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Received:  

With the popularity of Android devices, the number of malicious applications has been increasing. This 

paper briefly introduced malicious applications for Android devices, used a sensitivity coefficient-based 

feature selection method to select traffic features, detected, and identified malicious application traffic 

with k-means, support vector machine (SVM) and multi-layer perceptron (MLP) methods, and conducted 

experiments at CIC-AndMal2017. It was found that the accuracy was high when 40 features were selected. 

The running time of the MLP method was the shortest, 0.02 s. The accuracy of the K-means algorithm 

was 86.75%, showing poor performance, and the accuracy of the MLP method was 99.87%, showing the 

best performance. The experimental results demonstrate the effectiveness of the MLP method for 

monitoring and identifying malicious application traffic. The MLP method can be applied to actual mobile 

Android devices. 

Povzetek: Prispevek se ukvarja z zlonamernimi aplikacijami na operacijskem sistemu Android - jih našteje 

in podrobno analizira z več metodami. 

 

1 Introduction 
With the development of mobile technology [1], devices 

such as cell phones and tablet computers have been more 

and more widely used [2] and become an important part 

of life [3], among which mobile devices using Android 

have the largest proportion [4]. With the rapid 

development of Android devices, many new problems 

have emerged. While the application traffic has increased 

significantly, the number of malicious applications has 

also increased significantly due to the open-source 

characteristic of Android devices [5, 6], which brings huge 

security problems to the mobile terminal [7]. Mobile 

applications are more diverse and complex than 

applications in personnel computers, and the traditional 

way of traffic detection and identification is not applicable 

to mobile. Therefore, how to detect and identify malicious 

application traffic on mobile has received a lot of attention 

from researchers [8]. Afonso et al. [9] extracted features 

from Android application programming interface (API) 

calls and system call traces to identify applications 

through a machine learning method. They found through 

experiments that the method had a detection rate of 

96.66%. Faruki et al. [10] designed a method called 

AndroSimilar to detect unknown applications by 

extracting statistically robust features to generate 

signatures and finding regions that are statistically similar 

to known malicious applications. Milosevic et al. [11] 

proposed two methods to analyze malicious applications, 

one based on permissions and the other based on source 

code analysis utilizing a bag-of-words representation 

model, and found through experiments that the F1 values 

of these two methods are 95.1% and 89%. Chakraborty et 

al. [12] designed an integrated clustering and  

 

classification (EC2) approach, conducted experiments on 

the DREBIN dataset, and found that EC20 could 

accurately detect malicious application families, 

providing an emerging early warning system. In this paper, 

the selection of traffic features and the detection and 

identification of malicious application traffic were 

investigated, several machine learning methods were 

compared, and experiments were performed at CIC-

AndMal2017 to understand the reliability of the method. 

This study provides some theoretical support for better 

implementation of the secure operation of Android 

devices on mobile. 

2 Malicious applications for Android 

devices 
Android is a Linux-based operating system [13] that uses 

the Dalvik virtual machine and has been very widely used 

in different brands of mobile devices. The applications for 

Android devices are very diverse, covering games, music, 

social communication, office, video, etc., which has led to 

the flooding of malicious applications [14]. Main 

malicious applications are shown below. 

(1) Privacy theft: Malicious applications can steal 

users’ privacy through the network or short messages, 

modify permissions of calls and short messages, steal 

users’ personal information, various account passwords, 

etc., or hide important information of users. 

(2) Downloading applications: The user is misled into 

downloading malicious applications by means of fake 

application names and forged buttons. 
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(3) Malicious fee deduction: Users are misled into 

paying for international calls, sending short messages, and 

subscribing to paid services in the background. 

(4) Malicious propagation: Users install and 

propagate malicious applications without knowing it. 

(5) Remote control: The phone is controlled remotely 

through applications to download unknown applications, 

uninstall antivirus applications, and download or destroy 

the user’s data. 

The 2019 Android Malicious Software Report 

released by 360 Security Brain shows the number of new 

malicious applications by month on the mobile terminal in 

2019, as shown in Figure 1. 

 

Figure 1: Number of new malicious applications by 

month 

It was seen from Figure 1 that in January and 

December, the number of new malicious apps was the 

highest, above 300,000, probably because people used 

their mobile Android devices for social entertainment 

activities more frequently around the Chinese New Year 

holidays, giving malicious applications an opportunity to 

spread. Among the malicious applications that appeared, 

the proportion of fee-consuming applications was the 

highest, reaching 46.8%, followed by privacy theft 

applications (41.9%). They are two main malicious 

applications. 

Malicious applications generate traffic during the 

operation. Malicious applications can be found by 

processing and analyzing the traffic generated by 

applications [15]. 

3 Detection and identification 

method for malicious application 

traffic 

3.1 Traffic feature selection 

When using algorithms for detection and recognition, if all 

the features are put into algorithms, it will cause a 

dimensional disaster that will consume a lot of time to 

make the algorithm converge [16]. In order to obtain better 

detection and recognition performance, it is necessary to 

select traffic features and reduce the number of features, 

thus improving calculation efficiency and reducing 

difficulties. 

This paper uses a sensitivity coefficient-based method. 

It is assumed that in the dataset, the number of samples 

that belongs to class 𝑐𝑗 is |𝑐𝑗| and the number of feature 𝑡𝑖 

in 𝑐𝑗 is 𝑛(𝑡𝑖, 𝑐𝑗). The occurrence frequency of feature 𝑡𝑖 in 

class 𝑐𝑗 is written as: 

𝐶𝑅(𝑡𝑖, 𝑐𝑗) =
𝑛(𝑡𝑖,𝑐𝑗)

|𝑐𝑗|
. 

Let the malicious application class be 𝑐𝑚 , then the 

occurrence frequency of feature 𝑡𝑖 in cm is written as: 

𝑀𝑅(𝑡𝑖) =
𝑛(𝑡𝑖,𝑐𝑚)

|𝑐𝑚|
. 

Let the normal application class be cb, the occurrence 

frequency of feature ti in cb is written as: 

𝐵𝑅(𝑡𝑖) =
𝑛(𝑡𝑖,𝑐𝑏)

|𝑐𝑏|
. 

The frequency difference of feature ti in two classes 

is written as: 

𝑀𝐵𝑅(𝑡𝑖) =
MR(ti)

MR(ti)+BR(ti)
. 

Ultimately, the sensitivity coefficient of feature 𝑡𝑖 is 

written as: 

𝑆𝐶(𝑡𝑖) =
2×𝑀𝐵𝑅(𝑡𝑖)×𝑀𝑅(𝑡𝑖)

𝑀𝐵𝑅(𝑡𝑖)+𝑀𝑅(𝑡𝑖)
. 

The sensitivity coefficient of different features is 

ranked. The larger the value of the sensitivity coefficient 

is, the higher the rank of the feature is. 

3.2 Detection and identification method 

(1) K-means clustering [17] 

The principle of K-means is to classify the dataset into 

k clusters according to the size of the distance between 

samples to achieve the classification of samples. It is 

assumed that a dataset is divided into k clusters, Ck, then 

the objective of the algorithm is to minimize square error 

E, i.e., 

𝐸 = ∑ ∑ ‖𝑥 − 𝑢𝑖‖2
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

𝑢𝑖 =
1

|𝐶𝑖|
∑ 𝑥

𝑥∈𝑐𝑖

 

(2) Support vector machine 

Support vector machine (SVM) is a commonly used 

classification algorithm [18]. There is a sample set, 𝑇 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛 , 𝑦𝑛)}, 𝑥𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 ∈ (−1,1). In 

order to classify the samples, it is necessary to find the 

hyperplane: 𝑤𝑇𝑥 + 𝑏 = 0, where 𝑤  is the weight value 

and 𝑏  is the threshold value. In order to maximize the 

classification interval, 

𝑚𝑖𝑛
1

2
‖𝑤‖2, 

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1. 

The above equation is solved using the Lagrange 

method. Let 𝛼𝑖 be the Lagrange multiplier, then 

max
𝛼

∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑖=1 , 

𝑠. 𝑡. ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1 , 𝛼𝑖 ≥ 0, 𝑖 = 1,2, ⋯ , 𝑚. 

Ultimately, the classification function of the SVM is 

written as: 

𝑓(𝑥) = ∑ αiyixi
Tx + bm

i=1 . 

(3) Multi-Layer Perceptron 
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Multi-Layer Perceptron (MLP) is a kind of neural 

network [19], and the simplest MLP has a three-layer 

structure. If the number of nodes in the input layer is P, 

whose excitation function is the identity function, the 

number of nodes in the hidden layer is Q, whose excitation 

function is the Sigmoid function, and the number of nodes 

in the output layer is L, whose excitation function is the 

linear function, then the output of the hidden layer is 

expressed as: 𝑓(𝑤1𝑥 + 𝑏1), and the output of the output 

layer is expressed as: 𝐹(𝑤2𝑌 + 𝑏2), where 𝑤1 and 𝑤2 are 

weights, 𝑏1 and  𝑏2 are biases, and 𝑌 is the output of the 

hidden layer. Ultimately, the MLP model is written as: 

𝐹(𝑥) = 𝐹 (b(2) + w(2) (S(b(1) + w(1)x))). 

The MLP method is trained by comparing the output 

of the model with the desired output and updating the 

weight according to the error. The update formula is: 

𝛻𝑤 = 𝜂(𝑑 − 𝑤𝑇𝑥)𝑥, 

where 𝜂 is the learning factor, 𝑑 is the expected value, 

𝑤 is the initial weight, and 𝑥 is the input value. 

4 Results and analysis 

4.1 Experimental setup 

The experimental operating system was Windows 10. The 

model number of the CPU was Intel(R) Core(TM) i5-

8250U. The memory was 8 G. The programming language 

was Python. The experimental data set came from the 

Canadian Android Malware Dataset (CIC-AndMal2017) 

[20], collected in 2015, 2016, and 2017 Google play 

market, which included 4354 malicious applications 

(Malware) and 6500 benign samples (Benign). Malicious 

applications included four categories, 42 malicious 

families, as shown in Table 1. The dataset provides 

network traffic features (.pcap file), and they are more 

than 80 features extracted using CICFlowMeter-V3 [21]. 

The dataset used for the experiments is shown in Table 2. 

 

Malicious application 

category 

Malicious family name 

Adware 

 

Dowgin family 

Ewind family  

Feiwo family  

Gooligan family  

Kemoge family  

koodous family  

Mobidash family  

Selfmite family  

Shuanet family  

Youmi family 

Ransomware 

 

Charger family  

Jisut family  

Koler family  

LockerPin family  

Simplocker family  

Pletor family  

PornDroid family  

RansomBO family  

Svpeng family  

WannaLocker family  

Scareware 

 

AndroidDefender  

AndroidSpy.277 family  

AV for Android family  

AVpass family  

FakeApp family 

FakeApp.AL family  

FakeAV family  

FakeJobOffer family  

FakeTaoBao family  

Penetho family  

VirusShield family  

SMS Malware 

 

BeanBot family  

Biige family  

FakeInst family  

FakeMart family  

FakeNotify family  

Jifake family  

Mazarbot family  

Nandrobox family  

Plankton family 

SMSsniffer family  

Zsone family  

Table 1: Malicious application traffic categories and their 

families 

 Trainin

g set 

Test 

set 

Total 

Malicious 

applicatio

n traffic 

Adware 

 

26143 8714 34857 

Ransomwar

e 

 

28593 9531 38124 

Scareware 

 

27554 9184 36738 

SMS 

Malware 

 

25654 8551 34205 

Benign 

traffic 
Benign 108820 3627

4 

14509

4 

Table 2: Experimental data set 
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4.2 Evaluation indicators 

The classification problem of the traffic is generally 

evaluated on the basis of the confusion matrix (Table 3). 

 

 Classification results 

Normal 

application 

Malicious 

application 

The real 

situation 

Normal 

application 

TP FN 

Malicious 

application 

FP TN 

Table 3: Confusion matrix 

The specific indicators are as follows. 

(1) Accuracy: 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

(2) Precision: 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

(4) Recall rate: 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

(5) F1 value: 𝐹1 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑁+𝐹𝑃
 

4.3 Analysis of results 

First, the accuracy was compared under different numbers 

of features using the K-means method, and the results are 

shown in Figure 2. 

 

 

Figure 2: Accuracy under different number of features 

It was seen from Figure 2 that the accuracy of the 

algorithm was 82.36% when the number of features was 

10 and 86.75% when the number of features reached 40; 

after 40 features, the continued increase in the number of 

features did not improve the accuracy of the algorithm, 

which always remained at 86.75%. Therefore, in the 

subsequent experiments, the number of features was 

determined as 40. 

The comparison of the running time of different 

algorithms under 40 features is shown in Figure 3. 

 

 

Figure 3: Comparison of the running time between 

different algorithms 

It was seen from Figure 3 that when detecting and 

identifying malicious application traffic, the K-means 

method required the longest running time, 0.06 s, the SVM 

method was the second-longest, 0.03 s, which was 50% 

shorter than the K-means method, and the MLP method 

requires the shortest running time, 0.02s, which was 66.67% 

shorter than the K-means method and 33.33% shorter than 

the SVM method. These results indicated that the MLP 

method was the most efficient and could achieve the 

detection and identification of malicious application 

traffic in the shortest time. 

The performance of different algorithms for detecting 

and identifying malicious application traffic is shown in 

Figure 4. 

 

Figure 4: Performance comparison of different 

algorithms 

Figure 4 shows that the accuracy of the K-means, 

SVM, and MLP methods were 86.75%, 95.36%, and 

99.87%, respectively, and the MLP method had the 

highest accuracy rate, which was 13.12% higher than the 

K-means method and 4.51% higher than the SVM method; 

the precision of the three algorithms were 92.36%, 95.89%, 

and 99.91%, respectively, and the MLP method also had 

the highest precision; the recall rate of the K-means, SVM 

and MLP methods were 94.65%, 96.77%, and 99.65%, 

respectively, and the recall rate of the MLP method was 5% 

higher than that of the K-means method and 2.88% higher 

than that of the SVM method; the F1 value of the MLP 

method was 99.77%, which was 9.56% larger than the K-

means method and 4.31% larger than the SVM method. 
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These results suggested that among the three algorithms, 

the MLP method had the best performance in detecting 

and identifying malicious application traffic and could 

classify malicious application traffic effectively. 

5 Conclusion 
This paper focuses on the problem of detecting and 

identifying malicious application traffic on mobile 

Android devices. A sensitivity coefficient-based approach 

was designed to select traffic features, and the 

performance of three algorithms, K-means, SVM, and 

MLP, in detecting and identifying traffic was compared. It 

was found through experiments on CIC-AndMal2017 that: 

(1) the accuracy of the algorithm has reached stability 

when 40 features were used; 

(2) the MLP method had the shortest running time, 

0.02 s, when performing detection and recognition; 

(3) compared with the K-means and SVM methods, 

the MLP method had higher accuracy, precision, recall 

rate, and F1 value, showing better performance. 

The experimental results verified the reliability of the 

MLP method in detecting and identifying malicious 

application traffic. The MLP method can be further 

promoted and applied in actual mobile Android devices, 

which is conducive to better secure use of Android devices. 
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