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Epilepsy is the most common neurological disease defined as a central nervous system disorder that is 

characterized by recurrent seizures. While electroencephalography (EEG) is an essential tool for 

monitoring epilepsy patients' brain activity and diagnosing epilepsy, Visual detection of the EEG signal 

to identify epileptic seizures is a time-consuming approach that might result in human error. Therefore, 

an early and precise epilepsy diagnosis is critical to reducing the risk of future seizures. This paper aims 

to increase epileptic seizure detection accuracy in a balanced dataset while reducing the execution time. 

To address this, we proposed a hybrid system of supervised and unsupervised machine learning 

algorithms to construct a computationally efficient and scalable model for the early detection of epileptic 

seizures from two-class EEG datasets. First, Discrete Wavelet Transform (DWT) was applied to the EEG 

signal to decompose it into frequency sub-bands. Then these EEG extracted features were fed into the 

Gaussian Mixture Model (GMM) for partitioning these features into two clusters: epilepsy or not. Lastly, 

the clusters' output was evaluated with the random forest classifier. In addition, Principal Component 

Analysis (PCA) was used to reduce the EEG features and to reduce further the features obtained after 

conducting DWT on the EEG signal to determine the impacts of dimension reduction on this system 

performance. The experimental results show that the highest accuracy was achieved by the hybrid system 

of GMM with random forest with DWT features with an accuracy of 93.62 %. 

Povzetek: Razvita je bila izvirna metoda strojnega učenja za zaznavanje epileptičnih napadov iz EEG 

signalov.

1 Introduction 
Epilepsy is one of the most severe neurological diseases 

that affect people's lives[1]. It is a long-term brain disease 

marked by an aberrant nervous system imbalance 

produced by the sudden, repeated discharge of the total 

neuron population from the brain, which leads to recurrent 

seizures [2]. According to the World Health Organization 

(WHO), around 50 million individuals suffer from 

epilepsy globally. Many patients are children and seniors 

aged 65 to 70 [3]. Although the exact source of this disease 

is unknown, the majority of epilepsy seizures may be 

managed medically. Antiepileptic medications might cure 

just two-thirds of total epilepsy patients, while surgical 

procedures could help 7-8% of patients. Overall, 25% of 

people with epilepsy suffer from a lack of possible 

treatments [4]. 

Epileptic seizures are characterized by many signs 

and symptoms, including loss of awareness and 

consciousness, jerking movements, strange behavior, and 

disorientation. These symptoms may lead to severe 

injuries, such as falling and biting one's tongue, and 

sometimes death [5]. The chance of fatality will be 

reduced if seizures are managed, and medical treatment is 

provided when seizures occur   [6].  

One of the most important tools for detecting epileptic 

seizures is the electroencephalogram (EEG) test, which 

aids in the early detection, treatment and soothing of 

patients [7]. EEG is a clinical method for imaging the 

human brain while the brain is engaged in cognitive 

activity. Electrodes are placed on the patient's scalp to 

record the patient's EEG. The electro-activity produced by 

the brain along the scalp may then be recorded [3]. EEG 

recordings provide a large quantity of multichannel EEG 

signal data that is very complex in nature, including non-

stationary, chaos, and aperiodicity. To date, specialists or 

physicians have mostly used visual analysis to discover 

and comprehend abnormalities in the brain and how they 

spread. 

Visual labeling of EEG recordings by human 

specialists to discover evidence of epilepsy is not a 

suitable process for a trustworthy diagnosis and 

interpretation since such analysis is time-consuming, 

expensive, onerous, and vulnerable to mistakes and 

prejudice. As a result, one of the foremost biomedical 

research challenges is determining how to classify time-

varying EEG data as correctly as possible to aid in the 

diagnosis of epileptic seizures [8]. 

Therefore, the development of an automated, 

computer-aided approach to epilepsy diagnosis is critical 

[9]. As a result, several approaches for detecting epileptic 

seizures using EEG recordings have been developed, and 

Machine-learning algorithms were used for this task, 
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including gathering Electroencephalography (EEG) 

signals, preprocessing, feature extraction from the data, 

and ultimately classification of epileptic seizures [10]. In 

recent years, researchers have attempted to discover a 

more effective solution in the machine-learning field to 

increase prediction performance [4]. 

Inspired by this, this paper proposed a new hybrid 

system of supervised and unsupervised machine learning 

algorithms. The main aim of this study is to improve the 

accuracy of epileptic seizure detection in a balanced 

dataset and reduce the execution time by applying the 

DWT as a feature extraction technique to extract the most 

important features in EEG signals. Then to choose the 

most important features, the number of derived features is 

reduced using the PCA technique. The selected features 

are clustered with GMM into two clusters. Finally, the 

output is evaluated using the Random Forest classifier to 

identify whether it is an epileptic seizure or not. The 

proposed method was tested by an Epileptic EEG dataset 

collected by the Bonn University in Germany. 

To the best of our knowledge, so far no study has used 

GMM for clustering as a hybrid with the random forest 

classifier for epileptic seizure detection. In addition, for 

the first time in this paper a downsampling technique was 

performed on this EEG dataset to balance the dataset, 

make the work process more challenging and the results 

more realistic. 

This paper is organized into several sections as 

follows: section 2 provides some related works. Section 3 

provides a brief explanation of the theoretical background 

of some machine learning algorithms and techniques that 

were relied upon in this study. Section 4 describes the 

methodology of the proposed system. In section 5, the 

experimental results of the proposed system are presented. 

The experimental results are discussed in section 6. 

Section 7 concludes with the conclusions and future work. 

2 Literature review 

For epilepsy detection, numerous studies have focused on 

EEG signal classification. This section provides several 

recent studies on epileptic seizure detection using EEG 

data. Table 1 illustrates the related works on the detection 

of epileptic seizures using various methods. 

The authors in [11] utilized the Boon university EEG 

dataset to propose a technique for diagnosing epileptic 

patients' from EEG signals. First, they used expectation-

maximization features to reduce the dimensions of the 

EEG dataset. These reduced characteristics were then fed 

into five classifiers for epilepsy classifications including: 

nonlinear models like the Gaussian mixture model 

(GMM), logistic regression, firefly algorithms, and hybrid 

models like cuckoo search with GMM and firefly 

algorithm with GMM. The hybrid classifier combining 

Cuckoo search with GMM got the greatest accuracy of 

92.19 %, with a lower error rate than the other four 

classifiers according to this research. While in [12], they 

suggested a technique for detecting epileptic seizures in 

long-term EEG recordings. The EEG data were acquired 

from Adnan Menderes University's Department of 

Neurology and Clinical Neurophysiology's EEG 

laboratory. The detection was performed with two 

classification techniques, support vector machine (SVM) 

and linear discriminant analysis (LDA), and their 

results were compared. First, they decomposed the EEG 

dataset into multiple frequency sub-bands using the DWT. 

The extracted characteristics are either immediately fed 

into the classification algorithms or tested using two 

dimension reduction approaches, PCA and ICA. The 

experimental results show that while employing the SVM 

with radial basis function (RBF) kernel without dimension 

reduction to categorize EEG signals as normal or epileptic, 

they achieved the greatest accuracy rate of 88.9%.  The 

efficacy of the KNN classifier and K-means clustering to 

identify epilepsy risk levels from EEG data is investigated 

by the authors in [13]. The objective was to develop a 

classification algorithm with a high-performance index, 

low false alarm rate, and low missed classification rate. 

The EEG recordings of twenty individuals are analyzed in 

this research. To begin, Detrend analysis is performed to 

identify data nonlinearity. Second, the power spectral 

density is calculated, and the EEG dimensionality is 

reduced. Finally, the data is classified as they used the 

KNN classifier and K-means clustering. According to this 

research, the KNN classifier and K-means clustering have 

performance indices of 78.31 % and 93.02%, respectively. 

The KNN classifier produced a lousy value of 18.02, but 

K-means clustering produced a high-quality rating of 

22.37 with a false alarm rate of 0%. The authors of [14] 

employed a variety of dimension reduction approaches to 

decrease the EEG features, including Singular Value 

Decomposition (SVD), Principal Component Analysis 

(PCA), Independent Component Analysis (ICA), Fast 

ICA, and Linear Discriminant Analysis (LDA). The 

dimensionally reduced EEG characteristics are then 

supplied into a hybrid classifier called the Artificial Bee 

Colony-Particle Swarm Optimization (ABC-PSO) 

Classifier, which uses EEG data to categorize epilepsy risk 

levels. In this study, they used an EEG dataset of twenty 

epileptic patients who were receiving epilepsy medication. 

The Fast ICA with ABC-PSO Classifier produced the best 

results, with an accuracy of 97.42%, the greatest quality 

value of 22.76, and a time delay of roughly 2.9 seconds, 

according to the trial data. Different classifiers were used 

in [5]  to classify the Epileptic Seizure dataset. With 

97.08%, ROC = 0.996, and RMSE = 0.1527, the Random 

Forest classifier outperformed the K-Nearest Neighbor 

(K-NN), Nave Bayes, Logistic Regression, Decision Tree 

(D.T.), Random Tree, J48, and Stochastic Gradient 

Descent (S.G.D.) classifiers. Also in this study, Sensitivity 

analysis was done on several of these classifiers to see how 

well they performed in classifying the Epileptic Seizure  

dataset when some of their parameters were changed. 

After that, a dataset prediction was made using feature 

selection based on attribute variance. In [15], they 

demonstrate the use of wavelet transform (WT) for feature 

extraction of EEG data, using Artificial Neural Network 

(ANN) and Support Vector Machine (SVM) as classifiers. 

The EEG signal is decomposed using the Daubechies 

wavelet for feature extraction. The experimental results of 

this study show that the ANN presents the best 

performance with an accuracy of 96.00%.  
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3 Theoretical background 
The purpose of this section is to provide the theoretical 

background and processes necessary to comprehend the 

approaches employed in the next section. 

3.1 Feature extraction technique 

Feature extraction techniques reduce the amount of data 

that must be processed while still properly and thoroughly  

characterizing the original dataset by selecting and/or 

combining variables into meaningful features [10]. This 

study presents one feature extraction technique applied on 

the EEG dataset, namely Wavelet Transform (WT). 

3.1.1 Wavelet Transform (WT) 

Jean Morlet, a French geophysicist, introduced WT in 

1982 [16], and it compresses the time-varying biomedical 

signal, which consists of numerous data points, into a 

limited number of parameters that characterize the signal. 

Because the EEG signal is nonstationary, time-frequency 

domain approaches such as Wavelet Transform (WT), 

which is a spectral estimating technique in which every 

general function may be described as an infinite sequence 

of wavelets, are the best way to extract features from raw 

data. Since WT allows for variable-sized windows, it 

offers additional flexibility in signal time-frequency 

representation. This approach is designed to deal with 

nonstationary signals like EEG. The original EEG signal 

is represented in the WT technique by wavelets, which are 

secure and simple building blocks. Through translation 

and dilation, or (shifting) and (compression and 

stretching) operations along the time axis, the mother 

wavelet generates these wavelets as part of derived 

functions. The WT may be classified into two categories: 

continuous and discrete [17]. The Discrete Wavelet 

Transform (DWT) will be explained since it was used in 

this study. 

3.1.2 Discrete Wavelet Transformation (DWT) 

Mallat developed the DWT, which was specified using 

multi-scale feature representation. Each DWT scale 

represents a unique set of brain signals. Convolution is a 

two-function multiplication technique that employs the 

low-pass or high-pass filter coefficients, which are 

subsequently processed by downsampling. 

Downsampling is the process of halving the size of a 

sample signal (reduction). Wavelets have two sorts of 

signals: approximation and detail. A signal acquired via 

the convolution process of the original signal to the low-

pass filter is an approximation coefficient. In contrast, a 

signal obtained through the convolution process of the 

original signal to the high-pass filter is a detail coefficient 

[18, 19]. Figure 1 shows DWT decomposition for EEG 

data at various levels. 

DWT can also be utilized for signal noise reduction, 

preprocessing, and feature extraction. There are several 

DWT types grouped into families based on frequency 

components; these are: The Discrete Meyer (dmey), 

Reverse biorthogonal (rbio), Daubechies (db), Coiflets 

(coif), Symlets (sym), and Haar, which are mathematical 

and statistical functions. DWT performance is influenced 

Table 1: A summary of the above previous researches. 

Research Year 

Dimension 

Reduction  

technique 

Feature 

Extraction 

technique 

 Classifiers for the diagnosis of 

epilepsy 

Best 

Accuracy 

[11] 2022 
Expectation 

maximization 
--- 

GMM, logistic regression, firefly, and 

hybrid model such as cuckoo search 

with GMM and firefly with the 

GMM. 

92.19% 

[12] 2018 PCA and ICA DWT 
Support Vector Machine (SVM) and 

linear discriminant analysis (LDA). 
88.9% 

[13] 2016 --- --- 
KNN classifier and K-means 

clustering. 

78.31% 

93.02% 

[14] 2018 
SVD, PCA, ICA, 

Fast ICA and LDA 
--- 

Artificial Bee Colony-Particle Swarm 

Optimization (ABC-PSO). 
97.42% 

[15] 2017 --- 

Wavelet 

Transform 

(WT) 

Artificial Neural Network (ANN) and 

Support Vector Machine (SVM). 
96.00% 

 

 

Figure 1: Four-level EEG signal decomposition. 
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by four major factors: DWT coefficient characteristic, 

mother wavelet, frequency band, and decomposition level 

[10]. 

3.2 Dimensionality reduction 

The feature space of datasets may be rather extensive, with 

thousands of measurements per sample, which will make 

the analysis of these features very challenging. The 

analysis of high-dimensional datasets can be related to a 

phenomenon known as the "curse of dimensionality." It is 

worth noting that the "curse of dimensionality" makes 

most data analysis methodologies, particularly machine 

learning, challenging. Therefore, dropping redundant 

features might increase the model's performance and 

convergence time [20]. There are several algorithms for 

dimensionality reduction, but only the PCA will be 

explained, which is implemented in this study. 

3.2.1 Principle Component Analysis (PCA) 

Principal component analysis (PCA) is an unsupervised 

linear technique. It is a typical data reduction approach 

used in statistical pattern identification and signal 

processing [21]. PCA's goal is to decrease the 

dimensionality of a dataset that contains many correlated 

variables while maintaining as much variation as possible 

in the dataset. Hence, this approach creates a collection of 

uncorrelated features called "Principal Components 

(PCs)" to reduce the original data's characteristics. The 

components are defined as the components that cover the 

largest variation in the dataset and give statistically 

significant information about the original data. Where the 

first PC has the greatest variation and the second PC 

contains the second most variance, and so on [22, 23]. The 

other benefit of PCA is not losing important information 

by identifying the patterns by reducing the number of 

dimensions [21]. Assume a dataset vector X =
x1 , x2, … … … xn contains n-dimension inputs. Using 

PCA, the n-dimensional data space will be reduced to a d-

dimensional space Y (d ≤ n). The following are the steps 

for implementing this algorithm [24]. 

1. Compute the mean of each vector. 

                      𝐗 =
𝟏

𝐧
∑ 𝐱𝐤𝐧

𝐤=𝟏                                                 (1)     

Calculate the covariance matrix. 

            𝐂 =
𝟏

𝐧 − 𝟏 
∑(𝐱𝐤 − 𝐗)(𝐱𝐤 − 𝐗)𝐓 

𝐧

𝐤=𝟏

          (2) 

2. Eigenvalues and Eigenvectors are computed 

by applying the eigenvalues decomposition to 

the C. The Eigenvectors should be sorted 

based on their eigenvalues in decreasing order 

to generate the matrix 𝑺(𝒅 × 𝒏) , which 

transforms the original n-dimensional space 

(X) into a new d-dimensional space (Y). 

3. Finally, using 𝑺𝑻, transform 𝒙𝒌 to get the new 

subspace by calculating: 

    𝒀 = 𝑺𝑻𝒙𝒌    For each    𝒙𝟏, 𝒙𝟐 … … . , 𝒙𝒏   (3)  

3.3 Clustering method 

Clustering is a fundamental unsupervised learning 

technique. It is a method for grouping data points into 

distinct clusters based on similarity measures. Such that 

data points in one cluster are similar but distinct from data 

points in other clusters. Several data clustering techniques 

are available [25]. Among these techniques, Gaussian 

Mixture Model (GMM) was used in this study, which will 

be explained below. 

3.3.1 Gaussian Mixture Model (GMM) 

Mixture models use a probabilistic form of "soft 

clustering." Data points in every cluster reflect samples 

from some kind of probability distribution in a d-

dimensional spatial space.  

A GMM is an unsupervised clustering algorithm that 

uses probability density estimates to produce "ellipsoidal-

shaped clusters”. Every data point to be clustered is taken 

from a mixture of Gaussian distributions with unknown 

parameters, according to Gaussian Mixture Model. So, in 

order to calculate the values of these unknown parameters 

and to build the distinct clusters, a learning technique is 

used. The Gaussian distribution, commonly known as the 

Normal distribution, is a continuous probability 

distribution that is defined by the following Equation: 

𝑵(𝐗|𝛍, 𝚺) =
𝟏

(𝟐𝛑)
𝐃
𝟐√|𝚺|

𝐞𝐱𝐩 {−
(𝐗 − 𝛍)𝐓𝚺−𝟏(𝐗 − 𝛍)

𝟐
}     (4)  

Where, (𝚺) indicates the Gaussian representation 

were it is a (𝐷 ×  𝐷) covariance matrix, and its 

determinant is indicated by (|𝛴|). Whereas (µ) is a D −
dimensional mean vector. 

A GMM is a linear combination of the basic Gaussian 

probability distribution, and it is represented by the 

following equation: 

               𝐩(𝐗) = ∑ 𝛑𝐤 𝑵(𝐗|𝛍𝐤,𝚺𝐤)
𝐊
𝐤=𝟏                                 (5) 

From the above equation, (𝑲) is the number of 

components in the mixture model and (𝝅𝒌) is called the 

mixing coefficient, and 𝑵(𝐗|𝛍𝐤, 𝚺𝐤)  is the Gaussian 

density, is known as a component of the mixture model. 

Gaussian distribution with covariance 𝚺𝐤 , mean 𝛍𝐤, 

and the mixing coefficient 𝛑𝐤 is used to explain each 

component (𝑲) [26, 27]. 

As mentioned above, to find the parameters of the 

Gaussian distribution for each cluster or to build the 

distinct clusters, the GMM uses a learning technique (also 

known as an optimization technique), called the 

expectation-maximization (EM) technique. It determines 

the statistical model's maximum likelihood parameters. 

The unknown model parameters are estimated repeatedly 

in two steps. First is the E (expectation) step, which 

involves calculating the posterior distribution of the latent 

variables using the present model parameters. Data points 

are fractionally distributed across clusters based on this 

value. Second, the M (maximization) step, which 

determines the fractional assignment by recalculating the 

model parameters using the maximum likelihood rule 

[28]. The EM algorithm is shown in Figure 2. 
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3.4 Classification algorithm 

The goal of classification algorithms is to anticipate 

discrete outcomes. Classification algorithms are 

recommended if the data can be categorized or labeled 

into specific classes. Classification models are used to 

classify input data, with output values or the goal (Y) 

being categorical. Example of classification used to 

determine whether or not a patient has epilepsy. There are 

many supervised machine-learning algorithms used in 

medicine classification [29]. The Random Forest 

algorithm is described below since it is implemented in 

this study. 

3.4.1 Random Forest algorithm 

Random forest (RF) is a robust supervised method that 

performs classification and regression problems [30]. Leo 

Breiman of the University of California presented it 

originally in 2001 [31]. This algorithm, also known as 

Random Decision Forests, is a machine learning approach 

that uses ensemble learning. It is a "forest" that made up 

of numerous independent and unpruned decision trees that 

aggregate the classification results of distinct trees. It is 

also referred to as a bagging-type ensemble classifier. 

Combining a few decision trees minimizes the likelihood 

of overfitting by reducing the variance and bias [32, 33]. 

The Random Forest algorithm classifies data using a 

voting mechanism that incorporates the outcomes of 

individual trees. Direct voting counts the number of trees 

that have a certain characteristic categorized under a 

specific class [34]. It is worth mentioning that the RF 

classifier has been extensively employed in a variety of 

medical research studies [32]. Figure 3 depicts the main 

structure of the Random forest bagging strategy using the 

EEG training data. 

The following are the major steps of this algorithm: 

1. The EEG training dataset D is segmented into n 

datasets D1, D2, . . . . . . , Dn by using the bootstrap 

approach. 

2. These various datasets are used to train the 

random forest algorithm. 

3. An unpruned classification tree is built for each 

bootstrap sample. 

4. After that, many classifiers (multiple decision 

trees) were created (Classifier1, Classifier2,..., 

Classifiern). 

5. The ensemble classifier is created by combining 

the predictions of many classifiers (majority 

votes for classification) [35]. 

3.5 Evaluation metrics 

Classification model performance is evaluated using 

unseen data (testing data) by the following metrics. 

3.5.1 Confusion Matrix 

The confusion matrix is a table that shows the 

classification results in detail, including whether they 

were correctly or incorrectly classified. A (2*2) matrix is 

used for binary classification [36]. Table 2 shows a 

confusion matrix for binary classification. 

• True Positive (TP): The model properly 

recognized positive samples. 

• False Negative (FN): A positive sample that the 

model incorrectly classifies. 

•  False Positive (FP): A negative sample that the 

model incorrectly classifies. 

• True Negative (TN): The model properly 

categorized negative samples. 

3.5.2 Accuracy 

It is the most extensively used metric. It is the proportion 

of properly categorized samples to the total number of 

samples for a particular test data set [36], and it is denoted 

mathematically as: 

             𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐏+𝐓𝐍

𝐓𝐏+𝐓𝐍+𝐅𝐏+𝐅𝐍
                              (6) 

 

Figure 2: shows the expectation-maximization approach for 

Gaussian mixtures [28]. 

 
Figure 3: Illustrates the random forest bagging strategy 

decision process [35]. 

Table 2: Illustrates the confusion matrix. 
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3.5.3 Precision 

It calculates the ratio of all ‘‘correctly detected items’’ to 

all ‘‘actually detected items’’ [36]. It is denoted 

mathematically as: 

              𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐓𝐏

(𝐓𝐏+𝐅𝐏)
                           (7) 

3.5.4 Recall  

The ratio of accurately predicted positive values to the 

total number of positive values in the dataset is also known 

as “true positive rate (TPR)” [20]. It is denoted 

mathematically as:  

              𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐏

(𝐓𝐏+𝐅𝐍)
                                                 (8) 

3.5.5 F1-score 

It calculates the harmonic mean of the precision and the 

recall [36], [37]. It is denoted mathematically as [38]: 

              𝐅𝟏 = 𝟐 ∗
𝟏

𝟏

𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧
+

𝟏

𝐫𝐞𝐜𝐚𝐥𝐥

                                      (9) 

4 The proposed system 
In this section, the architecture of the proposed system is 

illustrated, and Figure 4 shows the basic steps for building 

this system and each part of the scheme will be explained 

in detail in the following paragraphs. 

4.1 Data collection stage 

In this study, the experiments were conducted using an 

EEG epileptic seizure dataset gathered from Bonn 

University in Germany. There are 500 patients in the 

dataset, with 4097 electroencephalograms (EEG) 

measurements collected during 23.5 seconds. The 4097 

data points are divided into 23 chunks, each containing 

178-voltage signals equivalent to one second of brain 

activity. As a result, there are 11500 instances in this 

multivariate time series dataset, each with a brain activity 

label for 178 features. The last column denotes the label y, 

which has five classes: 1, 2, 3, 4, and 5. Table 3 contains 

information about the target classes. 

4.2 Preprocessing stage  

As shown in Figure 4, there are four primary steps in this 

stage, which are explained as follows: 

 

 

   
 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Shows the General Proposed System For 

Epileptic Detection. 

4.2.1 Convert the target class (y) 

Since this study is for a binary classification assignment, 

the first step is to transform the target class from five 

classes to a binary class. Therefore, when the target class 

value is larger than 1, all of these values will be set to 0. 

As a result, Class 1 represents patients with epileptic 

seizures, while Class 0 represents patients who do not have 

Data collection Stage 

(Input EEG Dataset) 

 

P
re

p
ro

ce
ss

in
g

 S
ta

g
e 

 

Resulted Data (D) 

Dimension Reduction 

Stage with PCA 

Clustering Stage 

with GMM 

Convert the Target class 

to Binary 

Down sampling the 

dataset 

Splitting the dataset into 

training and testing sets 

Feature Scaling  

Balanced dataset 

Feature Extraction with 

DWT 

Classification Stage 

with Random Forest 

 D-new 

 

D 

D 

D 

Table 3: Information about the target class. 

Target 

class 
Explanation 

Number 

of cases 

1 Recording of seizure activity. 2300 

2 
EEG signal from the tumor 

region has been recorded. 
2300 

3 
The E.E.G. activity was 

measured in a healthy brain area. 
2300 

4 Eyes closed.  2300 

5 Eyes open.  2300 
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epileptic seizures, with a total of 2300 and 9200 

individuals, respectively. 

4.2.2 Down sampling the dataset 

The second step in this stage is to balance the EEG dataset 

by using the down-sampling approach to make the work 

process more challenging and the results more realistic. As 

a result, the dataset has been adjusted so that, the number 

of patients with epilepsy and without epilepsy equals 2300 

the total is 4600 patients. To the best of our knowledge, 

this is the first study that applies the downsampling 

technique to this EEG dataset to make it balanced. 

4.2.3 Dataset splitting 

In this step, the EEG dataset is split into two independent 

sets; the testing set and the training set. The selected 

splitting ratio is 70% for training the model and 30% for 

testing the model. Therefore, total training data is 3220, 

and total testing data is 1380. 

4.2.4 Feature scaling  

The final step in the preprocessing stage is applying the 

feature scaling procedure. The reason for applying this 

technique is that the EEG dataset contains variables with 

highly varied scales. Therefore, the dataset should be 

scaled to transform the feature vectors into a format that 

machine-learning algorithms can understand. The 

standard-scaler was utilized in this study as it converts a 

dataset into a distribution with a mean of 0 and a standard 

deviation of 1. Equation 6 is used to represent it 

mathematically. 

               𝐙 =
𝐱 − 𝛍 

𝛔
                                                           (𝟏𝟎) 

Where, 𝝁 is the mean, 𝝈 is a standard deviation, 𝒙 is 

an original value. 

The resulted data (D) from the preprocessing stage 

has three paths: 

1. Enter directly to the feature extraction stage. 

2. Or enter directly to the clustering stage. 

3. Alternatively, enter the dimension reduction 

stage. 

4.3 Feature extraction stage 

In this study, the Discrete Wavelet Transformation (DWT) 

was used for decomposing the EEG signal into several 

frequency sub-bands. The EEG signal is decomposed by 

using the Haar wavelet. The number of decomposition 

levels is selected to be three. Therefore, the EEG signal is 

decomposed into cD1, cD2, and cD3 details and cA3 

coefficients are chosen as wavelet features with a length 

of 23. Figure 5 illustrates the decomposition process. In 

addition, Figure 6 shows the details and approximation 

coefficients at level three with 23 dimensions. 

We utilized DWT to extract the EEG features since it 

is a highly effective technique compared to other 

techniques in terms of accuracy of feature extraction to  

 

 

 

 

 
 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

Figure 5: show three levels decomposition with DWT for 

EEG signal. 

assure the efficacy of the following processes. The output 

of this step (the extracted features) has two paths: 

1. Enter directly to the clustering stage. 

2. Alternatively, enter to dimension reduction stage 

to reduce data further. 

4.4 Dimension Reduction 

In this study, the Principle Component Analysis (PCA) 

was used to reduce and detect highly correlated features in 

the large EEG dataset into fewer independent variables 

while maintaining the EEG signal's characteristics. The 

input EEG data to the PCA is either from the DWT step 

with 23 features or the resulting data (D) from the 

preprocessing stage with 178 features. When applying the 

PCA, the number of these features is reduced to only 11 

components. The charting of the first two and four PCs of 

the new reduced EEG data is illustrated in Figure 7. 

The reduced features dimensions from this stage fed 

directly into the clustering stage. 

X with 178-dimentions 

cA1 (89 coefficients) 
cD1 (89 coefficients) 

 

cA2 (45 coefficients) 

 

 

cD2 (45 coefficients) 

 

 

cA3 (23 coefficients) 

 

 

cD3 (23 coefficients) 

 

 

 
Figure 6: The approximation and Details coefficients with 

23-dimension. 
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4.5 Clustering stage 

The Gaussian Mixture Model (GMM) was used in this 

study. It is a probabilistic algorithm to cluster (group) or 

separate the EEG data from the previous stages into two 

clusters: epileptic seizures or non-epileptic seizures. The 

input to this stage is the resulted EEG data from the 

preprocessing stage with 178 features or the extracted 

EEG from the DWT with 23 features, or the EEG reduced 

features from the PCA with 11 features. 

The fundamental concern with the GMM in this study 

was the continual fluctuation of the centroid and its lack 

of stability. Thus, various parameters were examined to 

ensure the centroid's stability, but none substantially 

affected the model. Consequently, just the number of 

clusters was used which is n_components =  2. In 

section 5, we will discuss how we have overcome the 

cluster instability issue. As shown in Figure 8, there is 

some degree of ambiguity in the clustering process. 

The output clusters from this stage enter directly into 

the classification stage. 

 

 

 

 

 

 

4.6 Classification stage 

The final stage of building the system is the classification 

stage. The Random Forest classifier is implemented in this 

study, and the input to this stage is the clustering result 

from the previous stage. Multiple decision trees are used 

to predict the outputs based on the EEG training dataset 

features. In the end, the outcomes of all outputs were 

gathered utilizing a voting mechanism. Before the model 

training process, the first and most important step is 

defining the optimal parameters for obtaining the best 

model performance. Selecting the parameters was 

challenging, so each parameter in the random forest was 

evaluated until the best parameters were determined. The 

effective parameters utilized in this study for the random 

forest are illustrated in Table 4. 

Now after selecting the best parameters the Random 

Forest can be trained on the training data. After training 

the Random Forest classifier, the testing data is supplied 

to this model to assess the classification results. 

5 Experimental results 
This section illustrates the results obtained from the 

proposed hybrid system of all experiments. The results of 

the proposed hybrid system will display in a table. It is 

worth mentioning that this table includes the experiment 

results for the following combinations: (DWT+GMM, 

DWT+PCA+GMM, Normal EEG+PCA+GMM, and 

Normal EEG+GMM); all these combinations are 

combined with the Random Forest classifier to define the 

cluster accuracy. The performance of this classifier is 

evaluated with many metrics, including testing accuracy, 

F1- score, recall, precision, and confusion matrix, to 

determine how well the model performed on the testing 

data. Because this study is about a medical dataset, the 

execution time is very important, and it is already included 

in each experiment. Finally, after displaying all the 

experiment results in the table, the best model with the 

best performance will be selected from among all the 

experiments. Table 5 illustrates the final results of the 

proposed hybrid system experiments. 

 

Figure 7: shows an example of the distribution of PCA 

components. 

 

Figure 8: GMM uncertainty cluster assignment. 

Table 4: The random forest effective parameters 

Random Forest 

Parameters 
Parameter Value 

n_estimators 1000 

max_depth 10 

random_state 42 
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6 Discussion 
In this section, the experimental results that are referred to 

in Table 5 are discussed. The proposed hybrid system 

provides the best performance among all the experiments 

with the DWT features as it was able to accurately 

categorize (1292) samples from the testing dataset out of 

a total of (1380) samples, with an accuracy of (93.62%). 

Moreover, when the PCA was applied to the DWT 

features to reduce the data further, the results were good 

but slightly less than the case without the PCA reduction. 

As for the case when the PCA was applied to the normal 

EEG data, the proposed system performed well, but the 

results in this case are slightly less than the DWT features 

result. However, the worst performance was recorded 

when the EEG data were entered directly into the system. 

In addition, it was wrong in terms of clustering as the 

GMM fails to distinguish between both classes (epileptic 

seizure or non-seizure) equally. So, the above table shows 

the importance of using feature extraction and dimension 

reduction techniques with this system, as they reduce the 

number of features in the dataset while preserving the 

most essential features and information in the signal, 

leading to a significant improvement in the results. As for 

in terms of execution time, the proposed hybrid system 

was fast with the DWT features and with a slight 

improvement in time when applying the PCA technique 

 

Figure 10: The confusion matrix for DWT features. 

 

Figure 11: The confusion matrix for normal EEG and 

PCA. 

 

Figure 12: The confusion matrix for normal EEG data 

features. 

Table 5: The Final Results of the proposed hybrid system 

with all experiments. 

GMM 

Reduction 

with PCA 

Without 

Reduction 

Random Forest 

Accuracy 

DWT 

92.39 93.62 

F1-score 0.92 0.94 

Recall 0.92 0.94 

Precision 0.93 0.94 

Time-

consuming   

in seconds 

0.3587 0.4264 

Samples 

correctly 

labeled   

1275 out of 

1380 

1292 out of 

1380 

 

Reduction 

with PCA 

Without 

Reduction 

Random Forest 

Accuracy 

Normal 

EEG 

Data 

92.53 61.01 

F1-score 0.93 0.55 

Recall 0.93 0.61 

Precision 0.93 0.77 

Time-

consuming   

in seconds 

0.3276 0.7811 

Samples 

correctly 

labeled   

1277 out of 

1380 

842 out of 

1380 

 

 

Figure 9: The confusion matrix for DWT and PCA 

features. 
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over the DWT. However, the system had the longest 

execution time with the normal EEG data. Once again, it 

becomes clear the importance of using the feature 

extraction and dimension reduction techniques, whether in 

terms of time or accuracy. 

As mentioned before, the main problem faced in this 

study with the GMM is that the clustering is extremely 

different with each program execution. In addition, Since 

the GMM is combined with the Random Forest; different 

accuracies are obtained after every program execution. To 

overcome this issue, several experiments and tests were 

undertaken in this study, and the problem was solved by 

using the random-state parameter, as it considerably aided 

in stabilizing the clustering centroids and obtaining the 

same accuracy from the random forest after each program 

execution. The random-state parameter was employed 

extensively in this study: 

1. In the test-train-split section, and the parameter 

value is (random_state = 1). 

2. With the PCA technique, and the parameter value 

is (random_state = 1). 

3. Finally, it is employed as a parameter with the 

GMM, and the parameter value is 

(random_state=25). 

Moreover, selecting the values of the random-state 

parameter was another issue. After many experiments, the 

random-state parameter values were determined so that 

one corresponds to the other and corresponds to the value 

of the PCA component. 

And As for the comparison with the related works 

[11], [12], [13], [14], and [15] that are illustrated in Table 

1, it is important to say that our proposed hybrid system 

work is different from the previous studies presented in 

the field of detecting epileptic seizures (mentioned 

previously). In [11], the GMM was implemented as a 

classifier, in contrast to our proposed method, where it was 

used as a clustering algorithm. In [13], the EEG data were 

entered directly into the classifiers, while in our system, 

dimension reduction and feature extraction were used 

before the classification phase. Overall, our proposed 

hybrid system achieved the highest accuracy of 93.62% 

compared with [11], [12], and [13]. In addition, the two 

studies in [14] and [15] used a different EEG dataset. It is 

hard to compare with the related work since this study 

used a balanced dataset, which will make the results more 

realistic. In contrast, previous studies used imbalanced or 

different EEG datasets. 

7 Conclusion 
Epilepsy is one of the most dangerous diseases that affect 

human lives, so they need to diagnose. An important tool 

used for diagnosing epileptic seizures is the EEG test. 

There are many traditional approaches for analyzing EEG 

data for epilepsy detection, which are time-consuming and 

inaccurate. This paper proposes a new hybrid supervised 

and unsupervised system for detecting epileptic seizures 

from the EEG signals. The aim is to increase epileptic 

seizure detection accuracy in a balanced dataset while 

reducing the execution time. The process of detecting 

epileptic seizures goes through many stages. The first 

stage is the EEG signal preprocessing, which is the most 

important step in improving the system's performance. 

This stage aims to balance the EEG dataset and convert it 

into a more suitable format for the machine-learning 

algorithm. The second stage is features extraction with 

DWT to decompose the EEG signal into different sub-

bands and extract the most important features from this 

signal. The output of this stage is the extracted features 

that will be used later in the dimension reduction or 

clustering stage. The third stage is the dimension reduction 

stage with PCA to select the best features from large 

number of features. 

The output of the previous stages will be fed into the 

clustering stage with GMM to cluster the data into two 

clusters: epileptic and not epileptic seizures. The result of 

this stage will be entered directly into the EEG 

classification stage, where the random forest algorithm 

was used. The proposed system was evaluated with 

different metrics, including Accuracy, F1-score, Recall, 

Precision, and confusion matrix. The results showed that 

the proposed hybrid system achieved good results with the 

DWT and PCA features in terms of these metrics. In 

addition, the results of the experiments revealed that the 

DWT features combined with this hybrid system produced 

the highest result, with an accuracy of 93.62%. The new 

automated hybrid system can detect epilepsy with high 

accuracy and short execution time. Finally, in this study, 

we were able to solve the problem of centroid instability 

by using the random state parameter.  

For future work, we are particularly interested in 

building a smart system application that may be employed 

in wearable devices to detect epileptic seizures. 
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