
https://doi.org/10.31449/inf.v46i8.4248 Informatica 46 (2022) 67–72 67

Malicious Application Traffic Detection and Identification for Mobile

Android Devices

Geng Niu

Shaanxi Police College, Xi’an, Shaanxi 710021, China

Email: gn67iq@126.com

Keywords: mobile, Android device, malicious application, detection, identification, traffic feature

Received:

With the popularity of Android devices, the number of malicious applications has been increasing. This

paper briefly introduced malicious applications for Android devices, used a sensitivity coefficient-based

feature selection method to select traffic features, detected, and identified malicious application traffic

with k-means, support vector machine (SVM) and multi-layer perceptron (MLP) methods, and conducted

experiments at CIC-AndMal2017. It was found that the accuracy was high when 40 features were selected.

The running time of the MLP method was the shortest, 0.02 s. The accuracy of the K-means algorithm

was 86.75%, showing poor performance, and the accuracy of the MLP method was 99.87%, showing the

best performance. The experimental results demonstrate the effectiveness of the MLP method for

monitoring and identifying malicious application traffic. The MLP method can be applied to actual mobile

Android devices.

Povzetek: Prispevek se ukvarja z zlonamernimi aplikacijami na operacijskem sistemu Android - jih našteje

in podrobno analizira z več metodami.

1 Introduction
With the development of mobile technology [1], devices

such as cell phones and tablet computers have been more

and more widely used [2] and become an important part

of life [3], among which mobile devices using Android

have the largest proportion [4]. With the rapid

development of Android devices, many new problems

have emerged. While the application traffic has increased

significantly, the number of malicious applications has

also increased significantly due to the open-source

characteristic of Android devices [5, 6], which brings huge

security problems to the mobile terminal [7]. Mobile

applications are more diverse and complex than

applications in personnel computers, and the traditional

way of traffic detection and identification is not applicable

to mobile. Therefore, how to detect and identify malicious

application traffic on mobile has received a lot of attention

from researchers [8]. Afonso et al. [9] extracted features

from Android application programming interface (API)

calls and system call traces to identify applications

through a machine learning method. They found through

experiments that the method had a detection rate of

96.66%. Faruki et al. [10] designed a method called

AndroSimilar to detect unknown applications by

extracting statistically robust features to generate

signatures and finding regions that are statistically similar

to known malicious applications. Milosevic et al. [11]

proposed two methods to analyze malicious applications,

one based on permissions and the other based on source

code analysis utilizing a bag-of-words representation

model, and found through experiments that the F1 values

of these two methods are 95.1% and 89%. Chakraborty et

al. [12] designed an integrated clustering and

classification (EC2) approach, conducted experiments on

the DREBIN dataset, and found that EC20 could

accurately detect malicious application families,

providing an emerging early warning system. In this paper,

the selection of traffic features and the detection and

identification of malicious application traffic were

investigated, several machine learning methods were

compared, and experiments were performed at CIC-

AndMal2017 to understand the reliability of the method.

This study provides some theoretical support for better

implementation of the secure operation of Android

devices on mobile.

2 Malicious applications for Android

devices
Android is a Linux-based operating system [13] that uses

the Dalvik virtual machine and has been very widely used

in different brands of mobile devices. The applications for

Android devices are very diverse, covering games, music,

social communication, office, video, etc., which has led to

the flooding of malicious applications [14]. Main

malicious applications are shown below.

(1) Privacy theft: Malicious applications can steal

users’ privacy through the network or short messages,

modify permissions of calls and short messages, steal

users’ personal information, various account passwords,

etc., or hide important information of users.

(2) Downloading applications: The user is misled into

downloading malicious applications by means of fake

application names and forged buttons.

68 Informatica 46 (2022) 67–72 G. Niu

(3) Malicious fee deduction: Users are misled into

paying for international calls, sending short messages, and

subscribing to paid services in the background.

(4) Malicious propagation: Users install and

propagate malicious applications without knowing it.

(5) Remote control: The phone is controlled remotely

through applications to download unknown applications,

uninstall antivirus applications, and download or destroy

the user’s data.

The 2019 Android Malicious Software Report

released by 360 Security Brain shows the number of new

malicious applications by month on the mobile terminal in

2019, as shown in Figure 1.

Figure 1: Number of new malicious applications by

month

It was seen from Figure 1 that in January and

December, the number of new malicious apps was the

highest, above 300,000, probably because people used

their mobile Android devices for social entertainment

activities more frequently around the Chinese New Year

holidays, giving malicious applications an opportunity to

spread. Among the malicious applications that appeared,

the proportion of fee-consuming applications was the

highest, reaching 46.8%, followed by privacy theft

applications (41.9%). They are two main malicious

applications.

Malicious applications generate traffic during the

operation. Malicious applications can be found by

processing and analyzing the traffic generated by

applications [15].

3 Detection and identification

method for malicious application

traffic

3.1 Traffic feature selection

When using algorithms for detection and recognition, if all

the features are put into algorithms, it will cause a

dimensional disaster that will consume a lot of time to

make the algorithm converge [16]. In order to obtain better

detection and recognition performance, it is necessary to

select traffic features and reduce the number of features,

thus improving calculation efficiency and reducing

difficulties.

This paper uses a sensitivity coefficient-based method.

It is assumed that in the dataset, the number of samples

that belongs to class 𝑐𝑗 is |𝑐𝑗| and the number of feature 𝑡𝑖

in 𝑐𝑗 is 𝑛(𝑡𝑖, 𝑐𝑗). The occurrence frequency of feature 𝑡𝑖 in

class 𝑐𝑗 is written as:

𝐶𝑅(𝑡𝑖, 𝑐𝑗) =
𝑛(𝑡𝑖,𝑐𝑗)

|𝑐𝑗|
.

Let the malicious application class be 𝑐𝑚 , then the

occurrence frequency of feature 𝑡𝑖 in cm is written as:

𝑀𝑅(𝑡𝑖) =
𝑛(𝑡𝑖,𝑐𝑚)

|𝑐𝑚|
.

Let the normal application class be cb, the occurrence

frequency of feature ti in cb is written as:

𝐵𝑅(𝑡𝑖) =
𝑛(𝑡𝑖,𝑐𝑏)

|𝑐𝑏|
.

The frequency difference of feature ti in two classes

is written as:

𝑀𝐵𝑅(𝑡𝑖) =
MR(ti)

MR(ti)+BR(ti)
.

Ultimately, the sensitivity coefficient of feature 𝑡𝑖 is

written as:

𝑆𝐶(𝑡𝑖) =
2×𝑀𝐵𝑅(𝑡𝑖)×𝑀𝑅(𝑡𝑖)

𝑀𝐵𝑅(𝑡𝑖)+𝑀𝑅(𝑡𝑖)
.

The sensitivity coefficient of different features is

ranked. The larger the value of the sensitivity coefficient

is, the higher the rank of the feature is.

3.2 Detection and identification method

(1) K-means clustering [17]

The principle of K-means is to classify the dataset into

k clusters according to the size of the distance between

samples to achieve the classification of samples. It is

assumed that a dataset is divided into k clusters, Ck, then

the objective of the algorithm is to minimize square error

E, i.e.,

𝐸 = ∑ ∑ ‖𝑥 − 𝑢𝑖‖2
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

𝑢𝑖 =
1

|𝐶𝑖|
∑ 𝑥

𝑥∈𝑐𝑖

(2) Support vector machine

Support vector machine (SVM) is a commonly used

classification algorithm [18]. There is a sample set, 𝑇 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛 , 𝑦𝑛)}, 𝑥𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 ∈ (−1,1). In

order to classify the samples, it is necessary to find the

hyperplane: 𝑤𝑇𝑥 + 𝑏 = 0, where 𝑤 is the weight value

and 𝑏 is the threshold value. In order to maximize the

classification interval,

𝑚𝑖𝑛
1

2
‖𝑤‖2,

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1.

The above equation is solved using the Lagrange

method. Let 𝛼𝑖 be the Lagrange multiplier, then

max
𝛼

∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑖=1 ,

𝑠. 𝑡. ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1 , 𝛼𝑖 ≥ 0, 𝑖 = 1,2, ⋯ , 𝑚.

Ultimately, the classification function of the SVM is

written as:

𝑓(𝑥) = ∑ αiyixi
Tx + bm

i=1 .

(3) Multi-Layer Perceptron

Malicious Application Traffic Detection and Identification for… Informatica 46 (2022) 67–72 69

Multi-Layer Perceptron (MLP) is a kind of neural

network [19], and the simplest MLP has a three-layer

structure. If the number of nodes in the input layer is P,

whose excitation function is the identity function, the

number of nodes in the hidden layer is Q, whose excitation

function is the Sigmoid function, and the number of nodes

in the output layer is L, whose excitation function is the

linear function, then the output of the hidden layer is

expressed as: 𝑓(𝑤1𝑥 + 𝑏1), and the output of the output

layer is expressed as: 𝐹(𝑤2𝑌 + 𝑏2), where 𝑤1 and 𝑤2 are

weights, 𝑏1 and 𝑏2 are biases, and 𝑌 is the output of the

hidden layer. Ultimately, the MLP model is written as:

𝐹(𝑥) = 𝐹 (b(2) + w(2) (S(b(1) + w(1)x))).

The MLP method is trained by comparing the output

of the model with the desired output and updating the

weight according to the error. The update formula is:

𝛻𝑤 = 𝜂(𝑑 − 𝑤𝑇𝑥)𝑥,

where 𝜂 is the learning factor, 𝑑 is the expected value,

𝑤 is the initial weight, and 𝑥 is the input value.

4 Results and analysis

4.1 Experimental setup

The experimental operating system was Windows 10. The

model number of the CPU was Intel(R) Core(TM) i5-

8250U. The memory was 8 G. The programming language

was Python. The experimental data set came from the

Canadian Android Malware Dataset (CIC-AndMal2017)

[20], collected in 2015, 2016, and 2017 Google play

market, which included 4354 malicious applications

(Malware) and 6500 benign samples (Benign). Malicious

applications included four categories, 42 malicious

families, as shown in Table 1. The dataset provides

network traffic features (.pcap file), and they are more

than 80 features extracted using CICFlowMeter-V3 [21].

The dataset used for the experiments is shown in Table 2.

Malicious application

category

Malicious family name

Adware

Dowgin family

Ewind family

Feiwo family

Gooligan family

Kemoge family

koodous family

Mobidash family

Selfmite family

Shuanet family

Youmi family

Ransomware

Charger family

Jisut family

Koler family

LockerPin family

Simplocker family

Pletor family

PornDroid family

RansomBO family

Svpeng family

WannaLocker family

Scareware

AndroidDefender

AndroidSpy.277 family

AV for Android family

AVpass family

FakeApp family

FakeApp.AL family

FakeAV family

FakeJobOffer family

FakeTaoBao family

Penetho family

VirusShield family

SMS Malware

BeanBot family

Biige family

FakeInst family

FakeMart family

FakeNotify family

Jifake family

Mazarbot family

Nandrobox family

Plankton family

SMSsniffer family

Zsone family

Table 1: Malicious application traffic categories and their

families

 Trainin

g set

Test

set

Total

Malicious

applicatio

n traffic

Adware

26143 8714 34857

Ransomwar

e

28593 9531 38124

Scareware

27554 9184 36738

SMS

Malware

25654 8551 34205

Benign

traffic
Benign 108820 3627

4

14509

4

Table 2: Experimental data set

70 Informatica 46 (2022) 67–72 G. Niu

4.2 Evaluation indicators

The classification problem of the traffic is generally

evaluated on the basis of the confusion matrix (Table 3).

 Classification results

Normal

application

Malicious

application

The real

situation

Normal

application

TP FN

Malicious

application

FP TN

Table 3: Confusion matrix

The specific indicators are as follows.

(1) Accuracy: 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

(2) Precision: 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

(4) Recall rate: 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

(5) F1 value: 𝐹1 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑁+𝐹𝑃

4.3 Analysis of results

First, the accuracy was compared under different numbers

of features using the K-means method, and the results are

shown in Figure 2.

Figure 2: Accuracy under different number of features

It was seen from Figure 2 that the accuracy of the

algorithm was 82.36% when the number of features was

10 and 86.75% when the number of features reached 40;

after 40 features, the continued increase in the number of

features did not improve the accuracy of the algorithm,

which always remained at 86.75%. Therefore, in the

subsequent experiments, the number of features was

determined as 40.

The comparison of the running time of different

algorithms under 40 features is shown in Figure 3.

Figure 3: Comparison of the running time between

different algorithms

It was seen from Figure 3 that when detecting and

identifying malicious application traffic, the K-means

method required the longest running time, 0.06 s, the SVM

method was the second-longest, 0.03 s, which was 50%

shorter than the K-means method, and the MLP method

requires the shortest running time, 0.02s, which was 66.67%

shorter than the K-means method and 33.33% shorter than

the SVM method. These results indicated that the MLP

method was the most efficient and could achieve the

detection and identification of malicious application

traffic in the shortest time.

The performance of different algorithms for detecting

and identifying malicious application traffic is shown in

Figure 4.

Figure 4: Performance comparison of different

algorithms

Figure 4 shows that the accuracy of the K-means,

SVM, and MLP methods were 86.75%, 95.36%, and

99.87%, respectively, and the MLP method had the

highest accuracy rate, which was 13.12% higher than the

K-means method and 4.51% higher than the SVM method;

the precision of the three algorithms were 92.36%, 95.89%,

and 99.91%, respectively, and the MLP method also had

the highest precision; the recall rate of the K-means, SVM

and MLP methods were 94.65%, 96.77%, and 99.65%,

respectively, and the recall rate of the MLP method was 5%

higher than that of the K-means method and 2.88% higher

than that of the SVM method; the F1 value of the MLP

method was 99.77%, which was 9.56% larger than the K-

means method and 4.31% larger than the SVM method.

Malicious Application Traffic Detection and Identification for… Informatica 46 (2022) 67–72 71

These results suggested that among the three algorithms,

the MLP method had the best performance in detecting

and identifying malicious application traffic and could

classify malicious application traffic effectively.

5 Conclusion
This paper focuses on the problem of detecting and

identifying malicious application traffic on mobile

Android devices. A sensitivity coefficient-based approach

was designed to select traffic features, and the

performance of three algorithms, K-means, SVM, and

MLP, in detecting and identifying traffic was compared. It

was found through experiments on CIC-AndMal2017 that:

(1) the accuracy of the algorithm has reached stability

when 40 features were used;

(2) the MLP method had the shortest running time,

0.02 s, when performing detection and recognition;

(3) compared with the K-means and SVM methods,

the MLP method had higher accuracy, precision, recall

rate, and F1 value, showing better performance.

The experimental results verified the reliability of the

MLP method in detecting and identifying malicious

application traffic. The MLP method can be further

promoted and applied in actual mobile Android devices,

which is conducive to better secure use of Android devices.

References
[1] Zhu F (2018). Research on intelligent english oral

training system in mobile network. Informatica: An

International Journal of Computing and Informatics,

42, pp. 259-264.

[2] Kang B J, Yerima S Y, Sezer S, Mclaughlin K (2016).

N-gram Opcode Analysis for Android Malware

Detection. IJCSA, 1, pp. 231-255.

https://doi.org/10.22619/IJCSA.2016.1001011

[3] Cen L, Gates CS, Si L, Li N (2015). A Probabilistic

Discriminative Model for Android Malware

Detection with Decompiled Source Code. IEEE

Transactions on Dependable and Secure Computing,

12, pp. 400-412.

https://doi.org/10.1109/TDSC.2014.2355839

[4] Almin S B, Chatterjee M (2015). A Novel Approach

to Detect Android Malware. Procedia Computer

Science, 45, pp. 407-417.

https://doi.org/10.1016/j.procs.2015.03.170

[5] Aresu M, Ariu D, Ahmadi M, Maiorca D, Giacinto

G (2015). Clustering android malware families by

http traffic. In 2015 10th International Conference

on Malicious and Unwanted Software

(MALWARE’15), 2015, pp. 128-135.

[6] Wu Q, Zhu X, Liu B (2021). A Survey of Android

Malware Static Detection Technology Based on

Machine Learning. Mobile Information Systems,

2021, pp. 1-18.

https://doi.org/10.1155/2021/8896013

[7] Jang J W, Yun J, Mohaisen A, Woo J, Kim H K

(2016). Detecting and classifying method based on

similarity matching of Android malware behavior

with profile. Springerplus, 5, pp. 273.

https://doi.org/10.1186/s40064-016-1861-x

[8] Wang Z, Li C, Yuan Z, Guan Y, Xue Y (2016).

DroidChain: A novel Android malware detection

method based on behavior chains. Pervasive and

Mobile Computing, 32, pp. 3-14.

https://doi.org/10.1016/j.pmcj.2016.06.018

[9] Afonso V M, Amorim M, Grégio A R A, Junquera

GB, de Geus P L (2015). Identifying Android

malware using dynamically obtained features.

Journal of Computer Virology & Hacking

Techniques, 11, pp. 9-17.

[10] Faruki P, Laxmi V, Bharmal A, Gaur M S, Ganmoor

V (2015). AndroSimilar: Robust signature for

detecting variants of Android malware. Journal of

Information Security & Applications, 22, pp. 66-80.

https://doi.org/10.1016/j.jisa.2014.10.011

[11] Milosevic N, Dehghantanha A, Choo K (2017).

Machine learning aided Android malware

classification. Computers & Electrical Engineering,

61, pp. 266-274.

https://doi.org/10.1016/j.compeleceng.2017.02.013

[12] Chakraborty T, Pierazzi F, Subrahmanian V S (2017).

EC2: Ensemble Clustering and Classification for

Predicting Android Malware Families. IEEE

Transactions on Dependable & Secure Computing,

17, pp. 262-277.

https://doi.org/10.1109/TDSC.2017.2739145

[13] Ahmed, Abukmail, Paul, et al. (2014). Automatic

Android-based Wireless Mesh Networks.

Informatica: An International Journal of Computing

and Informatics, 38, pp. 313-320.

[14] Singh J, Gera T, Ali F, Thakur D, Singh K, Kwak K

S (2021). Understanding Research Trends in

Android Malware Research Using Information

Modelling Techniques. Computers, Materials and

Continua, 66, pp. 2655-2670.

https://doi.org/10.32604/cmc.2021.014504

[15] Chen X R, Shi S S, Xie C L, Yang Z, Guo Y J, Fang

Y, Wen W P (2021). SUIP: An Android malware

detection method based on data flow features.

Journal of Physics: Conference Series, 1812, pp. 1-

8. https://doi.org/10.1088/1742-

6596/1812/1/012010

[16] Wang L, Gao Y, Gao S, Yong X (2021). A New

Feature Selection Method Based on a Self-Variant

Genetic Algorithm Applied to Android Malware

Detection. Symmetry, 13, pp. 1290.

https://doi.org/10.3390/sym13071290

[17] Fan C (2022). Evaluating employee performance

with an improved clustering algorithm. Informatica:

An International Journal of Computing and

Informatics, 46, pp. 123-128.

https://doi.org/10.31449/inf.v46i5.4079

[18] Dey A, Chowdhury S (2020) Probabilistic weighted

induced multi-class support vector machines for face

recognition. Informatica: An International Journal

of Computing and Informatics, 44, pp. 456-467.

https://doi.org/10.31449/inf.v44i4.3142

[19] Mansour M, Alsulamy S, Dawood S (2021).

Prediction of implementing ISO 14031 guidelines

https://doi.org/10.1109/TDSC.2017.2739145
https://doi.org/10.3390/sym13071290

72 Informatica 46 (2022) 67–72 G. Niu

using a multilayer perceptron neural network

approach. PLoS ONE, 16, pp. 1-18.

https://doi.org/10.1371/journal.pone.0244029

[20] Lashkari A H, Kadir A F A, Taheri L, Ghorbani A A

(2018). Toward Developing a Systematic Approach

to Generate Benchmark Android Malware Datasets

and Classification. Proceedings of the 52nd IEEE

International Carnahan Conference on Security

Technology (ICCST), Montreal, Quebec, Canada, pp.

1-7.

[21] Habibi Lashkari A, Draper Gil G, Mamun MSI,

Ghorbani AA (2017). Characterization of Tor Traffic

using Time based Features. Proceedings of the 3rd

International Conference on Information Systems

Security and Privacy - ICISSP, Porto, Portugal, pp.

253-262.

https://doi.org/10.1371/journal.pone.0244029

