, A.Malishevsky, and G.Rothermel.

“Incorporating varying test costs and fault severities
into test case prioritization”, Proceedings of the
International Conference on Software Engineering,
May 2000.

[2] S.Elbaum, D.Gable, and G.Rothermel,
“Understanding and measuring the sources of
variation in the prioritization of regression test
suites”, Proceedings of the International Software
Metrics Symposium, pp. 167-179, Apr. 2001.

[3] G. Rothermel, R.H.Untch, C.Chu, and M.J.Harrold.
“Prioritizing test cases for regression testing”, IEEE
Transactions on Software Engineering, Vol.27, No.
10, pp. 929-948, Oct.2001.

[4] S.Elbaum, P.Kallakuri, A.Malishevsky, G.Rothermel
and S.Kanduri, “Understanding the effects of
changes on the cost-effectiveness of regression
testing techniques”, Journal of Software Testing,
Verification, and Reliability, Vol.12, No.2, pp.65-
83, 2003.

[5] D. Leon,A. Podgurski, "A Comparison of coverage
based and distribution based techniques for filtering
and prioritizing test cases", In Proceedings of the
14th International Symposium on software reliability
engineering(ISSRE 03),pp 442-453,2003.

[6] G. Rothermel, S.G.Elbaum, A.G.Malishevsky,
P.Kallakuri, and X.Qiu. “On test suite composition
and cost-effective regression testing”, ACM
Transaction Software Engineering Methodology,
Vol.13, No.3, pages 277-331, July 2004.

[7] S.Elbaum, G.Rothermel, S.Kanduri and
A.G.Malishevsky, “Selecting a cost-effective test
case prioritization technique”, Software Quality
Journal, Vol.12, no.3, pp. 185-210, September 2004.

[8] H. Do, G.Rothermel. “A controlled experiment
assessing test case prioritization techniques via
mutation faults”, Proceedings of the International
Conference on Software Maintenance (ICSM),
pp.411-420, 2005.

[9] H. Do, G. Rothermel and A. Kinner, “Prioritizing
JUnit Test Cases: An Empirical Assessment and
Cost-Benefits Analysis”, An International Journal of
Empirical Software Engineering, Vol. 11, No. 1, pp
33-70, March 2006.

[10] B.A. Kitchenham, T. Dybå, M. Jorgensen,
“Evidence-based Software Engineering”, in
Proceedings of the International Conference of
Software Engineering, 2004.

[11] T. Dybå, B.A. Kitchenham, M. Jorgensen,
“Evidence-based Software Engineering for
Practitioners”, IEEE Software, Vol. 22, No. 1, pp.
58-65, 2005.

[12] B.Kitchenham, “Procedures for undertaking
Systematic Reviews”, Joint Technical Report,

Computer Science Department, Keele University
(TR/SE-0401) and National ICT Australia Ltd
(0400011T.1), July 2004.

[13] N. Juristo, A.M. Moreno, S. Vegas, “Reviewing 25
years of testing technique experiments”, Empirical
Software Engineering Journal, Vol. 1, No. 2, pp. 7-
44, 2004.

[14] M. Staples, M. Niazi, “Experiences using Systematic
review guidelines,” The Journal of Systems and
Software, Elsevier Science Inc. USA, Vol. 80, No.
9, pp. 1425-1437, Sept 2007.

[15] B. Kitchenham, O.P. Brereton, D. Budgen, M.
Turner, J. Bailey, S. Linkman, "Systematic literature
reviews in software engineering – a systematic
literature review", Journal of Information and
Software Technology, Vol. 51, No. 1, pp. 7-15,
2009.

[16] E. Engström, P. Runeson, M. Skoglund, " A
systematic review on regression test selection
technique", Journal of Information and Software
Technology, Vol. 52, Issue 1, pp. 14-30, 2010.

[17] E.Engström, P.Runeson, "A Qualitative Survey of
Regression Testing Practices", Lecture Notes on
Computer Science (LNCS), Springer Verlag, pp. 3-
16, 2010.

[18] S.Yoo, M.Harman, "Regression Testing
Minimization, Selection and Prioritization: A
Survey", Software Testing, Verification and
Reliability, Wiley Interscience, 2010.

[19] B.A. Kitchenham, “Guidelines for performing
Systematic Literature reviews in Software
Engineering Version 2.3”. Technical Report
S.o.C.S.a.M. Software Engineering Group, Keele
University and Department of Computer Science
University of Durham, 2007.

[20] T. Dyba, T. Dingso yr, G.K. Hanssen, Applying
systematic reviews to diverse study types: an
experience report, in: First International Symposium
on Empirical Software Engineering and
Measurement, 2007 (ESEM 2007), 2007, pp. 225–
234.

[21] D. S. Cruzes and T. Dyba, “Research synthesis in
software engineering: A tertiary study,” Information
Software Technology, Vol. 53, No. 5, May 2011, pp.
440-455. doi: 10.1016/j.infsof.2011.01.004.

[22] W.E. Wong, J.R.Horgan, S.London, and
A.Aggarwal. “A study of effective regression testing
in practice”, Proceedings of the Eighth International
Symposium Software Reliability Engineering, pp.
230-238, Nov. 1997.

[23] G. Rothermel, R.Untch, C.Chu, and M.J.Harrold,
“Test case prioritization: An empirical study”,
Proceedings of International Conference Software
Maintenance, pp. 179-188, Aug. 1999.

[24] S. Elbaum, A.Malishevsky, and G.Rothermel,
“Prioritizing test cases for regression testing”,
Proceedings of the International Symposium on
Software Testing and Analysis, pp. 102-112,
Aug.2000.

[25] A.Srivastava, and J.Thiagarajan, “Effectively
prioritizing tests in development environment”,

396 Informatica 36 (2012) 379–408 Y. Singh et al.

Proceedings of the International Symposium on
Software Testing and Analysis, pp.97-106, July
2002.

[26] H. Do, G.Rothermel, and Kinner. “Empirical studies
of test case prioritization in a JUnit testing
environment”, Proceedings of the International
Symposium on Software Reliability Engineering,
pp.113-124, Nov. 2004.

[27] S.Elbaum, A.G.Malishevsky, and G.Rothermel,
“Test case prioritization: A family empirical
studies”, IEEE Transactions on Software
Engineering, Vol. 28, No. 2, pp. 159-182, Feb.2002.

[28] R.C. Bryce, A.M. Menon, “Test Suite Prioritization
by Interaction coverage”, Proceedings of the
workshop on domain specific approaches to software
test automation (DOSTA), ACM, pp. 1-7, 2007.

[29] F.Belli, M.Eminov, N.Gokco. “Coverage-Oriented,
Prioritized Testing-AFuzzy Clustering Approach and
Case Study”. In :Bondavalli.A.,Brasileiro, F.,
Rajsbaum, S.(eds.) LADC 2007, LNCS, Springer,
Heidelberg, Vol. 4746, pp. 95-110, 2007.

[30] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, "An
Empirical Study of the effect of time constraints on
the cost benefits of regression testing" Proceedings
of the 16th ACM SIGSOFT International
Symposium on Foundations of software
engineering,pp71-82,2008.

[31] B.Jiang, Z.Zhang, W.K.Chan, T.H.Tse, “.Adaptive
Random test case prioritizatation.” In Proceedings of
International Conference on Automated Software
Engineering, pp:233-243, 2009.

[32] C. L. B. Maia,R. A. F. do Carmo, F. G. de
Freitas,G. A. L. de campos,and J. T. de Souza,
"Automated test case prioritization with reactive
GRASP,” In Proceedings of Advances in Software
Engineering, pp.1-18, 2010.

[33] L.Mei, Z.Zhang, W.K.Chan, T.H.Tse, "Test case
prioritization for regression testing of service
oriented Business Applications", In Proceedings of
the 18th International World Wide Web

Conference (WWW 2009), pp. 901-910, 2009.
[34] L.Mei, W.K.Chan, T.H.Tse., R.G.Merkel, “XML-

manipulating test case prioritization for XML-
manipulating services,” Journal of Systems and
Software, pp.603-619, 2010.

[35] R.C.Bryce, S.Sampath, A.M.Memon, "Developing a
Single Model and Test Prioritization Strategies for
Event Driven Software", IEEE Transactions on
Software Engineering, pp.48-63, 2010.

[36] B. Korel, G. Koutsogiannakis, L.H. Talat, “Model-
based test suite prioritization Heuristic Methods and
Their Evaluation”, Proceedings of 3rd workshop on
Advances in model based testing (A – MOST),
London, UK, pp. 34-43, 2007.

[37] B. Korel, L. Tahat, M. Harman, "Test Prioritization
Using System Models", In the Proceedings of 21st
IEEE International Conference on Software
Maintenance (ICSM'08), pp. 247-256, 2005.

[38] R.S.S.Filho, C.J.Budnik, W.M.Hasling, M.M.Kenna,
R.Subramanyam, "Supporting concern based
regression testing and prioritization in a model

driven environment", In Proceedings of 34th Annual
IEEE Computer software and Applications
conference Workshops (COMPSA 10), pp.323-328,
2010.

[39] H. Srikanth, L. Williams, J. Osborne, "System Test
Case Prioritization of New and Regressionb Test
Cases", In the Proceedings of International
Symposium on Empirical Software Engineering
(ISESE), pp. 64-73, Nov. 2005.

[40] H. Srikanth, L.Williams, "On the Economics of
requirements based test case prioritization", In
Proceedings of the Seventh International conference
on Economics Driven Software Engineering
Research (EDSER 05), pp1-3, 2005.

[41] S. Hou, L. Zang, T. Xie, J. Sun, "Quota-Constrained
Test Case Prioritization for Regression Testing of
Service-Centric Systems", Proceedings of
International Conference on Software Maintenance,
pp. 257-266, 2008.

[42] R.Krishnamoorthi, S.A.Mary, “Incorporating
varying requirement priorities and costs in test case
prioritization for new and regression testing”,
Proceedings of International Conference on
Computing, Communication and Networking
(ICCN), pp.1-9, 2008.

[43] R.Krishnamoorthi, S.A.S.A.Mart, “Factor oriented
requirement coverage based system test case
prioritization of new and regression test cases”,
Journal of information and software technology,
Vol. 51, pp. 799-808, 2009.

[44] J.M.Kim, A.Porter. “A History-Based Test
Prioritization Technique for Regression Testing in
Resource Constrained Environment”, Proceedings of
the 24th International Conference Software
Engineering, pp.119-129, May.2002.

[45] H. Park, H.Ryu, J.Baik, “Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing”,
Proceedings of second International Conference on
Secure System Integration and reliability,
Improvement, pp. 39-46, 2008.

[46] Y.Fazlalizadeh, A.Khalilian, H.A.Azgomi, S.Parsa,
“Incorporating historical test case performance data
and resource constraints into test case prioritization”,
Lecture notes in Computer Science, Springer, Vol.
5668, pp. 43-57, 2009.

[47] K.R.Walcott, M.L.Soffa, G.M.Kapfhammer and R.S.
Roos. “Time aware test suite Prioritization”,
Proceedings of International Symposium on
software Testing and Analysis (ISSTA), pp. 1-12,
July 2006.

[48] A. P.Conrad,R. S.Roos, "Empirically Studying the
role of selection operators during search based test
suite prioritization", In the Proceedings of the ACM
SIGEVO Genetic and Evolutionary Computation
Conference, Portland, Oregon, 2010.

[49] A.M.Smith, G.M.Kapfhammer, “An empirical study
of incorporating cost into test suite reduction and
prioritization”, Proceedings of ACM Symposium on
Applied Computing, pp. 461-467, 2009.

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 397

[50] J.A. Jones, and M.J. Harrold, “Test suite reduction
and prioritization for modified condition/decision
coverage”, Proceedings of the IEEE Transactions on
Software Engineering, Vol.29, No.3, March, 2003.

[51] K.H.S. Hla, Y. Choi, J.S. Park, "Applying Particle
Swarm Optimization to Prioritizing Test Cases for
Embedded Real Time Software Retesting",
Proceeding of 8th International Conference on
Computer and Information Technology Workshops,
pp. 527-532, 2008.

[52] A.G.Malishevsky, J.Ruthruff, G. Rothermel and
S.Elbaum, “Cost-cognizant test case prioritization”,
Technical Report TR-UNL-CSE-2006-0004,
University of Nebraska-Lincoln, 2006.

[53] D.Jeffrey, N.Gupta. “Test-case Prioritization using
relevant slices”, Proceedings of the 30th annual
International Computer Software and Applications
(COMPSAC), Chicago, USA, pp.18-21, September
2006.

[54] S. Mirarab and L. Tahvildari, "A Prioritization
Approach for Software Test Cases on Bayesian
Networks", FASE, Lecture Notes in Computer
Science, Springer, 4422-0276, pp. 276-290, 2007.

[55] S.Mirarab, L.Tahvildari. “An Empirical study on
Bayesian Network-based approach for test case
prioritization”, Proceedings of International
conference on software testing verification and
validation, pp. 278-287, 2008.

[56] B.Qu, C.Nei, B.Xu, X. Zhang, ”Test case
prioritization for black box testing”, In Proceedings
of 31st Annual International Computer Software and
Applications Conference (COMSAC 2007), vol. 1,
pp. 465-274, 2007.

[57] X. Qu, M. B. Cohen and K.M. Woolf,
"Combinatorial Interaction Regression Testing: A
Study of Test Case Generation and Prioritization", In
the Proceedings of International Conference on
Software Maintenance, pp. 255-264, Oct., 2007.

[58] R.Bryce, C.Colbourne. "Prioritized interaction
testing for pair-wise coverage with seeding and
constraints", Journal of Information and Software
Technology, Vol. 48, No. 10, pp. 960-970, May
2006.

[59] X. Zhang, C. Nie, B. Xu, B.Qu, "Test Case
Prioritization based on Varying Testing Requirement
Priorities and Test Case Costs", Proceedings of the
7th International Conference on Quality Software,
pp. 15-24, 2007.

[60] M. Sherriff, M. Lake, L. Williams, "Priroitization of
Regression Tests using Singular Value
Decomposition with Empirical Change Records",
The 18th IEEE International Symposium on
Software Reliability Engineering, Trllhattan,
Sweden, pp. 82-90, Nov-2007.

[61] G.Rothermel, M.Harrold, "Analyzing Regression
Test Selection Techniques", IEEE Transactions on
Software Engineering, Vol. 22, pp. 529-551, Aug
1996.

[62] D. Jeffrey, N. Gupta, "Experiments with Test Case
Prioritization using Relevant Slices", Journal of

Systems and Software, Vol. 81, No. 2, pp. 196-221,
2008.

[63] Z. Ma, J.Zhao, “Test Case Prioritization based on
analysis of program structure”, In the Proceedings of
15th Asia-Pacific Software Engineering conference,
pp. 471-478, 2008.

[64] L. Chen,Z. Wang,L. X.u,H. Lu,B. Xu, "Test Case
prioritization for web service regression testing", In
Proceedings of the Fifth International Symposium on
servive oriented system engineering, pp. 173-178,
2010.

[65] Y. C. Huang,C.Y. Huang,J.R. Chang,T.Y. Chen,
"Design and Analysis of cost cognizant test case
prioritization using genetic algorithm with test
history", In proceedings of 34th Annual IEEE
Computer Software and Applications Conference
(COMSAC 2010), pp. 413-418, 2010.

[66] M.J. Rummel, G.M. Kapfhammer, A. Thall,
"Towards the Prioritization of Regression Test
Suites with Data Flow Information", Proceedings of
the 2005 ACM Symposium on Applied Computing,
pp. 1499-1504, March 13-17, 2005.

[67] L. Mariani, S. Papagiannakis and M. Pezze,
“Compatibility and Regression Testing of COTS-
Component-Based Software”, Proceedings of the
29th International Conference on Software
Engineering (ICSE), USA, pages 85-95, May 2007.

[68] B.Qu, C.Nie, B.Xu, “Test case prioritization for
multiple processing queues”, Proceedings of
International Symposium on Information Science
and Engineering, pp. 646-649, 2008.

[69] M.K.Ramanathan, M.Koyuturk, A.Grama,
“PHALANX : A Graph-Theoretic Framework for
Test Case Prioritization”, Proceedings of ACM
Symposium on Applied Computing (SAC), pp. 667-
673, March 2008.

[70] X.Qu, M.B.Cohen, and G.Rothermel.
“Configuration-aware regression testing: An
empirical study of sampling and prioritization”,
Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA), pp.75-85, 2008.

[71] Y.T.Yu,S.P. Ng,E.Y.K.Chan, "Generating,Selecting
and Prioritizing test cases from Specifications with
tool support", In the Proceedings of Third
International Conference on quality software (QSIC
03), pp. 83, 2003.

[72] S.Alspaugh, K.R. Walcott, M.Belanich,
G.M.Kapfhammer, M.L.Soffa.”Efficient time aware
prioritization with knapsack solvers”, Proceedings of
the 1st ACM international workshop on empirical
assessment of software engineering languages and
technologies: held in conjunction with the 22nd
IEEE/ACM International Symposium on Automated
Software Engineering(ASE) 2007, pp.13-18,
Nov.2007.

[73] C. Simons,E. C. Paraiso,"Regression Test cases
Prioritization Using Failure Pursuit Sampling",In
Proceedings of Tenth International Conference on
Intelligent Systems Design and applications, pp.923-
928, 2010.

398 Informatica 36 (2012) 379–408 Y. Singh et al.

[74] Z. Li, M. Harman and R.M. Hierons, “Search
Algorithm for Regression test case prioritization”,
IEEE TSE, Vol. 33, No. 4, 2007.

[75] S. Li,N. Bian,Z. Chen,D. You,Y. He, "A simulation
on some search algorithms for regression test case
prioritization", In Proceedings of 10th international
conference on Quality software, pp. 72-81, 2010.

[76] B. Korel,G. Koutsogiannakis, "Experimental
comparison of code based and model based test
prioritization", In Proceedings of the IEEE
International Conference on Software Testing,
Verification, and Validation Workshops(ICSTW
'09), pp. 77-84, 2009.

[77] H. Do, G. Rothermel, "On the use of Mutation Faults
in Empirical assessment of Test Case Prioritization

Techniques", IEEE Transaction of Software
Engineering, pp. 733-752, Sep-2006.

[78] H. Do, G. Rothermel, "An Empirical Study of
Regression Testing Techniques Incorporating
Context and Lifetime Factors and Improved Cost-
Benefit Models", Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software
Engineering, pp. 141-151, Nov. 2006.

[79] H. Do,S. Mirarab,L. Tahvildari,G. Rothermel, "The
Effects of Time Constraints on Test case
Prioritization :A series of Controlled Experiments",
IEEE Transactions on Software Engineering, vol. 36,
no. 5, pp. 593-617, 2010.

[80] http:// sir.unl.edu/portal/index.php

Appendix A
Table A1: List of primary studies with their authors and
techniques.

Resear
ch

Paper
ID

Authors Techniques

RP1 Wong et. al T1

RP2 Rothermel et. al T2, T3, T4, T5, T6, T7

RP4 Elbaum et. al T8,T9,T10,T11,T12,T1
3,T14,T15

RP3 Elbaum et. al No new technique

RP5 Elbaum et. al No new technique

RP6 Rothermel et. al No new technique

RP7 Elbaum et. al T16, T17, T18, T19,

RP9 Kim and Porter T20

RP8 Srivastava and
Thiagarajan

T21

RP11 Jones and
Harrold

T22

RP10 Elbaum et. al No new techniques

RP12 Yu et al T22.1

RP13 Leon et al No new technique

RP15 Elbaum et. al No new technique

RP14 Rothermel et. al No new technique

RP16 Do et. al T23, T24, T25, T26,
T27, T28

RP18 Srikanth et al T28.1

RP19 Do and
Rothermel

No new technique

RP20 Korel et. al T29, T30

RP17 Rummel et. al T31

RP21 Srikanth et. al T32

RP25 Do and
Rothermel

No new technique

RP27 Do and
Rothermel

No new technique

RP22 Do et. al No new technique

RP23 Malishevsky et.
al

T33

RP26 Jeffrey and
Gupta

T34

RP24 Walcott et. al T35

RP36 Alspaugh et. al T36

RP38 Belli et. al T37

RP33 Bryce and
Memon

T38 to T42

RP31 Korel et. al T43 to T47

RP32 Qu et al T47.1

RP28 Li et. al A1 to A5

RP30 Mariani et. al T48

RP29 Mirarab and
Tahvildari

T49

RP34 Qu et. al T50

RP37 Sherrif et. al T51

RP35 Zang et. al T52, T53

RP43 Hla et. al T54

RP46 Hou et al. T55, T56

RP39 Jeffrey and
Gupta

T57, T58

RP40 Ramanathan et.
al

T59

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 399

RP48 Ma and Zhao T60

RP41 Mirarab and
Tahvildari

T61 (enhanced T51)

RP42 Park et. al T62

RP49 Qu et. al T63

RP44 Qu et.al T64

RP45 Ramasamy and
Mary

T65

RP47 Do et al T65.1 – T65.4

RP50 Smith and
Kapfhammer

Extension of algorithms
in RP29(A3, A5)
and delayed greedy
algorithm

RP54 Fazlalizadeh et.
al

T66

RP51 Krishnamoorthi
and Mart

T67

RP52 Mei et al T67.1 – T67.10

RP53 Korel et al No new technique

RP55 Jiang et al T68.1 – T68.9

RP56 Maia et al T69

RP57 Chen et al T70.1, T70.2

RP58 Filho et al T71.1,T71.2

RP59 Li et al No new technique

RP60 Huang et al T72

RP61 Conrad et al T73

RP62 Do et al No new technique

RP63 Simons et al T74

RP64 Mei et al T75.1 – T75.4

RP65 Bryce et al T76

Table A2: List of Research papers, techniques, artifacts,
tools and metrics used by them.

Rese
a-rch
Pape
r ID

Techni
que(s)

Artifacts Tools Metrics

RP1
[19]

T1
Space
program
(SIR)

ATAC
(Automatic
Testing
Analysis
Tool)

Size
reduction,
Precision,
Recall

RP2
[20]

T2, T3,
T4, T5,
T6, T7

7 C
programs
from
siemens
corporate
research
(SIR)

Aristotle
Program
Analysis
System,
Prioritization
tool (created
own),
Proteum
Mutation

Efficacy,
APFD

System

RP3
[1]

No
new
techniq
ue

Space
program
(SIR)

N.M APFDc

RP4
[21]

T8,T9,
T10,T1
1,T12,
T13,T1
4,T15

7 C
programs
from
siemens and
1 space
program
(SIR)

Aristotle
Program
Analysis
System,
Prioritization
tool (created
own),
Proteum
Mutation
System,
Source code
measuremen
t tool,
Comparator,
Fault Index
generater

APFD,
Bonferroni
analysis

RP5
[2]

No
new
techniq
ue

7 siemens
program and
1 space
program
(SIR)

Aristotle
program
Analysis
System,
UNIX Diff
tool

APFD

RP6
[3]

No
new
techniq
ue

7 siemens
program and
1 space
program
(SIR)

Aristotle
Program
Analysis
System,
Proteum
Mutation
System

APFD,
Bonferroni
Means
Separation
Test

RP7
[24]

T16,
T17,
T18,
T19,

8 SIR
programs (7
siemens and
1 space
program), 3
case studies :
2 open
source
UNIX
utilities from
SIR (grep
and flex), 1
embedded
real time
subsystem of
a level 5
RAID
storage
system

Aristotle
Program
Analysis
System,
Prioritization
tool(created
own),
Proteum
Mutation
System,
Source code
measuremen
t tool,
Comparator,
Fault Index
generater

APFD,
Bonferroni
analysis

RP8
[22]

T21

Two
versions of
large office
productivity
application

Vulcan (
Rich Binary
Modification
Infrastructur
e),
BMAT(Bina
ry
mathching
tool build
using

Coverage
of impacted
blocks

400 Informatica 36 (2012) 379–408 Y. Singh et al.

Vulcan),
Echelon

RP9
[41]

T20

7 siemens
program and
1 space
program
(SIR)

déjà vu tool,
Created tool
for
minimizatio
n, Created
tool for
Random
technique

Total
testing
effort,
Average
fault age

RP10
[4]

No
new
techniq
ue

bash , grep,
flex, gzip
(SIR)

Aristotle
Tool Suite,
TSL tool for
generating
test suite,
Tool to
implement
their process

Percentage
of changed
LOC,
functions
and files,
APFD,
Probability
of
execcution
of changed
function,
Average no.
of LOC
changed per
function,
Average
percentage
of tests
executing
changed
functions

RP11
[47]

T22

tcas
(siemens)
and one
space
program
(SIR)

N.M

Time to
perform
prioritizatio
n

RP12
[68]

T23 N.M.

Created
EXTRACT
tool for
prioritization

N.M.

RP13
[5]

No
new
techniq
ue

Three large
programs:
GCC,Jikes
and Javac
Compilers

GCOV tool
for profiling

APFD,
Dissimilarit
y Mertic

RP14
[6]

No
new
techniq
ue

bash (SIR)
and
emp_server

Aristotle
Program
Analysis
System, Clic
Instrumenter
and monitor,
Unix utilities

APFD,
Annova
analysis,
Bonferroni
test

RP15
[7]

No
new
techniq
ue

bash, flex,
grep, gzip,
make, sed
from SIR
and
emp_server,
xearth

TSL Tool APFD

RP16
[23]

T24,
T25,
T26,
T27,

ant, XML-
security,
Jmeter,
Jtopas from

Selective
Testrunner

APFD,
Boxplots,
ANNOVA
analysis

T28,
T29

SIR

RP17
[63]

T33

3
applications
in JAVA:
Bank,
Identifier
and Money

Soot
1.2.5(Java
Optimization
Framework)

APFD,
PTR(Percen
tage of test
suite that
must be
executed to
find all
defects)

RP18
[37]

T30
5 projects
developed
by students

N.M
ASFD,
TSFD

RP19
[8]

No
new
techniq
ue

ant, XML-
security,
Jmeter,
Jtopas from
SIR

Mutation
tool, Galileo
system for
coverage
information

APFD

RP20
[34]

T31,
T32

3 system
models :
ATM model,
cruise
control
model (SIR),
fuel pump
model

N.M
Rate of
fault
detection

RP21
[36]

T34

4 Java
projects
developed
by students

PORT tool,
TCP tool

Weighted
percentage
of fault
detected
(WPFD)

RP22
[9]

No
new
techniq
ue

Ant , XML-
security,
Jmeter,
Jtopas from
SIR

Galileo
system for
coverage
information,
Junit
adaptor,
JunitFilter,
TestRunner

APFD

RP23
[49]

T35

emp_server
portion of
Empire
software

UNIX Diff
tool,
Aristotle
program
Analysis
System,
Tools to
prioritize
test cases

APFDc

RP24
[44]

T37
Gradebook
and Jdepend

Emma tool,
Linux
Process
tracking
tool, JTester

APFD

RP25
[74]

No
new
techniq
ue

Ant , XML-
security,
Jmeter,
Jtopas,
nanoxml
from SIR
and Galileo

Sofya
system, Junit
adaptor

APFD

RP26
[50]

T36
7 siemens
program

Aristotle
Program
Analysis
Tool

APFD

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 401

RP27
[75]

No
new
techniq
ue

Ant , XML-
security,
Jmeter,
nanoxml
from SIR
and Galileo

Sofya
system, Java
bytecode
Mutant
generator

Cost and
Benefit

RP28
[71]

A1 to
A5

print_tokens,
print_tokens
2, schedule,
schedule2
from
siemens and
space, sed
from SIR

Canatata++,
SPSS

APBC(Ave
rage
percentage
of block
coverage),
APDC (
Average
percentage
of Decision
coverage),
APSC (
Average
Perecentage
of
Statement
Coverage)

RP29
[51]

T52
Apache Ant
(SIR)

ckjm,
Emma,
Sandmark

APFD

RP30
[64]

T51

15
configuratio
ns of
Ginipad Java
Editor
version 2.0.3
including
316 Java
classes

N.M
Not
Mentioned

RP31
[33]

T45 to
T49

cruise
control
model from
SIR, ATM
Model, fuel
pump model,
TCP model,
ISDN model

N.M

Most likely
relative
position of
test case

RP32
[53]

T50

Software for
Microsoft
Word and
Power
point(checks
the
performance
when
opening
malicious
documents)

N.M
Speed Of
fault
detection

RP33
[25]

T40 to
T44

TerpCalc,
TerpPaint,
TerpSpeadsh
eet,
TerpWord

N.M APFD

RP34
[54]

T53
flex and
make from
SIR

SSLOC tool,
Aristotle
Coverage
tool

APFD,
NAPFD

RP35
[56]

T55,
T56

Simulation
experiments

N.M

Rate of
units of
testing
requirement

priority
satisfied per
unit test
case cost

RP36
[69]

T38,
A7,
A8, A9

Gradebook
and Jdepend
software

Emma tool,
Linux
Process tool

Code
coverage,
Coverage
preservatio
n, Order
aware
coverage

RP37
[57]

T54

3 minor
releases of
IBM
software
system

MATLAB
Not
Mentioned

RP38
[26]

T39

web based
system
ISELTA(Isik
's System for
Enterprise
Level web
centric
Tourist
Applications
)

N.M None

RP39
[59]

T60,
T61

7 C
pprograms
from
Siemens

Aristotle
Program
Analysis
Tool

APFD

RP40
[66]

T62

7 C
pprograms
from
Siemens

MATLAB,
PIN tool

APFD

RP41
[52]

T64
(enhan
ced
T54)

Ant , XML-
security,
Jmeter,
nanoxml
from SIR
and Galileo

Sandmark
tool

APFD

RP42
[42]

T65 ant (SIR)
Sofya
system

APFDc

RP43
[48]

T57 N.M N.M Coverage

RP44
[67]

T67
Vim from
SIR

Mutation
testing tool

Block
Coverage,
Fault
Detection,
Change
across
faults,
Change
across tests

RP45
[39]

T68

5 J2EE
application
projects
developed
by students
and 2 set of
Industrial
project (one
VB and one
PHP)

Rational
Test Suite,
Tbreq-
Requiereme
nt tracability
tool

TSFD
(Total
Severity of
Faults
Detected)

RP46
[38]

T58,
T59

Travel agent
system
having 12

N.M
Total
branch
coverage,

402 Informatica 36 (2012) 379–408 Y. Singh et al.

web services
with 17
methods in
Java

APFD

RP47
[27]

T69 –
T70

Ant,
XML_securi
ty, Jmeter,
nanoxml
from SIR
and Galileo

Sandmark
Tool, Sofya
System,
Ckjm Tool

Boxplots,
Chidamber,
Kemerer(ck
jm metrics)

RP48
[60]

T63

XML-
security,
Jtopas from
SIR

Apros tool

APFDc,
APMC
(Average
percentage
of fault
affected
modules
cleared per
test case)

RP49
[65]

T66

Microsoft
Power Point
2003(11.810
6.8107)

N.M
APFDp(for
parallel
scenario)

RP50
[46]

Extensi
on of
algorit
hms in
RP29(
A3,
A5)
and
delaye
d
greedy
algorit
hm

8 case study
application:
DS (Data
Stucture
application),
GB (Grade
Book
Application)
, JD
(Jdepend),
LF
(LoopFinder
), RM
(Reminder),
SK
(Sudoko),
TM(Transact
ion
Manager),
RP
(Reduction
and
Prioritization
package)

N.M

RFFT
(Reduction
factor for
time)

RP51
[40]

T74

5 J2EE
application
projects by
students, two
industrial
projects (one
in VB, one
in PHP) and
two
industrial
case studies
(java)

Emma tool,
Winrunner
testing tool

ASFD
(Average
Severity of
Faults
Detected),
ATEI
(Average
Test Effort
Index),
TPFD (
Total
Percentage
of Failures
Detected)

RP52
[30]

T75 –
T84

Business
process
Hotelbookin
g taken from
the
Triphandling

N.M APFD

project

RP53
[73]

No
new
techniq
ue

Seven
models from
the
Infrastucture
: ATM
model,
Cruise
Control,
Fuel Pumps,
Fuel Pumps,
TCP-Dialer,
ISDN, Print
Token,
Vending
Machine

SPSS Tool
Relative
Position
Metric

RP54
[43]

T73

7 siemens
program and
1 space
program

SAS 9.1.3 APFD

RP55
[28]

T85 –
T93

Seven
Siemens
programs
and 4
mediun
sized unix
utility
programs

SPSS Tool,
Unix Tool
Gcov to
collect
dynamic
coverage
information

APFD
Metric,
Distance
Metric
called
Jaccard
distance

RP56
[29]

T94,
A2,
A3,
A4, A6

Four
siemens
programs:
print_tokens,
print_tokens
2, schedule,
schedule2
and one
space
program
from SIR

N.M

APBC(Ave
rge
Percentage
Block
Coverage),
APDC(Ave
rage
percentage
Decision
Coverage),
APSC(Aver
age
percentage
statement
Coverage)

RP57
[61]

T95,
T96

ATM
example

N.M BPFG

RP58
[35]

T97,T9
8

N.M.
TDE/UMl
model Editor

N.M.

RP59
[72]

A1 to
A5

One
simulated
program

Microsoft
Visual
Studio 2008

APRC(Ave
rage
percentage
Requiremen
t coverage

RP60
[62]

T99

Five
versions of
sed(unix
utility
program)

N.M APFDc

RP61
[45]

T100

8 case study
application:
DS (Data
Stucture
application),
GB (Grade
Book
Application)

Beanplots

Coverage
effectivenes
s Score
metric

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 403

, JD
(Jdepend),
LF
(LoopFinder
), RM
(Reminder),
SK
(Sudoko),
TM(Transact
ion
Manager),
RP
(Reduction
and
Prioritization
package)

RP62
[76]

No
new
techniq
ue

Five java
Programs
namely
ant,xml
security,jmet
er,nanoxml
from SIR
and galileo

Sofya
system,
SPSS Tool

EVOMO
and LOC
Model,
Bonferroni
Analysis,
Kruskal
Wallis
Test(non
parametric
one way
analysis)

RP63
[70]

T101
schedule
(Siemens)

N.M APFD

RP64
[31]

T102 –
T105

A set of WS-
BPEL
applications:
Atm,
Buybook,
Dslservice,
Gymlocker,
Loan
Approval,
Marketplace,
Purcharse,
TripHandlin
g

MATLAB
Tool, PTS
Box chart
Utility

APFD,
Boxplots,
Annova
Analysis

RP65
[32]

T106

Four GUI
Applications
:Terpcalc,
TerpCalc,Te
rPaint,TerpS
predsheet
and
Terpword
which is an
open soutce
Office suite
developed at
University
of Maryland
and Three
web based
Applications
:Book,CPM
and Masplas

Bugzilla(Bu
g Tracking
Tool)

APFD,
FDD(fault
detection
density)

Table A3: List of techniques with the language type,
input method, approach and granularity.

T.
no

Technique
Lang
uage
type

Inpu
t
Met
hod

Appro
ach

Gran
ularit
y

T1

Hybrid
technique
combining
modification,
minimization
and
prioritization

Proc. SC
MF
and CB

Stmt.

T2
Total branch
coverage
prioritization

Proc. SC CB Stmt.

T3

Additional
branch
coverage
prioritization

Proc. SC CB Stmt.

T4

Total
statement
coverage
prioritization

Proc. SC CB Stmt.

T5

Additional
statement
coverage
prioritization

Proc. SC CB Stmt.

T6

Total fault-
exposing
potential
(FEP)
prioritization

Proc. SC FB Stmt.

T7

Additional
fault-exposing
potential
(FEP)
prioritization

Proc. SC FB Stmt.

T8

fn_total
(prioritize on
coverage of
functions)

Proc. SC CB Func.

T9

fn_addtl
(prioritize on
coverage of
functions not
yet covered)

Proc. SC CB Func.

T10

fn_fep_total
(prioritize on
probability of
exposing
faults)

Proc. SC FB Func.

T11

fn_fep_addtl
(prioritize on
probability of
exposing
faults, adjusted
to consider
previous test

Proc. SC FB Func.

404 Informatica 36 (2012) 379–408 Y. Singh et al.

cases)

T12

fn_fi_total
(prioritize on
probability of
fault
existence)

Proc. SC FB Func.

T13

fn_fi_addtl
(prioritize on
probability of
fault existence,
adjusted to
consider
previous test
cases)

Proc. SC FB Func.

T14

fn_fi_fep_total
(prioritize on
probability of
fault existence
and fault
exposure)

Proc. SC FB Func.

T15

fn_fi_fep_addt
l(prioritize on
probability of
fault existence
and fault
exposure
adjusted to
previous
coverage)

Proc. SC FB Func.

T16

fn_diff_total
(prioritize on
probability of
fault existence
based on
DIFF)

Proc. SC FB Func.

T17

fn_diff_addtl
(prioritize on
probability of
fault existence
adjusted to
consider
previous test
cases based on
DIFF)

Proc. SC FB Func.

T18

fn_diff_fep_tot
al (prioritize
on combined
probability of
fault existence
with fault
exposure
based on
DIFF)

Proc. SC FB Func.

T19

fn_diff_fep_ad
dtl (prioritize
on combined
probability of
fault existence

Proc. SC FB Func.

with fault
exposure,
adjusted on
previous
coverage
based on
DIFF)

T20

Prioritization
based on
history-based
on test
execution
history in
resource
constrained
environment

Proc. SC HB Stmt.

T21

Binary code
based
prioritization

Bin.
C
o
d
e

BF CB Blk.

T22

Prioritization
incorporating
aspects of
MC/DC

Proc. SC
CB +
MF

Stmt.

T23

Annotated
Classification
Tree based
prioritization

L.Ind.
R&S

P
O
(CTB)

Class

T24

block_total(pri
oritization on
coverage of
blocks)

OO SC CB Blk.

T25

block_addtl(pr
ioritization on
coverage of
blocks not yet
covered)

OO SC CB Blk.

T26

method_total
(prioritization
on coverage of
method)

OO SC CB Mhd.

T27

method_addtl(
prioritization
on coverage of
methods not
yet covered)

OO SC CB Mhd.

T28

method_diff_t
otal(prioritize
on coverage of
method and
change
information)

OO SC CB Mhd.

T29

method_diff_a
ddtl(prioritize
on coverage of
method and
change
information
adjusted to

OO SC CB Mhd.

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 405

previous
coverage)

T30
PORT(V1.0)

L.Ind.
R&S

P
RQ Sys.

T31

System model
based selective
test
prioritization

L.Ind. SM MF
Tranc

.

T32

Model
dependence
based test
prioritization

L.Ind. SM MF
Tranc

.

T33
Data flow
based
prioritization

OO SC DF Stmt.

T34

Prioritization
Of
Requirements
for
Test(PORT)

L.Ind. SYS RQ Sys.

T35
Cost-
Cognizant
TCP

L.Ind. SC
CST &
FB

Func.

T36

Prioritization
using relevant
slices(REG+O
I+POI
approach)

Proc. SC
MF &
SLC

Stmt.

T37
Prioritization
using genetic
algorithm

OO SC GB Prg.

T38

Time aware
prioritization
using
Knapsack
solvers

OO SC KB Stmt.

T39

Graph model
based
approach for
prioritization

L.Ind. SM CB Prs.

T40

Interaction
coverage
based
prioritization
by length of
test(longest to
shortest) on
event driven
softwares

L.Ind. SC CB Evt.

T41

Interaction
coverage
based
prioritization
by 3-way
interaction on
event driven
softwares

L.Ind. SC CB Evt.

T42

Interaction
coverage
based
prioritization
by 2-way
interaction on
event driven
softwares

L.Ind. SC CB Evt.

T43

Interaction
coverage
based
prioritization
by unique
event coverage
on event
driven
softwares

L.Ind. SC CB Evt.

T44

Interaction
coverage
based
prioritization
by length of
tests(shortest
to longest) on
event driven
softwares

L.Ind. SC CB Evt.

T45
Model based
heuristic#1
prioritization

L.Ind. SM MF Sys.

T46
Model based
heuristic#2
prioritization

L.Ind. SM MF Sys.

T47
Model based
heuristic#3
prioritization

L.Ind. SM MF Sys.

T48
Model based
heuristic#4
prioritization

L.Ind. SM MF Sys.

T49
Model based
heuristic#5
prioritization

L.Ind. SM MF Sys.

T50

Test case
prioritization
for black box
testing based
on
requirements
and history

L.Ind. SYS
RQ+H
B

Sys.

T51

Priritizing test
cases for
COTS
components

COT
S

SC ICB Cpt.

T52

Bayesian
network based
test case
prioritization

OO SC
MF+C
B+FB+
BN

Prg.

T53

Combinatorial
Interaction
regression
testing based

Proc. SC
CB &
IB

Prg.

406 Informatica 36 (2012) 379–408 Y. Singh et al.

prioritization

T54

Prioritization
using Singular
Value
Decomposition
(SVD) with
empirical
change records

L.Ind. SC
MF &
SVD

File

T55

Prioritization
based on
testing
requirement
priorities and
test case cost

L.Ind. SC
RQ &
CST

Any

T56

Prioritization
based on
additional
testing
requirement
priorities and
test case cost

L.Ind. SC
RQ &
CST

Any

T57

Particle
Swarm
Optimization
based
prioritization

L.Ind. SC
MF +
CB

SU

T58

Quota
constrained
test case
prioritization

L.Ind. SC RQ WS

T59

Quota
constrained
additional test
case
prioritization

L.Ind. SC RQ WS

T60

Prioritization
using heuristic
REG_OI_POI
with grouping
(GRP_REG+O
I_POI)

L.Ind. SC
CB&M
F&SL
C

Stmt.

T61

Prioritization
using heuristic
REG_OI_POI
with
modification
(MOD *
REG+OI_POI)

L.Ind. SC
CB&M
F&SL
C

Stmt.

T62

Graph
theoretic
framework for
test case
prioritization

L.Ind. SC GPH Any

T63

Prioritization
based on
analysis of
program
structure

Proc. CG
CB&M
F&PS
&FB

Mdl.

T64

Enhanced
Bayesian
network based
approach

OO SC
MF+C
B+FB+
BN

Prg.

T65

Historical
value based
approach for
prioritization

L.Ind. SC HB Func.

T66

Test case
prioritization
for multiple
processing
queue

L.Ind. SC CST Any

T67

Configuration
aware
regression
testing

L.Ind. SC CA Cfg.

T68

Test case
prioritization
for varying
requirement
priorities and
cost

L.Ind. SC RQ Sys.

T69

totalCC
(prioritize on
coverage of
blocks)

L.Ind. SC CB Class

T70

totalBN
(prioritize via
Bayesian
Networks)

L.Ind. SC O (BN) Mhd.

T71

additionalCC
(prioritize on
coverage of
blocks with
feedback
mechanism)

L.Ind. SC CB Class

T72

additionalBN
(prioritize via
Bayesian
Network with
feedback
mechanism)

L.Ind. SC O (BN) Mhd.

T73

Prioritization
for resource
constrained
environment
using
historical test
performance
data

L.Ind. SC HB Prg.

T74

Factor orented
requierement
coverage
based
prioritization

L.Ind. SC RQ Sys.

T75

Total CM-1
(CM=Coverag
e Model, total
workflow

WB SM CB WS

SYSTEMATIC LITERATURE REVIEW ON… Informatica 36 (2012) 379–408 407

branches)

T76

Addtl CM-1
(Additional
CM-1,
cumulative
workflow
branch
coverage)

WB SM CB WS

T77

Total-CM2-
Sum (total
workflow and
XRG
branches)

WB SM CB WS

T78

Addtl-CM2-
Sum
(cumulative
workflow and
XRG
branches)

WB SM CB WS

T79

Total-CM2-
Refine (Total
workflow
branches,
descending
order of XRG
branches to
break tie)

WB SM CB WS

T80

Addtl-CM2-
Refine
(Additional
CM2 Refine)

WB SM CB WS

T81

Total-CM3-
Sum (total
workflow
branches,
XRG branches
and WSDL
elements)

WB SM CB WS

T82

Addtl-CM3-
Sum
(cumulative
workflow,
XRG and
WSDL
elements)

WB SM CB WS

T83

Total-CM3-
Refine (same
as Total-CM2-
Refine except
descending
order of
WSDL
elements to
break tie)

WB SM CB WS

T84

Addtl-CM3-
Refine
(Additional
CM3 Refine)

WB SM CB WS

T85

ART-st-
maximin
(Statement
level, min dij =
max {min dij}
)

L.Ind. SC CB Sys.

T86

ART-st-
maxavg
(Statement
level, avg dij =
max {avg dij}
)

L.Ind. SC CB Sys.

T87

ART-st-
amxmax
(Statement
level, max dij
= max {max
dij})

L.Ind. SC CB Sys.

T88

ART-fn-
maximin
(Function
level, min dij =
max {min dij}
)

L.Ind. SC CB Sys.

T89

ART-fn-
maxavg
(Function
level, avg dij =
max {avg dij}
)

L.Ind. SC CB Sys.

T90

ART-fn-
amxmax
(Function
level, max dij
= max {max
dij})

L.Ind. SC CB Sys.

T91

ART-br-
maximin
(Branch level,
min dij = max
{min dij})

L.Ind. SC CB Sys.

T92

ART-br-
maxavg
(Branch level,
avg dij = max
{avg dij})

L.Ind. SC CB Sys.

T93

ART-br-
amxmax
(Branch level,
max dij = max
{max dij})

L.Ind. SC CB Sys.

T94

Reactive
GRASP
(Greedy
Randomized
Adaptive
Search
Procedures)

L.Ind. SC CB Stmt.

T95
Total
technique to

WB SYS
CB+M
F+CF+

WS

408 Informatica 36 (2012) 379–408 Y. Singh et al.

prioritize test
cases

DF

T96

Additional
technique to
prioritize test
cases

WB SYS
CB+M
F+CF+
DF

WS

T97
Model based
prioritization

L.Ind. SM MF
Tranc

.

T98
Concern Based
Prioritization

L.Ind. SM MF
Tranc

.

T99

GA_hist
(Genetic
Algorithms
and History
based test case
prioritization)

L.Ind. SC
HB+G
B+CST

Prg.

T
100

GELAITONS
(Genetic
aLgorithm
bAsed Test
suIte
priOritizatioN
Systems)

OO SC GB Sys.

T
101

Test case
prioritization
using Failure
Pursuit
Sampling

L.Ind. BF
O
(DTB)

Sys.

T
102

Ascending-
WSDL-tag
coverage
prioritization

WB SC CB WS

T
103

Descending-
WSDL-tag
coverage
prioritization

WB SC CB WS

T
104

Ascending-
WSDL-tag
occurrence
prioritization

WB SC CB WS

T
105

Descending-
WSDL-tag
occurrence
prioritization

WB SC CB WS

T
106

GUI and web
based test case
prioritization

WB SC CB Evt.

Language
Type:

Proc - procedural, Bin.Code - binary code,
L.Ind - language independent, COTS -
COTS component based, WB - web
designing or OO - object oriented.

Input
Method:

SC – Source Code, BF – Binary Form, SM
– System Model, SYS – System, CG –
Call graph for program structure, R&SP -
Requirements/Specifications.

Approach:

CB – Coverage Based, MF – Modification
Based, RQ – Requirement Based, FB –
Fault Based, HB – History Based, GB –
Genetic Based, CP – Composite, O –
Others.

Granularity

Stmt-Statement level, Func-function level,
Blk-block of binary form, Mhd-method,
Tranc-transition in system model, Sys-
system level, Prg-program, Prs-process
level, Evt-event, Cpt-component, File-file
to be changed, SU-software units, WS-
web service, Mdl-module, Cfg-
configuration of the software system,
Class-class level or any.

Table A4: Search Algorithms.

ID of
search

algorithm
Search Algorithm

A1 Hill Climbing

A2 Genetic Algorithm

A3 Greedy Algorithm

A4
Additional Greedy
Algorithm

A5
2-Optimal greedy
algorithm

A6 Simulated Annealing

A7 Greedy by ratio

A8 Greedy by value

A9 Greedy by weight

